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Background. With the progress of precision medicine treatment in pancreatic ductal adenocarcinoma (PDAC), individualized
cancer-related medical examination and prediction are of great importance in this high malignant tumor and tumor-immune
microenvironment with changed pathways highly enrolled in the carcinogenesis of PDAC. Methods. High-throughput data of
pancreatic ductal adenocarcinoma were downloaded from Gene Expression Omnibus (GEO) and *e Cancer Genome Atlas
(TCGA) database. After batch normalization, the enrichment pathway and relevant scores were identified by the enrichment of
immune-related pathway signature using gene set variation analysis (GSVA). *en, cancerous subtype in TCGA and GEO
samples was defined through the NMF methods by cancertypes packages in R software, respectively. Subsequently, the sig-
nificance between the characteristics of each TCGA sample and cancer type and the significant prognosis-related pathway with
risk score formula is calculated through t-test and univariate Cox analysis. Next, the prognostic value of gained risk score formula
and each significant prognosis-related pathway were validated in TCGA and GEO samples by survival analysis. *e pivotal hub
genes in the enriched significant prognosis-related pathway are identified and validated, and the TIMER database was used to
identify the potential role of hub genes in the PDAC immune environment. *e potential role of hub genes is promoting the
transdifferentiation of cancer-associated fibroblasts. Results. *e enrichment pathway and relevant scores were identified by
GSVA, and 3 subtypes of pancreatic ductal adenocarcinoma were defined in TCGA and GEO samples. *e clinical stage, tumor
node metastasis classification, and tumor grade are strongly relative to the subtype above in TCGA samples. A risk formula about
GSVA significant pathway “GSE45365_WT_VS_IFNAR_KO_CD11B_DC_MCMV_INFECTION_DN∗ 0.80 +
HALLMARK_GLYCOLYSIS∗ 16.8 +GSE19888_CTRL_VS_T_CELL_MEMBRANES_ACT_MAST_CELL_DN∗ 14.4” was
identified and validated in TCGA and GEO samples through survival analysis with significance. DCN, VCAN, B4GALT7, SDC1,
SDC2, B3GALT6, B3GAT3, SDC3, GPC1, and XYLT2 were identified as hub genes in these GSVA significant pathways and
validated in silico. Conclusions. *ree pancreatic ductal adenocarcinoma subtypes are identified, and an individualized GSVA
immune pathway score-related prognostic risk score formula with 10 hub genes is identified and validated.*e predicted function
of the 10 upregulated hub genes in tumor-immune microenvironment was promoting the infiltration of cancer-associated fi-
broblasts. *ese findings will contribute to the precision medicine of pancreatic ductal adenocarcinoma treatment and tumor
immune-related basic research.

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a life-
threatening disease with the lowest survival rates among
major cancers, and its mortality rate per year is increasing

from 9th to 7th [1]. Positive results of computed tomography
(CT) often only occur on terminal patients with PDAC, with
a delayed diagnosis and poor prognosis of patients [2].
Additionally, the poor prognosis of patients with PDAC is
also due to the high recurrence rate and early distant
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metastasis [3]. Aiming to prompt diagnosis and treatment,
some advanced effective procedures have been put forward,
including nucleic acid in circulating cancer cells, long
noncoding RNA in an extracellular vesicle, and some pivotal
clinical characteristics [4–6]. Besides these, some other in-
dividualized diagnostic methods based on sequencing and
key pathway need to be identified.

Several original gene-related diagnostic and prognostic
signatures have been developed to estimate a clinical out-
come and instruct precise treatment of various types of
patients with cancer, including pulmonary carcinoma [7]
and gastric cancer [8]. Meanwhile, some miRNA-based
diagnostic and prognostic signatures also show great utili-
zation potentialities in prognosis prediction and treatment,
such as the preferable predictive value of screenedmiRNA in
lymph-gland tumor [9] and a lncRNA-based formula de-
veloped for renal cancer [10]. As described above, most of
the current research studies focus on the predicting potential
of a cluster of screened genes, namely, lncRNAs and
miRNAs. *e research studies on carcinogenesis-related
pathways need to be clarified, and screening a cluster of
prognostic-related pathways can facilitate in cancer
treatment.

*e gene set variation analysis (GSVA) is a nonpara-
metric, unsupervised algorithm.*e GSVA does not require
pregrouping of samples and can calculate enrichment scores
for specific sets of genes in each sample. Additionally, GSVA
transforms gene expression data from an expression matrix
of individual genes as traits to an expression matrix of
specific gene sets as traits. *e results of gene enrichment
were quantified by GSVA, which can be more convenient for
follow-up statistical analysis [11]. *e GSVA method has
been well performed on some research studies that focus on
pathology mechanism, such as GSVA was used on calcu-
lating T-cell receptors and ligands related to T-cell failure
and indicating T-cell apoptosis and activated expression of
cell cycle genes in the process of neuroblastoma [12].

In this study, we used the NMF method to identify
PDAC subtypes and developed and verified a GSVA-based
immune pathway formula aiming to predict the prog-
nostic clinical outcomes of patients and identify the
pivotal pathway. *en, the hub genes in these pivotal
pathways are identified and the potential roles in the
tumor-immune microenvironment were predicted. Our
findings could facilitate the precise treatment and basic
research of PDAC.

2. Materials and Methods

2.1. Data Source. *e gene expression matrixes with paired
clinical data are downloaded in *e Cancer Genome Atlas
(TCGA) database (https://cancergemo.me.nih.gov/) named
TCGA-PDAC (TCGA PDAC: 4 paracarcinoma tissue and
178 cancers with survival data) and two datasets in Gene
Expression Omnibus (GEO) database (http://www.ncbi.
nlm.nih.gov/geo/), GSE28735, and GSE62452. (GSE28735 :
45 paracarcinoma tissue and 45 carcinoma tissue with
survival data. GSE62452 : 61 paracarcinoma tissue and 69
carcinoma tissue with survival data.)

2.2. Batch Normalization. *e batch effect is part of the
measurement results because of the different experimental
conditions. *e purpose of correcting the batch effect is to
reduce the irrelevant differences between batches and to
identify the differences between different biological states.
To remove the impact of batch effect between GSE28735 and
GSE62452, the SVA package was used in R software [13].

2.3. Gene Set Variation Analysis. Gene set variation analysis
(GSVA) is a nonparametric unsupervised analysis method
mainly used to evaluate the gene set enrichment results of
sequencing. *e expression matrix of genes is transformed
into the expression matrix of pathways in different samples
to evaluate different metabolic pathways enriched in dif-
ferent samples. It mainly is to explain the causes of phe-
notypic differences from a bioinformatic perspective. In this
study, we perform GSVA using GSVA package in R soft-
ware, and an immune-related gene set c7.immune-
sigdb_HALLMARK was used in GSVA.

2.4. Cancer Subtype Identification. CancerSubtypes package
[14] in R software was exerted on TCGA pathway expression
matrix with survival data and validated on combined GEO
data (GSE28735 and GSE62452). Non-negative matrix
factorization (NMF) is a powerful method for reducing the
dimension of data and has a wide range of applications in the
identification of functional part for complex data with
several dimensions. We used the “NMF” and “factoextra”
packages to perform NMF on TCGA and GEO datasets
above to further confirm the differentiation among the
acquired PDAC subtypes.

2.5. Survival Analysis. Survival analysis is the method to
analyze and infer the survival time of patients with PDAC in
different groups based on clinical data from TCGA and
GEO, aiming to study the relationship among survival time,
patients’ outcomes, and various influencing factors. In our
study, survival analysis was performed using the survival
package in R software.

2.6. Visualization and Data Statistics. All visualization and
data statistics were exerted in R software. In particular,
complexHeatmap package was used on TCGA-PDAC data to
identify the classification of subtypes. Differential analysis of
gene sets was calculated using the limma package. *en,
LASSO regression was exerted using the Glmnet package.*e
ClusterProfiler package in R software was used to identify key
KEGG pathway in the pivotal immune-related pathway, and
Cytohubba package in Cytoscape software was used to screen
hub genes in pivotal immune-related pathway above.

2.7. Database Manipulation. TIMER database (Tumor Im-
mune Estimation Resource:https://cistrome.shinyapps.io/
timer/) includes “EPIC,” “Mcpcounter,” “Xcell,” and
“Tide.” TIMER was used to estimate the tumor immune
infiltration by combining the algorithm above and TCGA
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sequencing data. *e GEPIA (Gene Expression Profiling
Interactive Analysis) is another database containing TCGA
tumor sequencing data and GTEx normal tissue sequencing
data, and it was used to identify the expression of hub genes
among pancreatic tumor tissue and common tissue.

3. Results

3.1. Transitional Signatures of Immune-Related Pathway
among PDACand ParacarcinomaTissue. Figure 1 illustrates
the procedure of our study. First, to identified the transi-
tional signatures of immune-related pathway among PDAC
and paracarcinoma tissues, PDAC sequencing data were
screened and downloaded in TCGA (TCGA PDAC: 4
paracarcinoma tissues and 178 cancerous tissues with sur-
vival data) and GEO databases (GSE28735 : 45 paracancers
and 45 cancers with survival data. GSE62452 : 61 paracancers
and 69 cancers with survival data). *en, the hallmarks get
set, and immune-related pathways (“c7.immune-
sigdb_HALLMARK,” contained 4922 gene sets) were
downloaded from GSVA (https://www.gseamsigdb.org/
gsea/msigdb/index.jsp).

GSVA was used on the TCGA-PDAC cohort, and the
enrichment score is clustered and visualized (Figure 2(a)).
After batch normalization of GSE28735 and GSE62452,
GSVA was exerted in this GEO cohort (Figure 2(b)). *e
screened gene sets appear to classify cancers and paired
paracarcinoma tissues into several subtypes.

3.2. Identification of PDAC Subtypes and the Relevance be-
tween PDAC Subtype and Clinical Characteristics. After the
expression of immune-related pathway and gene sets in two
PDAC cohorts had been manipulated (4,922 gene sets),
cancer subtypes are identified by the “CancerSubtypes”
package in R software. By using the NMF method, K� 3 had
been identified as the best cutoff number of cluster, which
means PDAC could be separated into 3 subtypes by the
GSVA immune-related pathway score of each sample
(Figure 3(a)). *en, Figure 3(b) shows the three divided
clusters. Combining with clinical data, the different prog-
nosis among the three PDAC subtypes was identified
(Figure 3(c)). In particular, cluster 1 shows a significant
favorable prognosis. Cluster 2 displays a medium prognosis
among the 3 clusters, and cluster 3 reveals the poorest
prognosis. Cluster display plot and silhouette width plot
show high credibility subtype identification (0.93 average
silhouette width, Figures 3(e) and 3(d)). Subsequently, these
3 subtype separation methods were validated on GEO co-
horts (Supplementary Materials (available here)).

*en, the relevance between clinical characteristic and
each divided subtype is confirmed in the TCGA-PDAC
cohort. In brief, patients in subtype 1 are often accompanied
by high clinical stage, pathologic grade (G), and bad TN
classification. Patients in subtype 2 are often together with
moderate clinical stage, pathologic grade (G), and TN
classification, and patients in subtype 3 often have good to
moderate clinical stage, pathologic grade (G), and TN
classification with statistical significance. *e differently

expressed pathways with significance by pairwise compar-
ison were enriched and calculated in each cluster (adjusted P

value <0.05). A total of 93 significant pathways were
enriched as common differently expressed pathways in the 3
subtypes (Figure 4(b)). *e details of the clinical relevance
among subtypes are shown in Table 1. *e patient status, R0
resection rate, tumor size, TMN classification, the WHO
classification, pathological grade, and alcohol history among
these 3 subtypes show great differentiation (P< 0.05). Pa-
tients in subtype 1 are inclined to have the worst condition in
these clinical characteristic, while patients in subtype 2
group tend to get the best condition.

3.3. Calculation and Validation of Prognostic Signaling
Pathway and Gene Set-Based Formula. Combining with the
survival data of patients, univariable Cox regression analysis
was used to screen on 93 intersected gene sets and pathways.
Four gene sets and 1 pathway were screened, including
GSE45365_WT_VS_IFNAR_KO_CD11B_DC_MCMV_
INFECTION_DN, GSE20715_0H_VS_48H_OZONE_
LUNG_DN, GSE13411_PLASMA_CELL_VS_MEMOR-
Y_BCELL_UP, GSE19888_CTRL_VS_T_CELL_MEM-
BRANES_ACT_MAST_CELL_DN and GLYCOLYSIS
pathway (Table 2). To identify the pivotal part of these gene
sets, LAASO regression is exerted in Figures 5(a) and 5(b),
and 2 gene sets and 1 pathway were identified with risk
coefficient (Figure 5(c)). *eir prognostic value was then
validated by survival analysis based on PDAC-TCGA
(Figures 5(d)–5(f)) and GSE28735 and GSE62452
(Figures 5(g)–5(i)). *e formula was constructed based on
the screened gene sets and risk coefficient: Risk score-
�GSE45365_WT_VS_IFNAR_KO_CD11B_DC_MCMV_
INFECTION_DN∗ 0.80 +HALLMARK_GLYCOLYSIS
∗ 16.8 +GSE19888_CTRL_VS_T_CELL_MEMBRANES_
ACT_MAST_CELL_DN∗ 14.4. *e risk score based on the
formula was calculated. *en, survival analysis was executed
on the TCGA-PDAC cohort and validated GSE28735 and
GSE62452 cohorts (Figures 5(j) and 5(k)).

3.4. Identification of Significant Pathway and Hub Genes in
the Screened Prognosis-Related Gene Sets. Genes in the 3
prognosis-related gene sets and pathways were extracted,
and gene ontology enrichment analysis was performed.
Several cancer-related metabolism GO term and “tight
junction” are identified in Figure 6(a). *en, KEGG en-
richment analysis is exerted as Figure 6(b). Some pivotal
pathways are involved, including the “HIF-1 signaling
pathway” and “pyruvate metabolism” (Figure 6(b)). Addi-
tionally, we performed protein-protein interaction analysis,
and the top 10 ranked hub genes are identified by enriched
scores, including DCN, VCAN, B4GALT7, SDC1, SDC2,
B3GALT6, B3GAT3, SDC3, GPC1, and XYLT2.

3.5. Validation of the Hub Genes and Estimating 7eir Po-
tential Roles in Promoting the Infiltration of Cancer-Asso-
ciatedFibroblasts (CAFs) inTumorEnvironments. *en, the
potential roles of the screened 10 hub genes in tumor-
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Figure 2: Heatmap of TCGA and GEO data. (a) Enrichment score of immunologic and hallmark genes between cancers and paracarcinoma
tissues in TCGA-PDAC. (b) Enrichment score of immunologic and hallmark gene cancers and paracarcinoma tissues in GSE28735 and
GSE62452.
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Figure 1: Flow chart of our study.
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Figure 3: Continued.
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immune microenvironment were predicted on the TIMER
database. Among all the tumor-related immune cells, the 10
hub genes were significantly enriched in cancer-associated
fibroblasts (CAFs) (Figure 7). Finally, upregulation of the 10
hub genes was validated in the GEPIA database. All 10 hub
genes are upregulated in cancer tissue compared to normal
pancreas. Eight hub genes, including DCN, VCAN, SDC1,
B3GALT6, B3GAT3, SDC3, GPC1, and XYLT3, are sig-
nificantly upregulated in PDAC tissue.

4. Discussion

As a fatal malignant tumor, PDAC causes a huge social
health burden and patients could neither be directly di-
agnosed in the early stage nor be accurately predicted the
clinical outcome. At this point, the prognostic marker is in
great need for the treatment of patients with PDAC [15].
In this study, we used bioinformatic and statistical
methods to screen the biomarkers with great prognostic
sensitivity. *rough the combination of the GSVA
method, NMF algorithm, and the obtained sequencing
data from the TCGA database, we put forward a new
grouping method to predict the prognosis of patients with
PDAC and validate in GEO samples. In fact, several
studies have manipulated on analyzing the subtype of
PDAC using the machine-learning algorithm. Wu et al.
reported a procedure to cluster PDAC samples into 2
subtypes based on TCGA sequencing data. However, the
K-means algorithm was used in the study of Sinkala
Musalula, and in our study, we used the NMF algorithm to
calculate the sequencing data, which could be more
sensitive to identify the main characteristic [16], and
silhouette width analysis shows high credibility subtype
identification (0.93 average silhouette width). Zhang et al.
[17] have established a GSVA-related miRNA and mRNA
signature. However, the subtype was not analyzed in their
study, and the significant gene sets and pathways in their
study were not screened by the subtype of PDAC, which
could compromise the conclusion. After the subtype

identification, the clinical data, including patient status,
tumor classification, and carcinogenic habit, were calcu-
lated and our clustered cancer subtypes showed robust
competency on distinguishing tumor classification. After
common gene sets and pathways were identified among
the 3 PDAC subtypes and LASSO regression, the gly-
colysis pathway and other two immune pathways were
identified. Some previous research studies have focused
on the glycolysis pathway in the carcinogenesis of PDAC.
Dai Shang-nan et al. reported that glycolysis promotes the
progression of pancreatic cancer and reduces cancer cell
sensitivity to gemcitabine [18]. Zhang et al. established a
glycolysis-related prognostic formula to predict the che-
mosensitivity of patients with PDAC [19]. *e result from
our study also illustrates the emergency role of the gly-
colysis pathway in PDAC using GSVA.

By analyzing the hub genes in the screened gene sets and
pathways, the HIF-1 signaling pathway was identified as a
distinct pathway, and the immune environment relevance
shows that cancer-associated fibroblasts are significantly
enriched in the upregulated hub genes. PDAC is a tumor
with a high level of fibrosis, and a dense fibrotic matrix takes
up 90% of tumorous bulk [20]. *e origin of the fibrotic
matrix has been widely studied, and cancer-associated fi-
broblasts (CAFs) have been illustrated to play an important
role in tumorous fibrosis [21]. Chen et al. separated CAFs
and normal fibroblasts (NFs) obtained from PDAC tissue,
and CAFs showed strong glucose absorption and lactic acid
production [22]. Compared with NFs, pyruvate kinase M2
(PKM2) in CAFs is upregulated. *e finding hints that
metabolic reprogramming occurs in CAFs with significant
high expression of glucose. Some studies hint that the HIF-1
signaling pathway participates in tumorous fibrosis.
Goodwin et al. demonstrated that some pivotal kinase in
glucose could be activated by the HIF-1 pathway [23]. Our
finding illustrates that glycolysis is a pivotal biologic process
in PDAC with significant prognostic value, and the potential
upstream mechanism is associated with the activation of the
HIF-1 pathway. *e downstream mechanism could be
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Figure 3: (a) Identification of best cutoff of cluster. (b) *e distribution of each cluster by PCA method in factoextra package. (c) Survival
analysis of TCGA-PDAC by clusters. (d) Identification of the value of grouping by silhouette width plots. (e) Visualization of each cluster
using the NMF method.
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abnormally activated glucose promote the trans-
differentiation of CAFs.

Another light spot of our study is some found hub
genes, namely, DCN, VCAN, B4GALT7, SDC1, SDC2,
B3GALT6, B3GAT3, SDC3, GPC1, and XYLT2. Some
cancer-related mechanism of these molecules has been
reported: DCN encodes decorin, a class I SLRP that
participates in collagen fibrillogenesis. In carcinogenesis,
decorin could promote the development of cancer as a pan

tyrosine kinase inhibitor [24]. Zhang et al. recently re-
ported DCN is able to promote tumor invasion and
migration in pancreatic cancer cells [25]. VCAN is a
member of a large chondroitin sulfate proteoglycan family
with hyaluronate-binding capacities. VCAN participates
in cancer-related intercellular substance formation to
promote tumor cell proliferation and invasion in multiple
types of cancers [26,27]. VCAN was also reported to have
an important role in the invasion phenotypes of PDAC
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Figure 4: (a)*e common gene sets and pathways among the 3 subtypes. (b)*e clinical characteristic and the expression of 93 intersected
gene sets and pathways among the 3 different PDAC subtypes.
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Table 1: *e relevance among subtypes and clinical data in TCGA-PDAC.

Subtype 1 (n� 78) Subtype 2 (n� 17) Subtype 3 (n� 81) P value
Gender 0.848
Male 40 11 45
Female 38 6 36
Age (average age) 0.763
>65 40 (73.5) 6 37 (74.5)
≦65 38 (60.0) 11 44 (56.5)
Status (dead, %) 34 (43.6) 3 (17.6) 20 (24.7) <0.01
Residual tumor (R0, %) 41 (52.6) 13 (76.5) 52 (64.2) <0.01
Tumor size (≤4 cm) (%) 45 (57.7) 11 (64.7) 58 (61.7) 0.236
TNM classification (%)
T1 3 (3.8) 1 (5.9) 3 (3.7) <0.01
T2 9 (11.5) 6 (35.3) 9 (11.1)
T3&4 66 (84.6) 8 (47.1) 69 (85.1)
Tx (missing) 0 2 (11.8) 0
M0 35 (44.9) 5 (29.4) 40 (49.4) 0.893
M1 2 (2.6) 0 2 (2.5)
Mx (missing) 41 (52.6) 0 39 (48.1)
N0 24 (30.8) 7 (41.2) 18 (22.2) 0.02
N1 54 (69.2) 7 (41.2) 61 (75.3)
Nx (missing) 0 3 (17.6) 2 (2.5)
WHO classification
Stage I 10 (12.8) 6 (35.3) 5 (6.2) 0.02
Stage II 64 (82.1) 9 (52.9) 72 (88.9)
Stage III and IV 4 (5.1) 0 4 (4.9)
Stage x (missing) 0 2 (11.8) 0
Pathological grade
G1 7 (9.0) 11 (64.7) 12 (14.8) 0.02
G2 44 (56.4) 2 (11.8) 48 (59.3)
G3 and G4 27 (34.6) 3 (17.6) 21 (25.9)
Gx (missing) 0 1 (5.9) 0
Alcohol history (YES, %) 49 (62.8) 6 (35.3) 40 (49.4) 0.04
Smoking history (YES, %) 24 (30.8) 5 (29.4) 30 (37.0) 0.248

Table 2: *e screened gene sets and pathways after univariable Cox regression analysis.

Gene sets and pathways HR HR.95L HR.95H P value
T_GSE45365_WT_VS_IFNAR_KO_CD11B_DC_MCMV_INFECTION_DN 5.03 4.94 5.23 0.003
T_GSE20715_0H_VS_48H_OZONE_LUNG_DN 2.92 3.04 1.17 0.005
T_GSE13411_PLASMA_CELL_VS_MEMORY_BCELL_UP 3.73 1.92 7.74 0.014
T_HALLMARK_GLYCOLYSIS 8.97 8.43 9.25 0.001
T_GSE19888_CTRL_VS_T_CELL_MEMBRANES_ACT_MAST_CELL_DN 2.89 2.15 3.87 0.002
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Figure 5: Continued.
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[24]. B4GALT7, B3GALT6, and B3GAT3 encode three
subtypes of galactosyltransferase. Galactosyltransferases
are related to glycosaminoglycans and to proteoglycans in
multiple tissues, including cancer development [28,29].
Syndecans are a family of transmembrane glycoproteins,

and the syndecan-medicated calcium metabolism is as-
sociated with cell adhesion, the dysfunction of syndecans
is a pivotal biologic process in tumor development [30]. In
particular, SDC1 is also reported to facilitate tumor in-
vasion via stimulating the EMT pathway in pancreatic
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Figure 5: (a) Based on TCGA-PDAC data, absolute shrinkage and selection operator (LASSO) coefficient profiles were exerted. (b) Best
penalization coefficient (λ) by threefold validation according to partial likelihood deviance. (c) *e significant gene sets and pathways after
LASSO regression with the risk coefficient. (d–f) Survival analysis of each gene set and pathway on TCGA-PDAC cohort. (g–i) Survival
analysis of each gene set and pathway on the GSE28735 and GSE62452 cohorts. (j) Survival analysis of the calculated risk formula on TCGA-
PDAC cohort. (k) Survival analysis of the calculated risk formula on GSE28735 and GSE62452 cohort.
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cancer cells [31]. SDC2 can promote epithelial-mesen-
chymal transition in colon cancer [32]. SDC3 could also
promote melanoma tumors through the regulation of the
HIF pathway [33]. Interestingly, the significant differ-
ential expression has been screened and these genes are

identified as the hub genes in the glycolysis pathway after
GSVA in PDAC, which needs further research on their
behaviors in carcinogenesis. *e full name of XYL2 is
xylosyltransferase 2, and XYL2 participated in the pro-
teoglycan (PG) biochemistry of multiple tumor tissues
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Figure 6: (a) Gene ontology (GO) analysis shows enriched GO term. (b) Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis
shows enriched signaling pathways. (c) Protein-protein interaction analysis. (d) Hub genes were found and ranked by Cytoscape and
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[34]. Upregulation of GPC1 is associated with a unfa-
vorable prognosis of PDAC [35]. Comprehensively, the
findings are mostly focusing their potential roles in cancer
signaling transduction. Based on this study, the mecha-
nism of these upregulated hub genes on restraining tumor
immunity and promoting transdifferentiation of CAFs
and other verification based on clinical samples needs to
be studied further.

5. Conclusions

In this study, we established a new clustering method of
PDAC subtype by machine-learning method and verified
its functional competency in two cohorts from the data-
base. *en, we build a GSVA-based prognostic formula by
subtype clustering, Cox, and LASSO regression and vali-
dated its predicting competency on the relevance of TCGA-
PDAC clinical characteristics and survival data in two
combined GEO datasets after batch normalization. Addi-
tionally, 10 upregulated hub genes were identified and

validated in three significant GSVA-based gene sets, and
the function of the gene sets and hub genes in PDAC tumor
immunity was predicted as promoting the trans-
differentiation of CAFs.

Data Availability

*e PAAD dataset was downloaded from the TCGA da-
tabase (https://tcga-data.nci.nih.gov/tcga/), and GSE28735
and GSE62452 were downloaded from the GEO database
(http://www.ncbi.nlm.nih.gov/geo/).
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Figure 7: (a) *e 10 hub genes are enriched in promoting the infiltration of cancer-associated fibroblasts (CAFs) using 4 algorithms in the
TIMER database. (b) Validating the differential expression of the 10 hub genes in the GEPIA database.
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