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Objectives: The aim of this pilot study was to evaluate dynamic thiol-disulfide

homeostasis as a novel oxidative stress parameter in multiple sclerosis (MS),

neuromyelitis optica spectrum disorders (NMOSD), and myelin oligodendrocyte

glycoprotein antibody-associated disease (MOGAD) to better understand the role of thiol

homeostasis in neuroimmunological diseases.

Methods: A total of 85 participants were included in this study, consisting of 18 healthy

controls, 52 patients diagnosed with MS, seven with NMOSD, and eight with MOGAD.

We measured total thiol (–SH+-S–S–) and native thiol (–SH) levels in the serum of all the

participants, and in a subset of patients (n = 11), these parameters were investigated in

paired cerebrospinal fluid (CSF) and serum samples. Dynamic disulfide concentrations

were calculated separately. Finally, we determined if there was any relationship between

clinical features and dynamic thiol homeostasis.

Results: There was a statistically significant difference between serum and CSF levels

of biomarkers of thiol homeostasis. Serum total thiol (317.88 ± 66.04) and native thiol

(211.61 ± 44.15) levels were significantly lower in relapsed patients compared to those

in remission (368.84 ± 150.36 vs. 222.52 ± 70.59, respectively).

Conclusions: Oxidative stress plays a crucial role in the physiopathology of

neuroimmunological diseases. Thiol homeostasis may be useful for monitoring

disease activity.

Keywords: multiple sclerosis, neuromyelitis optica spectrum disease, myelin oligodendrocyte glycoprotein, thiol,

oxidative stress

INTRODUCTION

Multiple sclerosis (MS) is a chronic autoimmune demyelinating disease of the central nervous
system (CNS) that causes neuronal damage which underlies many of the clinical features. It was
first described by Jean-Martin Charcot in 1868 and is the most common cause of physical and
cognitive disability in young adults (1). It has been estimated that ∼2.3 million people worldwide
suffer from MS (2). The disease is thought to occur in genetically susceptible individuals as a
result of environmental factors and potential triggers such as Epstein Barr virus seropositivity,
obesity, smoking, and Vitamin D deficiency. However, the exact cause of MS remains unknown
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(3–7). Myelin sheaths, oligodendrocytes, and inevitably, axons
and neurons are damaged. MS is characterized by the presence
of demyelinated areas called plaques in the brain and spinal
cord. In early stages of the disease, the permeability of the
blood–brain barrier increases due to the migration of peripheral
immune cells to the central nervous system, and a significant
inflammation of the parenchyma is observed (8). Importantly,
both neuroinflammation and oxidative stress, which are closely
interrelated, play a crucial role in the pathophysiology of
MS (9–11). MS can be diagnosed based on various clinical
presentations ranging from motor and autonomic dysfunction
to psychobehavioral deficits (12–14). Although the presentation
of the disease is generally relapsing–remitting (85%), ∼15% of it
is progressive from the onset. Secondary progression occurs in
the later stages of the disease in most patients with relapsing–
remitting MS (9).

Neuromyelitis optica spectrum disorder (NMOSD) is a type
of astrocytopathy in which aquaporine-4 (AQP4)-IgG antibodies
bind to AQP4 water channels on the end feet of astrocytes,
leading to immune-mediated inflammation and secondary
demyelination that can occur in varying degrees (15, 16). This
disease is typically characterized by clinically moderate to severe
attacks, and secondary progression is not usually seen. It is more
common in middle-aged women, and complete recovery after
attacks is usually rare (17, 18).

Myelin oligodendrocyte glycoprotein (MOG)-Ab-associated
disease (MOGAD) has been proposed to be distinctly different
from seronegative NMOSD. In this context, anti-MOG
antibodies are developed against MOG protein expressed on
myelin sheath and oligodendrocytes (19). Although MOGAD
can occur at any age, younger adults are more susceptible. The
course of the disease is characterized by monophasic or relapsing
features. Currently, the relationship of MOGAD with MS and
NMOSD is being discussed. Although this disease has clinical
and radiological similarities with NMOSD and MS, the current
trend is to classify MOGAD as a different entity from MS and
NMOSD (20–23).

Multiple sclerosis treatment has emerged in the last 15
years. Today, there are different choices of disease-modifying
treatments for different phases of the disease and medications
with different immune actions. Glatiramer acetate and interferon
beta 1a, teriflunomide, and dimethyl fumarate are the first-
line drugs, whereas there are anti-CD20 treatment options as
ocrelizumab and barrier blockers as natalizumab and fingolimod.
For neuromyelitis optica, there are guidelines for using
rituximab, azathioprine, mycophenolate mofetil, and eculizumab
(15, 24).

Autoimmune mediated inflammatory tissue damage increases
the production of reactive oxygen molecules that cause cell
damage ultimately leading to cell death. In order to maintain
the balance at the cellular level, the antioxidant system is
activated in response to the production of reactive oxygen
molecules (25). If the balance between these systems is not
maintained, oxidative stress can emerge at the cellular level.
There are many antioxidant defense mechanisms at the cellular
level to eliminate oxidative stress, such as the glutathione
system, catalase, thioredoxin-peroxiredoxin, alpha-ketoglutarate

dehydrogenases, and endogen and exogen antioxidant molecules
(26, 27). However, the measurement of only one of these does
not give us adequate information about oxidative balance. Thiol-
disulfide homeostasis is one of the most common parameters
used to evaluate the redox balance in organisms. Thiols are
organic complexes that contain a sulfur and a hydrogen group
attached to a carbon. Reactive oxygen species (ROS) transfer their
excess electrons to thiols, thus oxidizing them. As a result of
this process, disulfide bonds are formed. These disulfide bonds
are then broken down depending on the oxidant-antioxidant
status of organism. Thiols are considered to be antioxidant
molecules due to their reducing properties. This chain of
events is termed dynamic thiol-disulfide homeostasis (28–31).
Therefore, by evaluating this dynamic homeostasis, we can
determine the oxidative status of an individual without having
to measure oxidant and antioxidant molecules separately with a
single run.

Neuroinflammation is one of the most common pathways
seen in diseases associated with neurodegeneration (32).
Importantly, certain diseases, particularly those characterized
by neuroinflammation of the CNS, can lead to increased risk
of oxidative stress and high oxygen consumption in the CNS.
Thiol-disulfide homeostasis has been shown to play a role in the
pathogenesis of many diseases, including cardiovascular diseases,
rheumatoid arthritis, Parkinson, Alzheimer’s, amyotrophic
lateral sclerosis, and MS (33–38).

Previous studies have reported on the association between
MS and oxidative stress (39, 40). Moreover, many studies
using blood, cerebrospinal fluid, and post-mortem brain
samples from patients with MS have shown impairments
in reduction-oxidation (redox) homeostasis (26). However,
no study to date has assessed MS, NMOSD, and MOGAD
and their relationship with thiol-homeostasis. Although there
have been hypotheses about the pathophysiology of the
inflammatory CNS diseases that can mimic MS in the last
decade, there are still many gaps that need to be filled. Although
the relationship between inflammation and oxidative stress
has been demonstrated in the pathophysiology of MS, this
relationship is not yet clear in diseases such as NMOSD and
MOGAD (15). In this study, we tried to fill these gaps in
the disorders.

Distinguishing MS from CNS diseases that can mimic MS is
important in terms of therapeutic and prognostic approach. In
this context, thiol-disulfide homeostasis would not only provide
information about the oxidative status but perhaps distinguish
these diseases from each other.

In this study, we aimed to evaluate dynamic thiol-disulfide
homeostasis in different subgroups of MS, NMOSD, and
MOGAD patients along with their clinical features compared to
healthy controls (HCs).

METHODS

Subjects
In total, seven patients with AQP4-Abs+NMOSD (seven serum
samples), eight patients withMOG-Abs+MOGAD (eight serum
samples), and 52 patients with seronegative MS (52 serum,
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11 CSF samples, and 11 paired samples) were enrolled in the
study. The MS group consisted of three subgroups: (1) relapsing-
remitting MS (RRMS), n = 31; (2) secondary progressive MS
(SPMS), n = 15; and (3) primary progressive MS (PPMS), n

= 6. All patients with CSF samples were newly diagnosed by
neurologists (RRMS= 11 CSF samples).

Serum samples were also collected from 18 HCs (18 serum
samples) who were sex- and age-matched to the patient cohort.

TABLE 1 | Demographic and clinical characteristics of the patients.

MS (n = 52)

Progressive disease (n = 21) NMOSD (n = 7) MOGAD (n = 8) HC (n = 18)

RRMS(n = 31) PPMS (n = 6) SPMS (n = 15) AQP4+ MOG+ –

Gender, n (%)

Female 23 (74.2) 2 (33.3) 10 (66.7) 7 (100) 3 (37.5) 13 (72.2)

Male 8 (25.8) 4 (66.7) 5 (33.3) 5 (62.5) 5 (27.8)

Age at sampling, y 37.2 (±11.6) 48.0 (±11.7) 45.0 (±8.07) 48.1 (±11.1) 36.8 (±7.4) 34.8 (±7.5)

Age at onset, y 33.7 (±12.1) 36.8 (±10.7) 29.0 (±10.6) 39.1 (±10.8) 32.1 (±10.0) –

Disease duration, y 3.0 (1.0–7.0) 11 (7.2–19) 15.0 (12.0–20.0) 6.0 (2.0–15.0) 2.5 (1.2–4.7) –

Seropositive* Y,N, n N, 31 N, 8 N, 16 Y, 7 Y, 8 N, 18

Medication, n (%)

Treatment Naive 24 (77.4) 4 (66.7) 2 (13.3) – – –

Interferon beta 1a 3 (9.7) – – – – –

Glatiramere acetate 4 (12.9) – 1 (6.7) – – –

Interferon beta 1b – – 2 (13.3) – – –

Ocrelizumab – 2 (33.3) 1 (6.7) – – –

Azathioprine – – 3 (20.0) 3 (42.9) 2 (25.0) –

Fingolimod – – 4 (26.7) – – –

Natalizumab – – 2 (13.3) – – –

Rituximab – – 4 (57.1) 6 (75.0) –

Oligoclonal band, n (%)

Negative 6 (15.8) 6 (83.3) 10 (66.7) 7 (100) 5 (75.0) –

Type 2 17 (54.8) 1 (16.7) 5 (33.3) – 1 (12.5) –

Type3 1 (3.2) – – – – –

Type 2,3 1 (3.2) – – – – –

Type 4 – – – – 1 (12.5) –

Clinical presentation, n (%)

Motor symptoms 7 (22.6) 3 (50.0) 4 (26.7) – – –

Polysymptomatic presentation 8 (25.8) 3 (50.0) 4 (26.7) – – –

Brainstem symptoms 1 (3.2) – 2 (13.3) – – –

Optic neuritis 4 (12.9) – 2 (13.3) 4 (57.1) 6 (75.0) –

Sensorial symptoms 6 (19.4) – 3 (20.0) – – –

Sphincter dysfunction 1 (3.2) – – – – –

Cerebellar symptoms 4 (12.9) – – – – –

Transverse myelitis – – – 2 (28.6) 1 (12.5) –

ON–TM – – – – 1 (12.5) –

Area postrema syndrome – – – 1 (14.3) – –

Relapse** Y, N Y, 14 (45.2) N, 6 (100.0) N,15 (100.0) Y,1 (14.3) Y,2 (22.2) –

Time of complaint beginning, y 4.0 (2.0–8.0) 12 (8.2–20.0) 16.0 (13.0–21.0) 8 (4–27) 8.5 (3.5–11.7) –

EDSS 2.0 (2.0–3.2) 5.7 (4.1–6.6) 4.7 (3.8–6.6) 4 (2.5–4) 1.5 (0–3.7) –

Relapse number 2.5 (1–4) 0 5.0 (3.0–15.0) 3.5 (2.7–11.25) 3.5 (1.5–5.7) –

GD+ enhancing lesions 0 (0–1) 0 0 0 (0–0.25) 1 (0–1) –

MRI,T2 lesions 17.0 (8.5–40.0) 25 (25–30) 70 (25–100) 1.5 (0–2.25) 1 (0–2.25) –

MS, multiple sclerosis; RRMS, relapsing–remitting multiple sclerosis; PPMS, primary progressive multiple sclerosis; SPMS, secondary progressive multiple sclerosis; NMOSD,

neuromyelitis optica spectrum disorders; MOGAD, myelin oligodendrocyte glycoprotein-Ab-associated disease; HC, healthy control; AQP4+, aquaporine-4 positive; MOG+, Myelin

oligodendrocyte glycoprotein positive; y, year; Y, yes; N, no; EDSS, Expanded Disability Status Scale; GD, gadolinium; MR, magnetic resonance imaging; –, not available.

*Seropositive is indicated as Yes or No.

**Relapse at the time of sampling is indicated as Yes or No.
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Both AQP4-Abs and MOG-Abs were verified twice (>1:40 titer)
by a commercially available fixed cell-based assay (Euroimmun,
Lubeck, Germany). Serum and CSF samples were collected at
the Department of Neurology, Hacettepe University (Ankara,
Turkey) and then stored at−80◦C in the Department of Medical
Biochemistry, Gazi University (Ankara, Turkey). Additional CSF
samples were gathered within patients undergoing relapse. All
samples were collected between January 1, 2019, and January
1, 2020 with a maximum of 2 months between the symptom
onset of relapse and sample collection. The treatment-naive
group consisted of patients (n = 30) who had not received
steroid treatment in the last month and who had not been
treated with immunomodulatory therapy in the last 3 months
before sample collection. Our cohort also included patients who
received different types of immunemodulator therapy (n= 37) in
addition to the treatment-naive group (all of the treatment-naive
patients were in MS subtypes).

Diagnosis, Clinical Evaluation, and Data
Collection
AQP4-Abs-positive NMOSD and MOG-Abs-positive MOGAD
patients were diagnosed according to previously determined
consensus criteria (18). MS diagnosis was made according to
the modified McDonald criteria (9). Medical records, laboratory
data, and magnetic resonance imaging (MRI) findings of the
patients were reviewed retrospectively. We carried out clinical
evaluations using the neurological examination and Expanded
Disability Status Scale (EDSS). Relapse was defined as a
monophasic clinical episode with patient-reported symptoms
and objective findings typical of MS, reflecting a focal or
multifocal inflammatory demyelinating event in the CNS,
developing acutely or subacutely, with a duration of at least
24 h, with or without recovery, and in the absence of a fever or
infection (9).

Demographics data (sex, age, age at onset of the disease,
and time of first complaints), clinical features (number of
relapses, presenting symptoms, disease duration, disease subtype
for MS, acute and maintenance treatments, and neurological
findings at last follow-up), laboratory findings (serum and
cerebrospinal fluid examinations, MOG-IgG titer, AQP4-IgG
titer, and biomarker levels), and radiological findings were
examined retrospectively.

Standard Protocol Approvals,
Registrations, and Patient Consents
Our study was approved and reviewed by the ethics committee
of the faculty of Medicine, at Gazi University (ethical approval
number: 33-14.01.2019). All individuals provided written
informed consent.

Biomarker Analysis
CSF and serum samples were aliquoted into Eppendorf tubes
and stored prior to conducting the biomarker studies which were
performed at different times. Centrifuge protocols were used for
CSF and blood sample biobanking as previously described (41).
Briefly, CSF samples were centrifuged at 400 × g for 10min and
blood samples at 2,000× g for 10min at room temperature.

Cell-Based Assays
The MOG-IgG test was performed using a Euroimmun kit
that utilizes a cell-based assay (CBA) employing formalin-
fixed HEK293 cells transfected with full-length human MOG
(reactivity at a dilution of 1:10 is positive). A baseline AQP4-IgG
test was performed by a fixed-cell CBA (Euroimmun, titer >1:10
is positive) in all patients.

Evaluation of Thiol-Disulfide Homeostasis
Serum thiol-disulfide homeostasis was determined using a novel
spectrophotometric method as previously described (29). Briefly,
dynamic and reducible disulfide bonds (–S–S) in the samples
were reduced to free functional thiol groups (–SH) using sodium
borohydride (NaBH4). In order to avoid the reduction of unused
reduced sNaBH4 to dithionite-2 nitrobenzoic (DTNB), NaBH4

was removed with formaldehyde. Then, the native thiol (NTL)
and total thiol (TTL) levels were determined after reacting with
DTNB. Half of the difference of the result obtained by the
subtraction of NTL amount from TTL content indicated the
disulfide (DS) level. Finally, the NTL/TTL (–SH/–SH+-S–S),
disulfide/NTL (–S–S/–SH), and disulfide/TTL (–S–S/–SH+-S–S)
ratios were calculated.

Statistics
All data were analyzed using the SPSS package program (ver.
21.0; IBM Corp., Armonk, NY, USA) with a 95% confidence
level. Categorical variables are represented as frequency (n) and
percentage (%), while numerical variables are represented as
mean, standard deviation (SD), and median (M). The normality

FIGURE 1 | Thiol levels in paired CSF and serum samples. TTL, total thiol;

NTL, native thiol; CSF, cerebrospinal fluid. *The statistical significance is

marked with asterisks (Mann–Whitney U-test).
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of the distribution of numerical variables was examined using
Shapiro–Wilk tests. Ordinal variables were described by median
and interquartile ranges (IQRs), mean and standard deviations
(SD) in Gaussian distributed data, and categorical variables by
counts and percentages. Spearman correlation coefficients were
calculated to determine the relationship between serum and CSF
biomarker levels and numeric clinical variables across all the
patients and within each disease. The Mann Whitney test was
used to compare groups in terms of a quantitative variables.
The Kruskal–Wallis test was used to compare independent k
groups (k > 2) in terms of quantitative variables. Demographic
features of the participants at baseline were compared using the
Fisher exact test or the Wilcoxon test. The GraphPad Prism
software was used for some graphical demonstrations. Variables
with two-tailed p < 0.05 were considered significant.

RESULTS

The demographic and clinical characteristics of the patients are
summarized in Table 1.

There were significantly more females among the subgroups
of diseases compared to males (p < 0.05), except for the PPMS
(male= 66.7%) andMOGAD (male= 62.5%) groups. The SPMS
group (median: 15.0, IQR: 12.0–20.0) had the highest median
level of disease duration (p < 0.05) and the highest number of
GDT2+ lesions (median: 70, IQR: 25–100) (p< 0.05). The PPMS
group (median: 5.7, IQR: 4.1–6.6) had the highest median EDSS
level (p < 0.05).

There was a statistically significant difference between serum
and CSF levels of biomarkers (p < 0.05). That is, serum levels of
biomarkers were significantly higher than CSF values (p < 0.001;
Figure 1 and Table 2). No significant relationship was found
between serum and CSF values of biomarkers (p > 0.05). There
was also no statistically significant difference in terms of serum
biomarkers between subgroups (p > 0.05; Figure 2). MOGAD

serum TTL levels (410.7 ± 281.5) and PPMS serum disulfide
levels (75.8 ± 74.9) were comparable between the different
disease subgroups and healthy controls (p > 0.05; Table 2).
Serum TTL (317.88 ± 66.04) and NTL (211.61 ± 44.15) levels
were significantly lower in relapsed patients (368.84 ± 150.36)
compared to those in remission (222.52± 70.59; p < 0.05).

Serum TTL was negatively correlated with the number of
relapses in relapsed patients (p = 0.027, r = −0.521). Serum
NTL levels were negatively correlated with age at onset and EDSS,
respectively (p= 0.045, r =−0.477; p= 0.031, r =−0.508). The
age at sampling and number of GDT2 + lesions were positively
correlated (p = 0.018, r = 0.537). When all patient subgroups
were evaluated, there was a negative correlation between serum
NTL levels and age at sampling, age at onset (p = 0.024, r =

−0.244; p = 0.031, r = −0,264; respectively). For the RRMS
group, there was a negative correlation between serum TTL,
NTL, and EDSS (p = 0.017, r = −0.439; p = 0.004, r =

−0.522; respectively). For the PPMS group, there was a positive
correlation between serum disulfide and disease duration (p =

0.024, r = 0.870).

DISCUSSION

Previous studies have investigated the oxidative stress markers
and antioxidant molecules that develop in MS patients (42–45).
Furthermore, their relationships with disability and subtypes of
disease have also been examined (46).

Although previous studies have assessed thiol homeostasis
in MS (47, 48), to the best of our knowledge, this is the first
study to evaluate it within MS subtypes (NMOSD and MOGAD)
compared toHCs.Moreover, in these studies, very limited clinical
information was used, and its relationship with clinical findings
was largely unexplored. Interestingly, until now, no study has
investigated dynamic thiol disulfide homeostasis in NMOSD
and MOGAD.

TABLE 2 | Serum biomarker levels in different disease subgroups.

MS (n = 52)

Progressive disease (n = 21) NMOSD (n = 7) MOGAD (n = 8) HC (n = 18) p-valuea

RRMS(n = 31) PPMS (n = 6) SPMS (n = 15) AQP4+ MOG+

CSF protein 37.57 (26.56–43.47) 47.3 27.70 (25.54–43.60) 77.42 (±35.4) 45.31 (31.91–77.56) – >0.05

IgG index 0.98 (0.73–1.19) 0.41 0.87 (0.64–1.51) 0.61 (±0.1) 0.58 (±0.09) – <0.05*

Total thiol (–SH+-S–S)(µmol/L) 337.4 (±100.0) 357.1 (±127.8) 366.0 (±101.8) 332.5 (±80.0) 410.7 (±281.5) 316.8 (±51.0) >0.05

Native thiol (–SH)(µmol/L) 216.0 (±73.1) 205.5 (±47.8) 235.0 (±66.5) 206.5 (±51.9) 212.3 (±24.8) 219.3 (±25.7) >0.05

Dynamic disulfide (–S–S)(µmol/L) 60.6 (±33.8) 75.8 (±74.9) 65.5 (±42.0) 63.0 (±37.3) 49.7 (25.6–103.7) 48.7 (±13.7) >0.05

S–S–/–SH 0.26 (0.18–0.39) 0.43 (±0.50) 0.30 (±0.20) 0.33 (±0.22) 0.24 (0.10–0.56) 0.21 (±0.04) >0.05

–S–S–/(–SH+-S–S–) 0.17 (±0.08) 0.18 (±0.11) 0.17 (±0.08) 0.18 (±0.08) 0.18 (±0.11) 0.15 (±0.02) >0.05

–SH/(–SH+-S–S–) 0.64 (±0.16) 0.62 (±0.22) 0.65 (±0.16) 0.63 (±0.17) 0.63 (±0.22) 0.69 (±0.04) >0.05

MS, multiple sclerosis; RRMS, relapsing–remitting multiple sclerosis; PPMS, primary progressive multiple sclerosis; SPMS, secondary progressive multiple sclerosis; NMOSD,

neuromyelitis optica spectrum disorders; MOGAD, myelin oligodendrocyte glycoprotein-Ab-associated disease; HC, healthy control; AQP4+, aquaporine-4 positive; MOG+, myelin

oligodendrocyte glycoprotein positive; /, ratio.

*The statistical significance is marked with asterisk and bold.
aKruskal–Wallis test.
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FIGURE 2 | Thiol levels in serum samples with different disease subgroups and healthy controls. RRMS, relapsing-remitting multiple sclerosis; PPMS, primary

progressive multiple sclerosis; SPMS, secondary progressive multiple sclerosis; NMOSD, neuromyelitis optica spectrum disorders; MOGAD, myelin oligodendrocyte

glycoprotein-Ab-associated disease; HC, healthy control; TTL, total thiol; NTL, native thiol. There is no statistically significant difference for the same biomarker

between groups.

We found that there was a higher ratio of women to
men among the MS subgroups, except in the PPMS and
NMOSD groups, which is consistent with the literature (11,
15). Furthermore, similar to previous studies, we found that
the duration of the disease was longer in the progressive MS
group. Likewise, the progressive group had a higher EDSS score
than the RRMS group, even if there were naive patients in
RRMS group.

Importantly, we are the first to evaluate CSF and serum thiol
homeostasis together. The brain parenchyma produces a high
rate of oxidative radicals due to its high oxygen consumption
(49, 50). In our study, it was observed that TTL, NTL, and
disulfide CSF levels were lower than serum values. Presumably,
in this case, peripheral oxidative damage and dynamic thiol
homeostasis that emerges in response also plays a role. These
findings suggest that CSF TTL, NTL, and disulfide levels may
be used to evaluate disease status in patients who undergo CSF
sampling for diagnostic purposes.

When oxidative stress increases, thiol groups of proteins react
with oxidants and turn into disulfide bonds. These formed bonds
can then be reduced to thiol groups again, reestablishing thiol-
disulfide homeostasis (51).

In our study, the SPMS group had the highest serum mean
TTL levels among the MS group. The SPMS group also had
the highest number of relapses and longest disease duration.
This suggests that as new disulfide bonds are formed, more thiol
groups can be reduced in this group. TheMOGAD group had the
highest TTL levels among the disease subtypes. This may actually
be related to the pathophysiology of this disorder (15), as the
main problem in this disease is the MOG-IgG Ab that develops
against myelin sheath, which causes oxidative damage, thereby
leading to an increase in TTL levels.

The PPMS group had the highest serum disulfide levels among
the disease subtypes. This condition, which is indicative of
oxidative damage, may also be associated with neuronal damage.
In addition, the negative correlation between serum TTL, NTL,
and EDSS in the RRMS group suggests that these values could be
used in the assessment of disability.

Plasma membrane is like the primary sensor of the
cells’ extrinsic stressors. Excess amounts of ROS cause cell
damage and death by disrupting plasma membrane functions.
These mechanisms are believed to play a major role in the
pathophysiology of many neurodegenerative diseases. However,
low amounts of membrane-associated ROSmay activate adaptive
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pathways against stress. There is increasing evidence for the
hormetic role of membranes in states of low and transient
oxidative stress. Under normal conditions, membrane lipid
peroxidation is usually low. However, an increase in oxidative
stressors in cells such as neurons with high energy demand and
oxygen consumption may deteriorate the hormetic roles of the
membrane (52–55). Perhaps, the low thiol levels in relapsed
patients in our study can be explained by the deterioration in the
hormetic role of the membrane. In addition, irrespective of the
cause, the increase in cellular oxidative stress at subtoxic levels
causes a neuroprotective effect known as “preconditioning.”
Preconditioning signal provides cellular protection through
hormesis, which is a dose-response phenomenon characterized
by a high-dose inhibition and low-dose stimulation (56–59).
Thanks to this chain of events, neuroprotection is also provided.

Protein thiols are important mediators of multiple metabolic,
signaling, and transcriptional processes; they play a key role
in the regulation of redox sensing and cellular redox status.
“Vitagenes,” which play a key role in oxidative stress protection,
are protective genes that control pro-survival pathways that
must be activated in response to cellular stress. They encode
cytoprotective heat shock proteins, thioredoxin, and sirtuins
(60). Under normal physiological conditions, long-term health
is maintained by protein homeostasis. When this homeostasis
is disrupted, cellular stress is released and heat shock proteins,
including chaperones, are produced and contribute to cell
survival (61, 62). In this study, the SPMS group had the highest
serum mean TTL levels among the MS groups. According to this
result, we may assume that vitagen activity may have increased,
and pro-survival mechanisms are activated for the continuity of
protein homeostasis.

Our study had some limitations. Particularly, the number of
patients in the NMOSD and MOGAD groups was lower than
the other groups. While the numbers in this group reflected
all of the patients in our tertiary center, all of them were
being treated with immunomodulatory therapy. In addition,
due to ethical considerations, we could not obtain CSF samples
from HCs; thus, there were no CSF samples included in
our HC group. Furthermore, the number of patients in our
progressive MS group was not close to that of the RRMS
group, either. In addition, our patient population did not include

more rare MS subtypes, such as clinically isolated syndrome
(CIS) and radiologically isolated syndrome (RIS). Although this
study demonstrates the usefulness of assessing dynamic thiol
homeostasis among neuroinflammatory diseases of the CNS,
future studies incorporating larger patient cohorts are needed.

CONCLUSIONS

Oxidative stress plays a crucial role in the physiopathology
of neuroimmunological diseases. This study is the first to
assess thiol homeostasis among different subgroups of MS and
NMOSD. Previously, thiol homeostasis has only been evaluated
using serum. In future studies, CSF and serum values of thiols
should be examined in detail using a larger number of paired
serum and CSF samples. Perhaps in the near future, thiol status
can be used by itself or in combination with other candidate
biomarkers to monitor oxidative status and disease activity.
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