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Abstract: The widespread problem of resistance development in bacteria has become a critical issue
for modern medicine. To limit that phenomenon, many compounds have been extensively studied.
Among them were derivatives of available drugs, but also alternative novel detergents such as Gem-
ini surfactants. Over the last decade, they have been massively synthesized and studied to obtain the
most effective antimicrobial agents, as well as the most selective aids for nanoparticles drug delivery.
Various protocols and distinct bacterial strains used in Minimal Inhibitory Concentration experi-
mental studies prevented performance benchmarking of different surfactant classes over these last
years. Motivated by this limitation, we designed a theoretical methodology implemented in custom
fast screening software to assess the surfactant activity on model lipid membranes. Experimentally
based QSAR (quantitative structure-activity relationship) prediction delivered a set of parameters
underlying the Diptool software engine for high-throughput agent-membrane interactions analysis.
We validated our software by comparing score energy profiles with Gibbs free energy from the
Adaptive Biasing Force approach on octenidine and chlorhexidine, popular antimicrobials. Results
from Diptool can reflect the molecule behavior in the lipid membrane and correctly predict free
energy of translocation much faster than classic molecular dynamics. This opens a new venue for
searching novel classes of detergents with sharp biologic activity.

Keywords: surfactants; numerical tool; drug delivery; free energy calculation; molecular dynamics;
lipid membranes

1. Introduction

The increasing problem of antibiotic resistance was identified by The World Health
Organization as one of the current major threats to global health [1]. Unless novel medicines
can be developed, millions more people may die each year. One of the approaches to limit
this phenomenon involves the application of antibacterial candidates with a broad spec-
trum of activity. The molecular target of those compounds is not well defined in microbial
cells, but it is safe to guess that it could be the cell membranes or their components. The
complex interaction with various cellular structures may significantly reduce the bacteria’s
resistance development [2,3]. Cationic Gemini surfactants belong to a class of compounds
with broad-spectrum activity, effective against Gram-positives and Gram-negatives even in
low concentrations, and are also used in drug nanoparticles delivery. Beyond biomedical
applications, specific Gemini detergents are also used in the paint industry as corrosion
inhibitors [4,5]. In the recent decade, only a few new classes of surface-active compounds
have been discovered and have attracted the attention of researchers and industrial innova-
tion units. Recently, several novel groups of bio-active detergents have been synthesized
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and reported [6–9]. The latest classes of amphiphilic-structured compounds are formed
by Gemini surfactants, which are made of two aliphatic hydrocarbon chains and two
hydrophilic head groups bonded by a rigid or flexible spacer. The spacer can be a sym-
metrized bonding that uses two of the same molecules (e.g., a disulfide bridge), whereas
the head groups can be composed of: phosphate, sulfone, carboxyl, sulfate ethylammo-
nium, or pyrrolidine residues. Gemini surfactants were already proven experimentally to
have a high antimicrobial capacity [10–12], and in the future may be applied in facilitating
drug delivery across membranes [13,14]. Unfortunately, direct antibacterial effectiveness
comparison between groups of agents is often unfeasible due to the various bacterial strains
used, and multiple, not always coherent, approaches of minimum inhibitory concentration
(MIC) measurements. Thus, a delivery of clear, specific structural parameters of agents
that may enhance antimicrobial action remains elusive. Many attempts were proposed to
explain key structure components or the membrane disruption mechanism itself [15–20],
without clear success. Instead of incoherent experimental procedures among different
laboratories, a theoretical approach would better address this issue, offering additional
insights at the molecular level. Molecular dynamics (MD) simulation can be successfully
applied to explore the behavior and activity of synthesized molecules, opening the middle-
throughput analyses in silico [21]. In MD the interactions are explored by solving Newton’s
laws of motion for the system (i.e., bacterial lipid membrane and antimicrobial agent),
fully taking into account the water environment. Those simulations may reflect the real
biological environment and overcome the experiment shortcomings up to the atomic level.
The antibacterial effect of surfactant activity has already been studied in this way many
times, and the interactions of the model molecules, octenidine (OCT) and chlorhexidine
(CHX) with mimetic membranes, have been repeatedly described [21,22]. The chemical
structures of antimicrobial agents OCT and CHX are presented in Figure 1.
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In general, the molecular dynamics approach is a very versatile method but requires a
lot of resources and time to effectively generate the results. Hence, molecular docking tools
dedicated to protein-drug interactions have emerged in the field of pharmaceutical research.
The molecular docking approach, based on quickly scored interactions without an explicit
water environment presence, becomes an increasingly important tool for discovering new
drugs by opening the high-throughput analyses in silico [23,24]. It offers an opportunity
to model at the atomic level the interaction of small molecules with proteins, however,
explaining the fundamental biochemical processes. Although docking is a much more
lightweight and way faster method than MD, it has some serious limitations, such as
the impossibility of docking molecules to the entire lipid membrane structure due to its
essential dynamics, which molecular docking does not address [23].

As there is an increasing interest to rapidly assess the molecular interactions of selected
molecules with lipid membranes, we decided to provide a numerical tool in response to
these needs. Here we present a novel and unique tool that covers the gap between MD and
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docking approaches, allowing the investigation of agent-lipid membrane interactions as fast
as docking does but with MD precision enabling high-throughput analyses for interactions
between detergents and lipids in antibacterial context. Due to the lack of unambiguous
parameters determining the effectiveness of molecule-lipid membrane interactions, we used
the quantitative structure-activity relationship (QSAR) method [25] to extract statistically
significant properties for previously well-studied model Gemini detergents, OCT and CHX.
In detail, employing data from experimentally verified various Gemini molecules delivered
by Minbiole group [15,26–30], we selected 138 agents and derived a quantum QSAR, where
only macroscopic descriptors such as dipole moment, partition coefficient (logP), and
some structural parameters occurred as most significant for effective interactions with
lipids. Descriptors were chosen to provide antimicrobial performance, comparable to
standardized MIC form literature study, to ensure reproducibility of macroscopic biological
phenomenon of membrane dissolution.

In this work, we introduce the methodology and the screening tool for a rapid deter-
mination of the Gemini agent affinity to various types of homogenous lipid membranes
providing particle trajectory visualization and free energy analysis. We validated our tool
on two commercially available and frequently studied antibacterial molecules: OCT and
CHX. Additionally, we compare the results from our tool with the free energy calculations
obtained directly from MD with the adaptive biasing force (ABF) approach for different
lipid membranes.

2. Materials and Methods
2.1. Background

The QSAR method allows correlating the biological activity of the compound with val-
ued physiochemical properties. Hydrophobic, electronic, or steric properties (descriptors)
allow the analyzing of large databases of many agents that evoke a biological response
in various molecular pathways. Some descriptors are difficult to clarify, taking into con-
sideration the indirect representation of chemical structures. To counteract this, QSAR
methods are powerfully supported by many mathematical approaches starting from mul-
tiple linear regression (MLR) [31–33] through an artificial neural network (ANN) [34–37]
to machine learning (ML) [38,39]. These studies have a significant impact on recognition
and understanding of the molecular mechanism of drug action, allowing the design of
new and more specific candidates. Hence, since the last decade, chemoinformatics [40] has
been booming and plays a significant role in discovering new drugs [41]. Moreover, the
European Commission in the New Chemical Policy REACH (Registration, Evaluation and
Authorization of Chemicals, European Union) recognized the method as relevant, whereas
the information from alternative sources may assist in determining the presence of insecure
properties of the substance, and may, in some cases, substitute for the results of animal
tests [42]. In this study, our purpose was to create QSAR GA (genetic algorithm) on a set
of 138 cationic Gemini surfactant molecules and to define parameters that significantly
affect the potency of the antibacterial effect. In the QSAR regression model, the regression
coefficient (r2) indicates the relationship correlation, whereas the cross-validation regres-
sion coefficient (CVr2) indicates the prediction accuracy of the model. Our major goal
was to demonstrate that the phenomenon is not always straightforward, hence we focus
on parameters to assess which are significant. We created several quantum QSAR linear
regression models (quantum means with descriptors describing molecule at quantum level)
based on delivered set of coherent MIC values for Pseudomonas Aeruginosa, Escherichia Coli,
Enterococcus Faecalis, and Staphylococcus Aureus using SCIGRESS 3.3.3 (Fujitsu Ltd., Tokyo,
Japan). Based on our dataset, 472 descriptors were found for every bacteria strain. We
performed a 5-descriptor QSAR model for particular bacteria strains and subsequently,
we decided to focus on the three most frequently occurring and most significant, but not
bond-related parameters in the output– i.e., dipole moment, logP, and size, successively
(see Table 1).
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Table 1. Results from 5-Descriptor QSAR Calculations from E. faecalis, E. coli, S. aureus, and P. aeruginosa datasets with the
Parameters’ Relative Importance. Frequently Appearing Descriptors were Bolded.

E. faecalis E. coli

Descriptor Relative Importance Descriptor Relative Importance

length/width 0.1920 length/width 0.2316
logP 0.8700 logP 0.8331

hydrophobic dipole moment 0.3655 hydrophobic dipole moment 0.3816
Hydrogen count −0.1418 double bond count −0.2713

1.0/Csp3 bonded to 2 C 1.0000 1.0/Csp3 bonded to 2 C 1.0000

S. aureus P. aeruginosa

Descriptor Relative Importance Descriptor Relative Importance

length/width 0.3422 length/width 0.3644
logP 0.8358 logP 0.8829

hydrophobic dipole moment 0.4667 hydrophobic dipole moment 0.4782
atomic charge weighted positive

area-atomic charge weighted
negative area

0.1409 charge weighted nonpolar area −0.2206

1.0/Csp3 bonded to 2 C 1.0000 1.0/Csp3 bonded to 2 C 1.0000

The 1.0/Csp3 bonded to 2C is an overlapping structural parameter associated with
hybridized carbon atoms attached to exactly two carbon atoms; as it cannot be directly im-
plemented into the calculation core as a force source, it was omitted. Based on these results,
we employed dipole–dipole interaction as a calculation engine, thus implementing the first
significant relationship from the obtained models. A more detailed description of motion
is described in the Theory section. Partition coefficient (logP) and length/width (size) were
included as subsequent parameters in our screening tool. The coefficient logP determines a
measure of lipophilicity of a compound. i.e., drug and describes its ability to pass through
the cell membrane barrier. It is identified as a drug distribution ratio between aqueous
and organic layers at an equilibrium state [43]. To define the partition coefficient, arbitrary
concentration units are often used (instead of potentials); however, the use of molarity
is also useful, thus the logarithm of the partition coefficient can be determined from the
chemical potentials [44].

log10P =
µw − µo

RT ln(10)
=

∆Htransfer
RT ln(10)

(1)

where µw and µo are excess chemical potentials of the Gemini agent in water and octanol
respectively, R is the gas constant, T is the temperature, and 2.303 equals ≈ ln(10). In
this approach, we decided to introduce the structural parameter (size) which defines the
length/width of the molecule. For general use, the molecular structure is considered as a
sphere, described by radius R, thus the degrees of freedom are reduced.

The particular lipid and Gemini agent dipole moments were extracted from molecular
dynamics trajectories using MOPAC 2016 (Molecular Orbital PACkage, Stewart Computa-
tional Chemistry, Colorado Springs, CO, USA) software with PM7 method [45,46]. Briefly,
the specific approximation for intermolecular interactions used in PM7 was parameterized
using experimental and high-level ab initio reference data, augmented by a new type
of reference data intended to better define the structure of parameter space [46]. Dipole
moments were derived for each lipid and agent in the system from 200 ns trajectories, and
the mean values and standard deviations are used as inputs to our screening tool.

2.2. Theory and Calculation

In our approach, we accumulate particle motion by reducing this motion to that of an
agent particle in a conservative field. The agents in this case are the OCT and CHX particles.
The cell membrane was treated as a system of dipoles µ placed in a medium described as a
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dielectric permittivity εr. The molecule enters the membrane from the aqueous environment
described by the parameters εr and viscosity η. The particle is treated as a dipole attached
to the sphere and moving in conservative field derived from dipoles constituting the
cell membrane. Membrane dipoles are generated from the normal distribution of range
of values defined by the mean lipid dipole value +/− standard deviation, which were
formerly calculated for each lipid type from the 200 ns of molecular dynamics trajectory
(see Table 2). As a result, a unique membrane is generated automatically by our Diptool
engine and takes part in the further computation procedure. In this conservative field we
can describe force F corresponding to the potential energy Ep:

→
F = −

dEp

d
→
r

(2)

Table 2. Derived Dipole Moments of Lipids and Agents from MD Simulations.

Dipole Moment in Particular Axis X (D) Y (D) Z (D) TOTAL (D)

Particle type

PC 0.34 ± 11.29 −0.37 ± 11.39 1.65 ± 8.44 18.27 ± 2.32
PG 0.14 ± 10.17 0.29 ± 10.09 −35.08 ± 8.29 39.19 ± 4.69

OCT 0.69 ± 7.08 2.12 ± 8.14 −0.51 ± 12.78 16.12 ± 4.55
CHX 2.74 ± 15.46 2.21 ± 10.37 −0.55 ± 10.25 24.73 ± 8.72

Energy Ep comes from each lipid constituting membrane at distance r, and generates
dipole-dipole interaction, which can be calculated considering the electrostatic interaction
between the membrane-forming charges and the dipole of the studied molecule:

Ep = ∑
µi·µ

4πε0εrr3
i

(3)

where µi is dipole element of membrane and εr is relative dielectric permittivity that equals
88.0 for water and 4.0 [47,48] for the membrane, and ri is the distance between two dipoles.
The summation proceeds over all dipoles in the considered membrane. Hence, only the
electrostatic interaction between two dipoles is considered, omitting the rotation of dipoles
relative to each other. However, it is a good enough approximation in a situation when one
treats the particle as a point mass. Such a procedure can be used if the size of the molecule
is much smaller than the size of the membrane, which is the case. Velocity and acceleration
vectors can be described by:

→
v =

→
a ·∆t (4)

→
a =

→
dv
dt

= − 1
m

dEp
→
dr

(5)

where m is the particle masses and in our case equal 623.84 g/moL and 505.452 g/moL
for OCT and CHX, respectively. Position vectors of particles are described by coordinates
r = (x, y, z). Numerical formulas give the equations corresponding to Verlet algorithm [49]:

→
rn =

→
rn−2 + 2∆t

→
vn (6)

→
vn+1 =

→
vn−1 − 2∆t

1
m

d

d
→
r

Ep(rn, tn) (7)

where v= (vx, vy, vz) is a velocity vector, and n numerate step of calculation. The potential
energy Ep of the dipole–dipole interaction is a function of the particle position and time
t. The iteration producing the velocity is carried forward to the iterated position. Such a
procedure affects the stability of the algorithm, thus we added the term of resistance force
FR corresponding to the environment viscosity η:

→
FR = −b

→
v = −6πηR

→
v (8)
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where R is a sphere radius of an agent particle. In our calculation we put R = 10−14 m and
η = 0.89 × 10−3 Pa·s for water and 934 × 10−3 Pa·s for the membrane. We assume the
particle is an ideal sphere with a radius of R, which is related to size parameter. In this way,
the number of degrees of freedom was limited. The radius is so small that the sphere can
be treated as a point mass. Integrating resistance force to the propagation equations we get
for position and velocity:

→
rn =

→
rn−2 + 2∆t

→
vn−1

→
vn+1 =

→
vn−1 − 2∆t 1

m
d

d
→
r

Ep(rn, tn)− b
m

→
vn−12∆t (9)

Gibbs free energy can be determined deriving acceptance rules for NPT ensemble
(where N is number of particles, P is pressure, and T is temperature), as it is also in MD. To
define the probability density, and knowing the conjugate variables (N→µ, V→P, T→E)
in the NPT ensemble µ, V, and E will vary, thus in given probability distribution, moves
are accepted to satisfy a detailed balance. Assuming that in the thermodynamic limit, all
ensembles are equivalent, the change of free energy can be calculated as the work between
the states A and B [50,51]:

∆G = WA→B (10)

The system can be described using Hamiltonian H(vx, vy, vz, x, y, z). If the temperature
and volume of the system is maintained to calculate the change in Gibbs free energy, it is
sufficient to determine this quantity. This Hamiltonian consists of the potential energy Ep
and the kinetic part considering the velocity:

H
(
vx, vy, yz, x, y, z

)
= Ep +

mv2

2
(11)

The kinetic energy of our molecule is limited to kbT (where kb is the Boltzmann
constant), avoiding excessive velocity. Such a procedure allows eliminating the unrealistic
results. Once the Hamiltonian in each point has been determined, one can calculate the
change in Gibbs free energy between the initial state A and the final state B:

∆GA→B = HB − HA (12)

If non-conservative forces are acting in the simulated system, we must also consider
the kinetic energy component. Above the kbT constraint, the kinetic energy is only affected
by the energy resulting from the dipole–dipole interaction, so the Hamiltonian then sim-
plifies. In addition, we have considered the situation that during the agent’s transfer the
environment changes from aqueous to membrane (logP parameter). Then, when a particle
approaches the membrane, it must overcome additional potential (Equation (1)), and the
Hamiltonian takes form:

∆Htransfer = ln(10)RTlog10P (13)

By consequence, if in the next step of iteration there is a change in εr then the Gibbs
energy is calculated according to:

∆GA→B = HB − HA + ∆Htransfer (14)

This approach also works when the particle is pushed out of the membrane.
The presented numerical algorithm allows us to determine the trajectory and Gibbs

free energy for any particle represented as a dipole in a conservative field produced by other
dipoles. This algorithm is very simplified and assumes only interactions between dipoles,
with minor corrections (η and logP), and omits other interactions. However, qualitatively it
allows us to estimate the macroscopic response of the membrane system with fair accuracy.
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2.3. Molecular Dynamics Validation

The proposed methodology was verified using free energy profiles in molecular
dynamics simulations. The all-atom models of the membranes were generated using
CHARMM-GUI membrane builder [52]. In this work PC (1-palmitoyl-2-oleoyl-glycero-
3-phosphocholine) and PG (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1′-rac-glycerol))
lipids were selected for the comparison of the agents’ behavior in neutral (100% POPC) and
negatively charged (100% POPG) environments, reflecting mammalian and bacterial inner
membranes, respectively. The TIP3P water model was employed and counterions were
included in PG. Finally, both membranes were composed of 200 lipids (100 per monolayer).

MD simulations were performed using the NAMD (version 2.14, University of Illinois,
Urbana, IL, USA) package [53] with the CHARMM36 force field [54]. Calculations were
carried out in the NPT ensemble (constant number of particles, pressure, and temperature)
at constant pressure (1 atm) and temperature (300 K) using the Langevin piston method and
Langevin dynamics [55]. Short and long-range interactions were computed every 1 and
2 time-steps, respectively. Long-range electrostatic forces were evaluated using the particle
mesh Ewald (PME) method [56], which allowed us to employ the integration timestep of
2 fs. Finally, 200 ns of pure membrane trajectories were produced and taken as an input to
the free energy method.
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sticks and surface, OCT: violet sticks and surface, POPG: blue and pink sticks, phosphorous atoms: cyan beads, nitrogen
atoms: orange beads and PG membrane dipoles: teal beads.

From a bunch of available protocols, the ABF method was selected because it is an
established and precise approach [57,58]. The free energy profiles were obtained using
the ABF extension implemented in NAMD software. The integrated collective variables
module [59] was applied to the delivered MD simulation protocol. The agent molecules
were placed 45 Å over the bilayer center, and the reaction coordinate is consistent with the
membrane normal vector between the center of mass of the membrane and the center of
mass of the agent spacer. The number of atoms in antimicrobial particles was intentionally
reduced to limit the degrees of freedom and molecules’ fluctuation. Therefore, the most
rigid region (spacer) of OCT and CHX was selected using C14–C23 atoms and C7–C16,
respectively (highlighted in Figure 2). The minimal sampling of 50,000 samples along for
each step was applied, employing 0.2 Å width step along the reaction coordinate. Finally,
at least 0.7 µs was produced to obtain each free-energy profile. For visualization and
analysis purposes, Visual Molecular Dynamics was used (VMD) [60]. Here OCT and CHX
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molecules were employed from our previous work where the description of molecular
parametrization was presented in detail [21].

2.4. Data Visualization and Analysis

Diptool is provided with a dedicated engine written in C++ and visualization package
implemented in Python (Python Software Foundation, Wilmington, DA, USA.) and requires
version 3.7 or higher. Three-dimensional trajectories and energy profile plots are generated
based on delivered input from the Diptool engine and MD ABF. It uses the following
libraries: matplotlib, math, pyplot, numpy, seaborn. The Diptool engine is compilated
C++ code (Diptool_engine.exe) where initial parameters such as dipole moments and errors,
membrane size, area per lipid (APL), Gemini agent mass, and its dipoles need to be
delivered in a parameter text file (param.txt). Diptool should be executed from an included
python script (Diptool_run.py), in which the tool engine is embedded and automatically
launched, and after finished calculations a trajectory and energy plots are generated. In
the meantime, three files with plotted membrane position, agent trajectory, and energy
profiles are produced, respectively. In membrane.txt file the dipoles arrangement in X, Y,
Z direction are stored, data.txt include the agent trajectory in the X, Y, Z axes, and finally
energy.txt contain the energy profile with respect to the bilayer normal—Z direction. The
python visualization code was commented including several hints to simplify the usage.
Apart from Diptool engine calculations, the MD free energy profiles may be visualized
for quick comparison. In the Supplementary materials, complete Diptool software with
exemplary files for initial runs is delivered.

Significance tests and plots were performed using OriginLab Origin 2018 software
(OriginLab, Northampton, MA, USA). Specifically, one-way ANOVA was applied with
post-hoc Tukey test to determining significance between individual populations with the
significance level at 0.05.

3. Results and Discussion

The membranes have been described in Diptool as a set of dipoles that interact with
each other and with surfactant dipoles as well. To obtain dipole moments of particular
lipids and agents, corresponding trajectories from MD were employed. From the 200 ns of
simulations we extracted dipole moments for every molecule in the bilayer, resulting in
set of 400,000 dipoles in the X Y Z direction. The average and the standard deviation of
the Diptool input is presented in Table 2. The lipid positions and mobility affect the wide
range of obtained data, which results in the high fluctuations of standard deviation. In this
approach, we decided to avoid averaging the error to derive a wider range for random
membrane components generator and deliver a complex expertise of membrane-agent
interactions. Such a procedure allows employing many types of lipids reflecting many
membrane species supposing that dipole moments are known. Additionally, at this stage a
membrane size may be adjusted in all axes, whereas a number of lipids is automatically
calculated based on the given volume and APL. In this work we decided to compare
the Gemini agents behavior in neutral and negatively charged environments using PC
and PG lipids [61,62]. These are commonly used in both experimental and theoretical
work, because the latter is one of the major components in bacterial bilayer structures,
whereas PC is mimicking eukaryotic cell membranes. That system configuration often
allows demonstrating distinct and selective behavior of active compounds such as OCT
and CHX in various membrane systems [21,63,64]. A different behavior may also be visible
due to those particular lipids yielding various dipole moments, especially in the Z-axis and
in the total value as well.

Similarly, as in MD, Diptool allows to register, i.e., trajectories and energies and ana-
lyze them afterward. However, employing the average and standard deviation of system
components in the tool may deliver slightly different results whenever used. That combina-
tion allows for a more comprehensive case study about selected surfactants accompanied
by given lipids. In Figure 2 the snapshots from MD trajectories (Figure 2A) and Diptool
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(Figure 2B) are presented where OCT and CHX behavior were investigated in membrane
systems. In all cases, an agent particle was placed 45 Å above the membrane center, and
their trajectories seem to present similar features. The surfactant molecule approaches
the membrane surface, penetrating it and facing the bilayer center afterward. Although
Diptool uses a different core of motion, the modeled trajectories correspond to those from
both steered and classical MD. The Diptool trajectories may vary significantly in the sub-
sequent runs because dipole location and value are different. However, the starting and
ending point reached by tested molecules remain consistent. Based on given trajectories,
significant differences in behavior between CHX and OCT may be noticed. In the case of
OCT, a small molecule fluctuation at the membrane interface may be observed, whereas
CHX particles indicated higher resistance and took a little longer to reach the membrane
center (see Figure 2B).

The second main feature derived from Diptool is the system energy calculation, which
corresponds to the free energy calculation provided by the MD−ABF method. The results
from both methods for OCT and CHX molecules are presented in Figure 3. An essential part
of the free energy determination is the difference associated with the molecule translocation
toward the membrane from bulk water to bilayer center—∆Gtrans [57]. The free energy
calculations illustrated that in a neutral membrane, OCT spontaneously crosses the bilayer
interface, exhibiting the deepest well of ~9 kcal/mol; hence, it is the most thermodynami-
cally favorable location (see Figure 3A). This corresponds to our previous studies, where
we indicated theoretically and experimentally that OCT locate in the carbonyl−glycerol
region preferentially [21]. Subsequently, an expected high energy barrier towards the
membrane center occurs as also reported in other work focused on the transport of charged
particles from water to the hydrophobic core [57,65]. Although surfactant can easily access
the membrane, the translocation to another leaflet is energetically demanding. As stated,
the ∆Gtrans is the difference between ∆Gbulk and ∆Gcore [57] and yields ~0.5 kcal/mol. The
core motion of Diptool is unique, therefore, the final energy plot also indicates individual
regions. First, a small energy barrier of ~1 kcal/mol may be noticed at the membrane
interface, which is related to dipole−dipole interactions between particle and the zwit-
terionic lipids. Because the agent trajectory is correlated with membrane normal, and a
corresponding vector dipole moment does not yield extreme values, only a small peak
representing the barrier is visible. Similarly, as in the ABF−method, the local minimum
in the membrane is reached near the carbonyl−glycerol area. Moving forward, facing the
bilayer center, the energy barrier occurs again from the hydrophobic core. The total OCT’s
∆GD.trans using Diptool reached ~1.7 kcal/mol, which successfully screened the agent be-
havior compared to the extensive ABF calculations. In the case of charged PG membranes
(see Figure 3B), the free energy associated with OCT indicates slight fluctuations near the
membrane surface of ~0.5 kcal/mol, while subsequently a ~6 kcal/mol well is reached.
The largest barrier to overcome was faced in the direction of the membrane center yielding
total a ∆Gtrans of ~4.5 kcal/mol. In the results from Diptool, the system differences may be
clearly visible, due to large peak of ~3 kcal/mol at the membrane entry caused by nega-
tively charged lipids. Further, local membrane minimum is reached (~1.3 kcal/mol) and
the final hydrophobic barrier occurred as in previous cases, ending with a total ∆GD.trans of
~3.3 kcal/mol. It should be noted that local minima in PG membranes are shifted toward
the bilayer center relative to the PC ones, which indicates that OCT prefer to stay a bit
deeper in the negatively charged membranes.

Another, much different energy profile associated with CHX behavior was reported in
PC membranes (see Figure 3C). Interestingly, the molecule does not access the membrane
spontaneously as OCT does. Analogous limited agent–membrane interaction was ob-
served in our previous report [21] as several CHX molecules incorporated into membrane;
however, some of them stayed in the bulk water. Here, a small barrier of ~1.9 kcal/mol ac-
companies molecule entry to membrane, and further at carbonyl−glycerol region strikes up
to ~20 kcal/mol. This specific behavior may be related with low logP coefficient logP = 5.48,
whereas for OCT logP = 9.25. This may indicate that the substance has a high tendency to
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locate in the outer part of the membrane. This is in strong agreement with the results from
Diptool, as a low energy barrier is at the membrane interface, with a local minimum in
the membrane at hydrophilic heads. The further peak corresponds to the one observed in
the ABF method; however, registered values vary a lot, as ∆Gtrans and ∆GD.trans equal ~20
and ~1.6 kcal/mol, respectively. In the case of a negatively charged PG bilayer, the agent
demonstrated a distinct energy profile (see Figure 3D). A negatively charged membrane is
ideal for CHX, which find the sweet spot at local minima of ~9 kcal/mol. Similar to the
other cases, the biggest energy barrier occurs when facing bilayer center, ending with a
total ∆Gtrans of ~5.8 kcal/mol. Diptool results indicate a big energy barrier from negatively
charged lipids at 22 Å from the bilayer center, while afterward local minimum is settled
below the carbonyl−glycerol region. Here the final ∆GD.trans equals ~3.5 kcal/mol, which
fairly reflects the accurate energy calculations from ABF−MD. Higher Diptool energy may
indicate more effective antimicrobial action. It should be noted that proposed energy anal-
ysis is one of the means of evaluating membrane−agent interactions. Because Diptool is a
screening tool, extensive calculations are needed for delivering a comprehensive outcome,
especially in drug-delivery studies. Given results may significantly accelerate and narrow
down the group of tested compounds; however, experimental or theoretical confirmations
should be delivered additionally.
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To this end, Diptool is a screening tool whose results correspond with those derived
from free energy calculations in MD. Although it is based on a modified Verlet algorithm,
its capabilities and accuracy are limited and not so precise compared to a classical MD
approach. The greatest advantage of the tool is its performance. Used algorithm and
modifications combined in the C++ engine makes it reliable, fast, and lightweight software.
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The local performance test was conducted using AMD Ryzen 5 2600 CPU (AMD Santa Clara,
CA, USA) supported with 16GB DDR4 RAM. Out of 100 runs, the average computation
time lasted 5 ± 1 min, whereas to provide accurate and precise calculations from the
ABF method, 64,800 ± 3527 min were needed using a 96 Intel Xeon E5 v3 CPUs (Intel,
Santa Clara, CA, USA) together on four nodes, for the single system. Estimated acceleration
for one molecule screening is thus about a million times comparing to steered MD study.
That gives an enormous advantage to Diptool for screening a large database to select
several candidates and deliver rigorous results afterward.

4. Conclusions

In this work, we presented a novel, self−made methodology supported with a soft-
ware solution named Diptool—a screening tool for a rapid determination of the Gemini
agent affinity to various types of homogenous lipid membranes delivering particle trajec-
tory visualization and free energy analysis. In the presented study we introduced from
scratch the genesis and background of delivered methodology, discussed the calculation
core of the Diptool software, and finally validated and tested our tool with known antimi-
crobial candidates: OCT and CHX. Our results indicate that Diptool is able to generate
accurate free energy profiles for Gemini surfactants significantly faster than other well-
known, established, and more advanced methods. We used molecular dynamics studies to
verify our assumptions highlighting the estimation of the free energy perturbation. Our
calculations were provided on both neutral-PC and negatively charged-PG lipids, as the
latter are major components in bacterial inner bilayers. We compared computations from
Diptool and the ABF method from molecular dynamics focusing on the membrane−agent
interactions presenting surfactant trajectory and free energy profiles. Despite much dif-
ferent theories of calculation, we indicated similarities in trajectories of OCT and CHX
between the tested tools. In both cases, the agents were suspended in the bulk water
and afterward penetrated the membrane toward the bilayer center, which allowed us to
construct the free energy profiles. Here the final results of ∆GD.trans and ∆Gtrans indicate
whether a given particle prefers to stay in the water phase, anchor in hydrophilic heads, or
interact with hydrophobic core, as well as the energetic cost of that displacement. Deliv-
ered results indicate that the agent behavior in various lipid environments is well reflected
with mostly corresponding translocation free energies, and hence expected macroscopic
biological behavior. Additionally, our results confirm that a reduction in the membrane
dipole results in reduced permeability of polar compounds [57,66]. We also provided a
performance test that clearly indicates that Diptool is significantly faster than classical
methods, reaching a one million-fold compared to the MD approach. We would like to
clearly emphasize that provided software should be considered as a screening tool for
rapid determination of agent effectiveness, enabling high−throughput screening for at
least antimicrobial and drug−delivery aids based on detergent molecules. In this paper,
we present the first version of Diptool; however, further development is planned. In the
following versions we would like to deliver various lipid mixtures implementation, apply
various solvents containing ion solutions, implement additional empirical parameters in
the energy calculations to better follow the particle energy fluctuations, and offer graphical
user interface (GUI) for more comprehensive, rapid, and accurate solutions for surfactant
analyses.

Supplementary Materials: The following files are available online at https://www.mdpi.com/
article/10.3390/ma14216455/s1, Software base files: Diptool_engine.exe, Diptool_run.py, param.txt;
exemplary files, membrane.txt, data.txt, energy.txt.
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