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Introduction
With the drastic increase of data to be processed in really short 
amounts of time, new problems have appeared. Chromosome 
classification, spam filtering, defining which advertisement to 
show to a person on a web page, recognition of human activi-
ties and protein structure prediction are a few applications that 
involve immense amounts of high-dimensional data.1,2 Some-
times the dimension and/or the number of data samples is too 
large, making the storage of a dataset in a computer impossible. 
This problem is solved by large-scale classification learning, which 
aims to find a function that relates the data and their correspond-
ing class labels for an amount of data that cannot be stored in a 
modern computer’s memory.3 The main concern (constraint) is 
the amount of time that an algorithm takes to obtain an accurate 
result, rather than the number of samples to process.4

A typical problem that support vector machines (SVMs) 
have to face while working with a large dataset is that learning 
algorithms are typically quadratic and require several scans of 
a dataset. Three common strategies can be used to reduce this 
practical complexity:3,4

•	 Solving several smaller problems by working on subsets of 
the training data instead of the complete large dataset.

•	 Parallelizing the learning algorithm.

•	 Designing a less complex algorithm that gives an approximate 
solution with equivalent or superior performance.

This work presents a novel approach to solving large-scale 
learning problems by designing a less complex algorithm to 
train a large-scale SVM. Our approach uses a combination of 
Kernel-Adatron (KA) and some state-of-the-art evolutionary 
algorithms (EAs), to solve, principally, protein structure pre-
diction (PSP) and other large-scale learning problems.5 The 
obtained algorithm works with small sub-problems, has low 
computational complexity and is easy to implement; in addi-
tion to providing accurate generalization results, such meth-
odology is also highly parallelizable.

Support vector machines. Since the SVM algorithm was 
first introduced by Vladimir Vapnik in 1995, it has been one 
of the most popular methods for classification because of: its 
simple model, the use of kernel functions and the convexity 
of the function to optimize (it only has a global minimum).6 
SVM’s characteristics make it more appealing for classification 
problems with high precision requirements than other models 
such as multilayer perceptron, radial basis function network, 
Hopfield network, etc.7–9 Many large-scale training algorithms 
have been proposed for SVMs with the main idea is of minimiz-
ing a regularized risk function R and maximizing the margin of 
separation between classes (Fig. 1) by solving Equation 1
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where w is a normal vector to the separating hyperplane, 
1
2

2|| ||w  is a quadratic regularization term and C . 0 is the 
fixed constant that scales the risk function.10–13 Equation 1 is 
called the primal formulation.14 By using Lagrange multipli-
ers, the primal formulation can be presented in its dual form:
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where C is a fixed constant, X Yi i i

n,( ) = 1
 is a training set, αi 

are Lagrange multipliers, K(Xi, Xj) is the value of the kernel 
matrix defined by the inner product 〈Xi, Xj 〉 (when a linear 
kernel K is used) and Yi ∈ {±1} is a class label.4

The dual formulation has the same optimal values as the 
primal, but the main advantage of this representation is the use of 
the “kernel trick” (see Fig. 2). Since SVMs can only classify data 
in a linear, separable feature space, the role of the kernel function 
is to induce such feature space by implicitly mapping the training 
data into a higher dimensional space where data is linearly sepa-
rable.14,15 There are two main approaches for large-scale SVM 
training algorithms: those that solve the primal SVM formula-
tion, shown in Equation 1, by a gradient-based method (primal 
estimated subgradient solver for SVM, careful quasi-Newton sto-
chastic gradient descent, forward looking sub-gradient, etc.) and 
those that solve the dual formulation of Equation 2 by quadratic 

programming (QP) methods (SVM for multivariate performance 
measure, library for large linear classification and bundle method 
for risk minimization, etc.).4,11,16,17 There are options that do not 
fall into these categories, such as the optimized cutting plane algo-
rithm (OCA), which uses an improved cutting plane technique 
and is based on the work of SVM for multivariate performance 
measure (SVMperf) and bundle method for risk minimization. 
OCA has fast convergence compared to methods like stochas-
tic gradient descent and primal estimated sub-gradient solver for 
SVM (Pegasos), and it has shown good classification results and 
offers computational sublinear scaling.13 Nevertheless, the use of 
a QP solver to solve a linear constraint problem (where each lin-
ear constraint is a cutting plane) makes it a complex approach to 
implement, even if the number of constraints is drastically lower 
than the data dimensionality. Gradient-based methods tend to 
be fast algorithms (especially those that use stochastic gradient 
descent) and have good generalization capabilities. However, 
they are highly dependent on step size to obtain a good speed of 
convergence. If the step size is not chosen carefully or it does not 
have an adjustment criteria, this can produce slow convergence.4 
The dual QP methods can handle kernels easily and can converge 
quickly by combining them with other optimization techniques. 
The main disadvantage of these methods is the computational 
complexity of the quadratic programming solvers and the fact 
that they are more difficult to implement than a gradient descent 
method or an EA.4,18–21

In the past years, several evolutionary computation-based 
training algorithms for SVM have been proposed.22–25 These 
algorithms solve the dual formulation (Equation 2), tend to 
be easy to implement and have shown good results for small 
amounts of data. The disadvantage on their implementation 
is their computational complexity of O(n2) or higher, where 
n represents the number of training samples. Since the com-
plete kernel is needed on each iteration to calculate the fitness 
function, as the number of training samples grows, the time 
needed to process the data will increase drastically.

Evolutionary algorithms. EAs are global optimization 
methods that scale well to higher dimensional problems. They 
are robust with respect to noisy evaluation functions, and can 
be implemented and parallelized with relative ease.26 Even 

X2

Optimal hyperplane

Maximum
margin

X1

Figure 1. A binary dataset is composed of positive Xi
+  and negative 

Xi
− labeled values. For purposes of generalizing a dataset the 

hyperplane with the largest margin gives the best results, although there 
can be several hyperplanes that can optimally separate it.

Figure 2. Datasets that are not linearly separable may be separated by 
a hyperplane in higher dimensions after applying the kernel trick.
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when premature convergence to a local extremum may occur, 
it has been proven that an algorithm that is “not quite good” 
or “poor” at optimization can be excellent at generalization for 
a large-scale learning task.4

This work presents a series of parallelized algorithms based 
on the KA algorithm as fitness function combined with Artifi-
cial Bee Colony (ABC), micro-Artificial Bee Colony (µABC), 
Diffierential Evolution (DE) and Particle Swarm Optimiza-
tion (PSO), in order to solve the SVM learning problem. The 
EA algorithms combined with KA were chosen based on good 
results shown in other areas, their exploration and exploitation 
capabilities, and low computational complexity.27–33

Large-scale training algorithms for SVMs using EA is a 
promising field that has not been well explored. Although par-
allelization is a highly desirable approach to the large-scale clas-
sification problem, most large-scale SVM training algorithms 
do not take this into consideration to obtain better results in a 
shorter amount of time. This is in part because testing complex 
parallel applications to guarantee a correct behavior is chal-
lenging; in scenarios, such as where inherent data dependencies 
exist, a complex task cannot be partitioned because of sequen-
tial constraints, making parallelization less convenient.3,4 One 
of the main goals in parallelizing an EA is to reduce the search 
time. This is a very important aspect for some classes of prob-
lems with firm requirements on search time, such as in dynamic 
optimization problems and real-time planning.34

Protein structure prediction. A protein structure (PS) 
is the three-dimensional arrangement of atoms in a protein 
molecule.35 These structures arise because particular sequences 
of amino-acids in polypeptide chains fold to generate, from 
linear chains, compact domains with specific 3D structures 
(Fig. 3). The folded domains can serve as modules for building 
up large assemblies such as virus particles or muscle fibers, or 
they can provide specific catalytic or binding sites, as found in 
enzymes or proteins that carry oxygen or regulate the function 
of DNA. PSP predicts the three-dimensional strucutres of a 
protein by using its first structure, its amino-acid sequence, to 
predict its folding and its secondary, tertiary and quaternary 

structure.36,37 This makes PSP an essential tool in proteomics 
since the molecular function of a protein depends on its 
threedimensional structure, which is often unknown.

In the past 50 years there has been enormous growth 
in the available information regarding genomic sequences, 
to the point that the pace is difficult to follow. At present, 
more protein coding sequences are known than their three-
dimensional structures. Protein folding is a large-scale prob-
lem because 20 different amino acids can generate such a 
large number of combinations, and there are also many ways 
for different amino-acid sequences to generate similar struc-
tural domains in proteins.35 It has been suggested that many 
proteins contain enough information in their amino-acid 
sequences to determine their three-dimensional structure, 
making possible the prediction of new three-dimensional 
structures from an amino-acid sequence since it is known that 
sequence similarity does confer structural similarity.38,39 Fur-
thermore, to understand the biological function of proteins it 
is necessary to deduce or predict the three-dimensional struc-
ture from the amino-acid sequence, since their functional 
properties depend upon their structures. If the predictions 
are accurate enough, the gap between the growing amount of 
sequence information and their corresponding structures can 
be diminished.

PSP is, overall, an optimization problem where each 
amino acid can be characterized by several structural features. 
A good prediction of these features helps to obtain better 
models for the 3D-PSP problem. These features can be pre-
dicted as classification/regression problems, where the goal is 
to determine the shape (known as fold) that a given amino-acid 
sequence will adopt. The problem can take two possible direc-
tions.40 The sequence may adopt a new fold, or bear resem-
blance to an existing fold in some protein structure database:

•	 If two sequences share evolutionary ancestry, they are 
called homologous and the structure for the query pro-
tein can be built by choosing the structure of the known 
homologous sequence as a template.

Figure 3. Left: Amino-acid sequence of a protein. Right: A representation of a three-dimensional structure of a protein.
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•	 If no template structure is found for the query protein, 
the structure must be built from scratch.

Many methods have been developed to assign folds to 
a protein coding sequence.41 These methods can be divided 
into three groups: sequencestructure homology recognition 
methods, threading methods and machine-learning-based 
methods. Sequence-structure homology and threading meth-
ods methods align the target sequence onto known structural 
templates and calculate their sequence-structure compat-
ibilities, using, for example, environment-specific substitu-
tion tables or pseudo-energy-based functions to calculate if it 
is possible that a template is a fold of a target sequence.42,43 
Sequence-structure homology methods (like FUGUE and 
3DPSSM) fail when two proteins are structurally similar, but 
share little in the way of sequence homology.44,45 Threading 
methods (such as THREADER) depend on data derived from 
solved structures, but the number of proteins whose structure 
has been solved is much smaller than the number of proteins 
that have been sequenced.46 Machine learning-based methods 
for protein fold recognition, like the approach presented in this 
paper, see the problem as a fold classification problem, where 
a classifier is built using a dataset with sequences of features 
of proteins with a known structure. The classifier can assign a 
structure-based label to an unknown protein (one that has not 
yet been solved).

In recent years, a number of diffierent SVM-based meth-
ods have been developed, producing better results than those 
obtained by pairwise sequence comparisons.40,43,47–49 These 
algorithms have made improvements in the detection of 
homologous structures with low levels of sequence similarity 
(remote homology detection).

Most of the state of the art for PSP classification is not 
focused on large-scale data, and even if some approaches have 
shown good results in small-scale PSP classification, most use 
versions of SVM reliant on kernel functions or neural net-
works; these do not scale well as the dimension and/or the 
number of data to classify grows.48,50–54 Because of this, some 
approaches tend to select an optimized feature subset with a 
moderate number of samples to improve the generalization 
performance of the SVM instead of using the complete data-
set. This reduces the amount of data to compute, making it 
more practical to process with the original SVM approach, but 
also more time consuming since the dataset needs to be selec-
tively preprocessed.55 These methods might be good for small 
or medium amounts of data, but protein folding, because of 
its combinational nature, can generate an immense amount of 
data to process. This is where an algorithm especially designed 
for large-scale data is needed. Sequencing projects are fast at 
producing protein coding sequences, but only a small portion 
of protein coding sequences have experimentally solved 3D 
structures. This is due to the expensive and timeconsuming 
laboratory methods, such as X-ray crystallography and nuclear 
magnetic resonance (NMR).41 This problem is becoming more 

pressing as the number of known protein coding sequences 
expands as a result of genome and other sequencing projects.54 
Because of this, tools that can predict PS rapidly and accu-
rately, like the one presented in this paper, are needed. The 
full potential of genome projects will be realized only once we 
discover and understand the functions of these new proteins. 
This understanding will be facilitated by structural informa-
tion for all or almost all proteins.

Methods
The kernel adatron algorithm. The Adaptive Perceptron 

algorithm (or Adatron) was first introduced by J. K. Anlauf 
and M. Biehl in 1989 for training linear classifiers.56 This 
algorithm was proposed as a method for calculating the larg-
est margin classifier. The Adatron is used for on line learning 
perceptrons and guarantees convergence to an optimal solu-
tion, when this exists.57

In 1998, T. Fries et al proposed the KA algorithm. Basi-
cally, the KA algorithm is an adaptation of the Adatron algo-
rithm for classification with kernels in high-dimensional spaces.5 
It combines the simplicity of implementation of Adatron with 
an SVM’s capability of working in nonlinear feature spaces to 
construct a large margin hyperplane using online learning.15

An advantage of KA algorithm is the use of gradient 
ascent instead of quadratic programming, which is easier to 
implement and significantly faster to calculate.

To implement KA algorithm, it is necessary to calculate 
the dot product w ⋅ Xi, where X is the set of training points and 
w denotes the normal vector to the hyperplane that divides the 
classes with a maximum margin (Fig. 1). Since the kernel K is 
related to the high-dimensional mapping ϕ(Xi) by equation

	 K X X X Xi j i j, ,( ) = ( ) ⋅ ( )ϕ ϕ 	 (3)

where the normal vector w to the separating hyperplane, can 
be expressed as

	
w Y Xi i i

i

n
= ( )

=
∑ α ϕ

1
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then, by using the lineal kernel K, the dot product can be 
expressed as

	
z Y K X Yi j j i j

j

n
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=
∑ α , .

1

	 (5)

To update the multipliers, a change in αi must be proposed 
to be evaluated. The change can be calculated as follows

	 δα η γi i= −( )1 ,	 (6)

	 γ i i iY z= , 	 (7)
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where η is the step size and δαi is the proposed change to αi. 
If αi +δαi # 0 it would result in a negative αi. To avoid this 
problem, αi is set to 0. Otherwise, update αi ← αi + δαi. The 
bias b (Fig. 1) can be obtained as follows:

	
b z zi i= ( ) + ( )( )+ −1

2
min max , 	 (8)

where zi
+ are the patterns with class label +1 and zi

− are those 
with class label −1.

The pseudocode is described briefly in Algorithm 1.

Algorithm 1. Kernel Adatron Algorithm.

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 

Initialize αi = 1.
repeat

For (Xi, Yi) calculate zi with Equation 5.
Calculate γi with Equation 7.
Calculate δαi with Equation 6.
if (αi + δαi) # 0 then

αi = 0
end if
if (αi + δαi) . 0 then

αi = αi + δαi
end if
Calculate b with Equation 8

until The stopping criteria is met.

Evolutionary algorithms. Evolutionary computing is 
a subfield of artificial intelligence that includes a range of 
problem-solving techniques based on principles of biological 
evolution. The principles for using evolutive processes to solve 
optimization problems originated in the 1950s.58

The EA are optimization methods that are part of evolu-
tionary computing, applying models based on biological evolu-
tion. In EA, a population of possible solutions is composed of 
individuals that can be compared according to their aptitude 
to improve the population; the most qualified candidates are 
those that obtain better results by a fitness function evaluation. 
The evolution of the population is obtained through iterations, 
in which a series of operations are applied to the individuals 
of the population (reproduction, mutation, recombination or 
selection), from these operations a new set of potentially better 
solutions are generated. The way the population evolves the 
possible solutions, and the way it chooses the new global best 
solutions, is something inherent to each EA.59

A swarm intelligence algorithm is based on swarms that 
occur in nature; PSO and ABC are two prominent swarm 
algorithms. There is a debate on whether swarm intelligence-
based algorithms are EAs or not, but since one of the inven-
tors of PSO refers to it as an EA, and swarm intelligence 
algorithms are executed in the same general way as EAs, by 
evolving a population of candidate problem solutions that 
improves with each iteration, we consider swarm intelligence 
to be an EA.59,60

As mentioned before, the KA algorithm requires the αi 
value to be adjusted through iterations. In this approach, the 
adjustment is made using EA (Fig. 4). This type of algorithm 
was chosen as an optimization method because they are easy 

to implement, to parallelize and have shown good results in 
diverse areas such as computer vision, image processing and 
path planning.27,28,30,61–63

Artificial bee colony algorithm. The ABC algorithm was 
first introduced by Karaboga in 2005.64 This algorithm is 
based on honey bee foraging behavior. The bees are divided 
into three classes:

•	 Employed: Bee with a food source.
•	 Onlookers: Bee that watches the dances of employed bees 

and choose food sources depending on dances.
•	 Scouts: Employed bee that abandons its food source to 

find a new one.

Each food source is equivalent to a possible solution to 
the optimization problem and, as in nature, individuals are 
more likely to be attracted to sources with a larger amount of 
food (a better result obtained by the fitness function). For each 
food source, only one employed bee is assigned, and when it 
abandons its food source it becomes a scout. The number of 
the onlooker bees is also equal to the number of solutions in 
the population.

Initially, ABC algorithm generates a random population 
P of n solutions. Each solution xi ∈ P is a D-dimensional vec-
tor, to be evaluated by a fitness function f(), also known as food 
source. The algorithm searches iteratively for the better food 
sources based on the findings made by employed, onlooker 
and scout bees. First, the i-th employed bee generates a ran-
dom modification in the j-th position of its corresponding 
food source xij, producing a new potential food source vi. The 
potential food source can be obtained by Equation 9

	 v x x xij ij ij ij kj= + −φ ( ),	 (9)

where k ∈ 1, 2, …, n is a randomly chosen index diffierent 
from i and φij is a uniformly distributed random number 
between [−1, 1].

If the amount of nectar (the value obtained by the fit-
ness function) is greater than the old one, the employed bee 
takes it as its new food source xi. Otherwise, the food source 
xi remains unchanged.

Once positions of the employed bees have been updated, 
the information is shared with the onlooker bees. Onlooker 
bees choose their food sources based on a probability pi that 
is directly related to the amount of nectar. The value of pi is 
obtained as follows

	

p
f

f
i

i

m
m

n=

=
∑

1

, 	 (10)

where fi is the fitness value of the i-th food source. pi is 
choosen by a roulette wheel selection mechanism (the better  
the i-th solution, the higher its chances of being selected).
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A new potential food source vi is calculated using 
Equation 9, where xij is selected based on the roulette wheel 
selection result. And, as with employed bees, if the amount of  
nectar improves, vi replaces xi; otherwise, xi remains unchanged.

If a position xi cannot be improved through a certain 
number of iterations, the i-th food source is abandoned. If this 

occurs, the scout bee changes its actual food source for a new 
food source to replace xi as follows

	 x lb rand ub lbij j j j= + −( , )( ),0 1 	 (11)

where rand(0, 1) is a normally distributed random number 
within [0, 1], and lb and ub are lower and upper bounds of 

Define initialization parameters
to be used by the EA

Initialize randomly
and evaluate the

i-th solution vector

Wait until
all vectors

are evaluated

Search for global
best solution

Stop
algorithm

Yes

No

Request other
solution vectors
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candidate solution

vector
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candidate solution vector
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Figure 4. The diagram explains the basic idea behind the algorithm described in this paper.
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the j-th dimension, respectively. The pseudocode is briefly 
described in Algorithm 2.

µArtificial bee colony algorithm. The µABC algorithm was 
first introduced by Rajasekhar in 2012.29 This algorithm is a vari-
ant of the ABC algorithm with a small population (only 3 bees).

The population of bees evolves through iterations and 
only the best bee is kept unaltered, whereas the rest of the bees 
are reinitialized with modifications based on the food source 
with the best fitness.

After the employed and onlooker phases have been com-
pleted (in the same way as in the ABC algorithm) the popula-
tion is ranked according to its fitness values. The bee with the 
best fitness remains in its food source, while the second best 
fitness is moved to a position near to the best one in order to 
facilitate a local search. The bee with the worst position is ini-
tialized to a random position to avoid premature convergence.

Unlike ABC, more than one variable is modified from 
the food source. For each parameter xij, a uniformly distributed 
random number randij(0, 1) is generated and if this number is 
less than the Frequency Control Rate (FCR) parameter, which 
is user defined, then the variable xij is modified as follows

	
v

x x x if rand FCR
xij

ij ij ij kj

ij
=

+ − ≤





φ ( ), ( , )0 1

otherwise 	 (12)

Algorithm 2. Artificial Bee Colony Algorithm.

1: 
2: 
3: 

4: 
5: 
6: 
7: 

8: 

9: 
10: 
11:
12: 
13: 
14: 
15: 

Initialize xi
repeat

Produce a new solution vi for the employed phase 
with Equation 9.

if f(vi) , f(xi) then
xi ← vi.

end if
Calculate the probability values pi with Equation 10 

for the solution xi.
Produce a new solution vi for the onlooker phase 

with Equation 9, selecting xi based on pi.
if f(ui) , f(xi) then

xi ← vi.
end if
if xi is an abandoned solution for the scout phase then

Replace xi by using the Equation 11.
end if

until The stopping condition is met.

The value of fij is a uniformly distributed random number, 
maintained in the range of [−RF, RF], where RF is the range 
factor. RF changes automatically during the search by tuning 
its value in accordance with Rechenberg’s 1/5 rule. This rule 
states that 1/5 of the total mutations in every t iterations ϕ(t) 
should be successful mutations. According to the number of 
successes ϕ(t), the value of RF is adjusted according to

	

RF it

RF t if t

RF t if tnew

old

old( )

( ) * . ( ) /

( ) / . ( ) /+ =

<

>1

0 85 1 5

0 85 1 5

ϕ

ϕ

RRF t if told ( ) ( ) /ϕ =









 1 5

	 (13)

The pseudocode is briefly described in Algorithm 3.

Algorithm 3. Micro Artificial Bee Colony Algorithm.

1:
2:
3:

4:
5:
6:
7:
8: 

9:
10:
11: 
12: 

13:
14:

Initialize xi
repeat

Produce a new solution vi for the employed phase with 
Equation 12.
if f(vi) , f(xi) then

xi ← vi.
end if
Calculate probability values pi with Equation 10 for solution xi.
Produce a new solution vi for the onlooker phase with 

Equation 12, selecting xi based on pi.
if f(ui) , f(xi) then

xi ← vi.
end if
Move second best solution x2b to a position very close to 

best solution x1b.
Move worst solution x3b to a random position.

until The stopping condition is met.

Diffierential evolution. DE was first introduced by R. Storn 
and K. V. Price in 1995.65 In DE each individual xi of the popula-
tion is a D-dimensional vector that represents a candidate solution 
from a set of n solutions. Each individual, called a vector, is evalu-
ated by a fitness function f() to define its strength as a solution. 
The fundamental idea behind DE is creating new candidate solu-
tions based on other solutions that have been previously found. 
DE takes the difference vector between two randomly chosen 
individuals, xr2 and xr3, and adds a scaled version of this vector to 
a third individual, chosen randomly xr1 or the best individual xb 
in the population. For the algorithm described in this paper, we 
used xr1 = xb. This new individual is called a mutant vector vi

	 vi = xr1 + F(xr2 – xr3),	 (14)

where F is a user-defined scaling factor. This mutant vector 
vi is later combined with xi by crossover to create a candidate 
solution to be evaluated by an objective function. The cross-
over is implemented as follows

	

u
v if r CROV or j J

x otherwise

for i n

ij

ij ij r

ij
=

< =




=

( ) ( ),

, , , ;1 2…

aand j D= 1 2, , , ;…
	 (15)

where uij is the crossed vector, rij is a random number between 
[0, 1], CROV is the user-defined constant crossover rate ∈[0, 1] 
and Jr is a random integer ∈[0, D] redefined on each iteration. 
The pseudocode is briefly described in Algorithm 4.

Algorithm 4. Differential Evolution Algorithm.

1:
2:
3:

4:
5:
6:
7:
8:
9:

Initialize F = [0.4, 0.9], CROV and xi
repeat

For each xi choose three random integers (r1, r2, r3), where 
r1 ≠ r2 ≠ r3 and r1, r2, r3 ∈ [1, n].

Generate n mutant vectors with Equation 14.
Generate n crossed vectors with Equation 15.
if f(ui) , f(xi) then

xi ← ui.
end if

until The stopping condition is met.
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Particle swarm optimization. The PSO algorithm was first 
introduced by Kennedy and Russell in 1995.66 This algorithm 
exploits a population of potential solutions. The population of 
solutions is called a swarm and each individual from a swarm 
is called a particle. A swarm is defined as a set of n particles. 
Each particle i is represented as a D-dimensional position vec-
tor xi, which is evaluated by a fitness function f (). Based on the 
results of the evaluation, it is easy to measure improvement in 
new particles compared to old ones. The particles are assumed 
to move within the search space iteratively. This is done by 
adjusting their position using a proper position shift, called 
velocity vi. For each iteration t, the velocity changes by apply-
ing Equation 16 to each particle.

	 v t v t c P x c P xi i ibest i gbest i( ) ( ) ( ) ( ),+ = + − + −1 1 1 2 2ω ϕ ϕ 	 (16)

where ϕ1 and ϕ2 are random variables uniformly distributed 
within [0,1]; c1 and c2 are weighting factors, also called the 
cognitive and social parameters, respectively; ω is called the 
inertia weight, which decreases linearly from ωstart to ωend dur-
ing iterations. Pibest and Pgbest represent the best position visited 
by a particle and the best position visited by the swarm before 
the current iteration t, respectively.

The position update is applied by Equation 17 based on 
the new velocity and the current position.

	 x t x t v ti i i( ) ( ) ( ).+ = + +1 1 	 (17)

The basic algorithm is as follows:

Algorithm 5. Particle Swarm Optimization.

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:

Initialize c1, c2, vi and xi
Pibest ← xi.
Select from xi, Pgbest.
repeat

Obtain velocity vi with Equation 16.
Update position xi with Equation 17.
if f(xi) , f(Pibest) then

Pibest ← xi
if f(Pibest) , f(Pgbest) then
Pgbest ← Pibest

end if
end if

until The stopping condition is met.

To solve the uncontrolled increase of magnitude of the 
velocities (swarm explosion effect), it is often necessary to 
restrict the velocity with a clamping at desirable levels, prevent-
ing particles from taking extremely large steps from their cur-
rent positions.67

	

v t
v if v t v

v if v t vij

ij

ij
( )

( ) ,

( )
+ =

+ >

− + > −




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1

1

1

max max

max max

Although the use of a maximum velocity thresh-
old improves the performance, by controlling the swarm 
explosions, without the inertia weight the swarm would 
not be able to concentrate its particles around the most 

promising solutions in the last phase of the optimization 
procedures.67

Kernel adatron trained with evolutionary algorithms. 
The basic idea behind the proposed algorithms is to use a 
“divide and conquer” strategy, where each individual in the 
population of the EA (vector in DE, particle in PSO, food 
source in ABC and µABC) is seen as a sub-process, in this 
case a thread (Fig. 5), that will solve a part of the whole prob-
lem. Once each sub-process reaches a result, it is compared to 
the results of its peers to improve future results.

DE, PSO, ABC and µABC are easily parallelized 
because each individual can be evaluated independently. The 
only phases in which the algorithms require communication 
between their individuals are the phases that involve mutation 
and the selection of the fittest individual. Also, the process to 
obtain the kernel matrix can be easily parallelized by dividing 
the process into several subtasks. For this approach, a lineal 
kernel is used (represented by the dot product 〈Xi, Xj 〉), since it 
was the kernel that gave the best results.

Core

Core

Core

Core

Thread
0

Thread
1

Thread
2

Thread
N

Data
N

Data
2

Data
1

Data
0

Memory

Figure 5. A thread is a component of a process. Multiple threads can 
exist within the same process; they are executed concurrently and share 
resources, such as memory.
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On each variant of the proposed algorithm, individual 
xi (particle, vector or bee) represents a D-dimensional vector 
composed of multipliers to be optimized over iterations by the 
EA. The fitness function f() to be used by the EA is described 
by Equation 18:

	 f x abs( ) ( ),= −1 Θ 	 (18)

where Θ is the margin between classes of the hyperplane, 
which can be estimated as follows:

	
Θ = −+ −1

2
( ( ) ( )).min maxz zi i 	 (19)

The value zi can be obtained with Equation 5. The values 
of z can be divided into zi

+ and zi
− depending on their class 

label, +1 and −1, respectively. The KA algorithm has the 
implementational simplicity of the Adatron model and can 
find a solution very rapidly compared to traditional methods 
like kernel-perceptron and SVM.5 The algorithm comes with 
all the theoretical guarantees given by support vector theory 
for large margin classifiers, as well as the convergence proper-
ties studied in the statistical learning literature.68 However, 
the algorithm uses basic operations and has a complexity of 
O(n2). Because of this, the algorithm has been modified so 
it can be trained using an EA with a computationally more 
attractive fitness function.

The main problem of KA is calculating the zi values. This 
results in an impractical fitness function, since it turns the 
linear computational complexity of the EA into quadratic. To 
solve this problem, it is proposed to use subsets of values to 
approximate a subset of zi for evaluating a candidate solution, 
instead of calculating each exact value of zi. Each subset is 
generated randomly and uses a much smaller fixed number of 
values (defined as nvals in Algorithm 6) than the number of 
values contained by the kernel matrix. The fitness function is 
described in Algorithm 6.

Algorithm 6. Fitness Function.

1: Initialize nvals, z INFINITY z INFINITYmin max,+ += = −

2: Generate a vector rvec with nvals number of integer elements. 
Where rveci ∈[0, nts]

3: for each element in rveci do

4:
 z Y K X Xi rvec rvec rvec rvec

j

n

j j j i

vals

=
=

∑ α ( , )
1

5: if zi ∈ z+ and zi , zmin
+  then

6:  z zimin
+ =

7: else

8:  z zimax
− =

9: end if
10: end for

11:  Θ = −( )+ −1
2

z zmin max

12: return abs(1 – Θ)

The number of data to be used by the fitness function 
nvals in this approach needn’t necessarily increase drastically 
with an increase in the number of training samples of the data 
set nts or dimensionality of the problem. The value for nvals 
was obtained from several tests done by running PSO on each 
variant of the algorithm on several datasets, and obtaining 
the average of the optimal number of samples needed by each 
approach. The value for nvals was merely 400 data samples, 
which gave the best results in the tests made on the datasets 
mentioned in Results and Discussion Section. Since all the 
results were near 400 samples selected randomly, this number 
was taken as a constant number of samples for nvals in all the 
tests, independently of nts.

The fitness function complexity is O(1), if the kernel matrix 
K is previously computed, or O(d) for any K X Xrvec rvecj i

,( ) 
value that is calculated by the fitness function, where d is  
the maximum number of non-zero features in any of the train-
ing samples.

Interdisciplinary computing and complex biosystems 
protein structure prediction benchmarks repository. The 
Interdisciplinary Computing and Complex BioSystems Pro-
tein Structure Prediction (ICOS PSP) benchmarks repositoryI 
contains datasets suitable for testing classification algorithms 
based on real data.69,70 The dataset is based on PSP, aiming to 
predict the three-dimensional structures of amino-acid chains 
based on several structural features. The features are extracted 
by using a window of size Ω on amino-acid chain to predict 
the Coordination Number (CN) for residue i by using the 
information of its neighbors. Where a residue i refers to a spe-
cific amino-acid within the polymeric chain of a protein, the 
CN is the number of residues from the same protein that are in 
contact with a given residue in the native state. Two residues 
are said to be in contact when the distance between them is 
below a certain threshold. The dataset is derived from a set of 
1050 protein chains and approximately 260,000 amino-acids 
(instances) selected using the PDB-REPRDB database. In 
order to predict the real-valued CN using classification tech-
niques, the continuous domain was mapped onto a finite set 
of categories.II Two different criteria were used to generate 
sets with two, three and five classes (or states) to form classes 
with balanced and imbalanced class distribution, uniform fre-
quency and uniform length, respectively.71,72

Binning is the simplest method to discretize a continuous- 
valued attribute by creating a specified number of bins. The 
bins can be created by uniform frequency or length. In both, 
arity k is used to determine the number of bins, which are  
associated with a distinct discrete value. For uniform length, 
the continuous range of a feature is evenly divided into  
intervals that have equal length and each interval represents 
a bin. In uniform frequency, an equal number of continuous 

I �The ICOS PSP benchmarks repository is available at http://ico2  s.org/datasets/psp_ 
benchmark.html.

II �The description of the dataset is available at http://ico2 s.org/datasets/psp/motivation.
html.
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values are placed in each bin.72 For this dataset the bins are 
computed separately for each training set using all of its 
instances, and afterwards applied also to the corresponding 
test set. To construct the datasets, a Ω window size ranging 
from 0 to 9 amino acids was used. The primary sequence of 
the protein and the CN definition of each amino acid were 
extracted from the PDB file. As in,73 a standard bootstrapping 
technique was used, which is useful for the robust estimation 
of prediction accuracy and its error; that is, a dataset of 1050 
protein chains was randomly divided into 2 groups: the train-
ing set of 950 chains and the test set of 100 chains. This divi-
sion of the whole dataset was repeated 10 times, resulting in  
10 pairs of training and test sets. Each training set contains 
more than 2x105 residues. For this paper, only the subset divided 
into two states was used since the approach is proposed for  
binary classification.

Results and Discussion
The data to classify was taken from the Interdisciplinary Com-
puting and Complex BioSystems Protein Structure Prediction 
Benchmarks Repository and seven other datasets from diverse 
fields that are commonly used to test large-scale classifiers; the 
datasets are briefly described in Tables 1 and 2.

From the PSP dataset, only the subsets discretized with 
uniform length and uniform frequency, with window sizes 
ranging from 7 to 9, were used for training and generalization 
because of their density and dimensionality. The Astro-Ph 
dataset is focused on classifying abstracts of scientific papers 
from Physics ArXiv.74 The Aut-Avn and Real-Sim classifica-
tion datasets come from a collection of UseNet articles from 
four discussion groups: for simulated auto racing, simulated 
aviation, real autos and real aviation. CCAT and C11 are 
obtained from the Reuters RCV1 collection, and address the 
problem of separating corporate related articles.3 The Worm 
dataset focuses on classifying worm RNA splices.III,13

The experiments were performed on an Intel® Core 
i7–3770™IV machine with 16 GB of RAM and Fedora  
Linux 20V operating system. The code was written in C++ 
using POSIX ThreadsVI and Armadillo.75 For the implemen-
tation of the algorithms, the Armadillo random number gen-
erator was used; the C++ random number generator was more 
expensive computationally speaking and increased the execu-
tion time drastically.

For the experiments done in this section, our approach 
is compared against algorithms like OCA, SVMlight,  
SVMperf and the original KA algorithm, from which the 
first three algorithms are large-scale SVM classifiers used in 
diverse fields.1,2

III �The datasets can be obtained at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/data-
sets/binary.html and http://users.cecs.anu.edu.au/~xzhang/data/

IV �Intel and Intel Core are trademarks of Intel Corporation.
V �Fedora is a trademark of Red Hat, Inc.
VI �For more information about POSIX: http://pubs.opengroup.org/onlinepubs/ 

9699919799/

Something to be taken into account is that it is much 
easier to implement and parallelize EA algorithms than 
to implement or parallelize the QP solvers used by OCA, 
SVMlight and SVMperf.13,74,76 The work presented in this paper 
was developed and tested on a multi-core computer, but since 
the algorithm is easily parallelizable, it can be implemented 
to run on a computer cluster with fewer complications than 
implementing a parallelized version of the previously men-
tioned algorithms for the same cluster. It is expected that, by 
using this type of hardware, the training and evaluation time 
can be reduced, even when processing a considerably larger 
amount of data.

For the EA fitness function, a linear kernel was used in 
all the algorithms since it gave the best results in the general-
ization tests. Several tests were made using a radial basis func-
tion kernel. In general, the results showed a slight increase in 
the training accuracy (not sufficient to compete with the other 
approaches in the training phase), the generalization accuracy 
decreased slightly and the processing time increased because 
of the extra operations that had to be performed to calculate 
the kernel. Because of this, only the results obtained with the 
linear kernel are shown.

Previous to the tests, from each dataset a subset of 4000 
training samples was randomly extracted and normalized for 
binary training classification and cross-validation. Because of 
hardware limitations, the amount of training samples used on 
each dataset is not large-scale, so that it could be stored in the 
computer’s memory. However, since the KA algorithm pos-
sess the guarantees given by the support vector theory and, 
as explained later in this section, the algorithm scales well 

Table 2. Brief description of the ICOS PSP dataset.

Uniform: Ω Dimension Density

Length 7 300 86.04%

8 340 86.98%

9 380 88.79%

Frequency 7 300 87.24%

8 340 87.07%

9 380 89.17%

Table 1. Brief description of large-scale datasets. Density denotes 
the average percentage of non-zero features of the data vectors.

Dataset Dimension Density

Astro-Ph 99757 0.08%

Aut-Avn 20707 0.23%

C11 47236 0.16%

CCAT 47236 0.16%

RCV1 47236 0.18%

Real-Sim 20958 0.23%

Worm 804 25.00%
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with the increase in the amount of data and dimensionality, 
the algorithm can easily be used with a larger amount of data 
without problems.68 The dimensionality and density of the 
datasets can be seen in Tables  1 and 2. The generalization 
accuracy was obtained by applying a 10-fold cross-validation 
to each dataset. To test the accuracy of training capability of 
each algorithm, the SVM was trained using 3600 training 
samples per run, which represents the nts value for a dataset, 
and 400 samples were used for testing.

The values used to train the SVM with each EA were 
obtained by running PSO on each variant of the algorithm 
to determinate the optimal values. This is not to be confused 
with the PSO variant that uses KA to classify data. The fol-
lowing values were used by the EAs while using the large-
scale datasets:

•	 The µABC version used: RF  =  0.0001, C  =  0.0001, 
FCR = 0.0001 and maximum of 5 attempts before aban-
doning a food source.

•	 The ABC version used: C = 2, fij values ranging between 
[−2, 2], 5 food sources and a maximum of 9 attempts 
before abandoning a food source.

•	 The DE algorithm used: C = 2.38958, F = 1.87016 and 
CROV = 0.9 and 6 vectors.

•	 The PSO algorithm used: vmax = 1.49684, wstart = 1.18472, 
wend = 0.000511895, c1 = 1.03971 c2 = 1.48063, C = 6.74659 
and 15 particles.

For the PSP dataset, the following values were, used by 
the EAs:

•	 The µABC version used: RF  =  0.001, C  =  0.0001, 
FCR = 0.001, with maximum of 5 attempts before aban-
doning a food source and a maximum of 25 iterations as 
stopping condition.

•	 The ABC version used: C = 5, fij values ranging between 
[−2, 2], 8 food sources, a maximum of 9 attempts before 
abandoning a food source and a maximum of 20 itera-
tions as stopping condition.

•	 The DE algorithm used: C = 2.65435, F = 0.719909 and 
CROV = 0.1, with 6 vectors and a maximum of 23 itera-
tions as stopping condition.

•	 The PSO algorithm used: vmax  =  0.1, wstart  =  0.0494229, 
wend = 0.0001, c1 = 1.13755 c2 = 0.11384, C = 3.5 with 10 par-
ticles and a maximum of 30 iterations as stopping condition.

The C value in SVM has two main purposes: it func-
tions as constant that scales the risk function for the primal 
formulation in Equation 1 and it limits the values that any αi 
can take in the dual formulation in Equation 2. In this paper, 
the value of C is used in the same way as in the dual formula-
tion, for limiting the values of αi. A total of 200 iterations 
was used as stopping condition by the EA for the datasets 
described in Table 1, because all the algorithms trained with 

PSO returned values close to 200 iterations as the optimal 
value for the stopping condition, with 200 being the highest 
number of iterations.

As stated in Section The Kernel Adatron Algorithm, the 
KA algorithm has appealing advantages such as the simplicity 
of implementation of Adatron and the capability of working 
in high-dimension feature spaces to construct a large margin 
hyperplane. But the main concern of implementing the origi-
nal KA approach is working with the kernel matrix, since its 
computational complexity is of O(d*nts

2), where d is the maxi-
mum number of non-zero features in any data vector of the 
training subset and nts is the number of training samples. Nev-
ertheless, there are scenarios, such as that presented in Table 1, 
where the density of the data samples is low in most cases, so 
the number of operations to calculate the kernel matrix can 
be drastically reduced. On the other hand, independently of 
the density, if it is treated as a divide and conquer problem the 
computational complexity is reduced, at worst case scenario, 
to O(d*n tts

2 / ), where t is the number of threads. Methods like 
Sequential Minimal Optimization or chunking can be used to 
reduce the computational complexity, but these algorithms, in 
the worst case scenario, scale to O nts

2( ) and O nts
3( ), respectively, 

which makes them expensive computationally speaking.77

The approach proposed in this paper always uses, per itera-
tion, a subset of randomly chosen training samples with a much 
smaller fixed size, and it is independent of the number of train-
ing samples nts in the dataset. Because of this, the complex-
ity remains linear O(d) (O(d/t) if it is parallelized) even if the 
dataset increases in size. For all the experiments made using 
the datasets described in Table 1, a total of 60 randomly chosen 
training samples from a dataset were used every time the fit-
ness function was called. For the PSP dataset, the number of 
samples used per fitness function call was 400, over three times 
more data than with the other datasets, but still a considerably 
small amount of samples considering the density and the com-
plete number of samples. These values were also obtained with 
PSO. Since the approaches shown in this paper works with data 
subsets, some precision in the accuracy of the training phase is 
lost to gain a better generalization capability in a small amount 
of time.

For the approach shown in this paper, the EAs the com-
putational complexity is linear O(n), where n is the number 
of individuals in the population of the EA, and O(d) for the 
fitness function, so the whole complexity of the algorithm is 
O(n * b) (Table 3). Compared to SVMlight and KA, in which 
computational complexity is equal to higher than O(d * nts

2), 
the approach shown in this paper is more appealing.4 Algo-
rithms such as OCA and SVMper f show a computational 
complexity of O(d * nts), which makes this approach competi-
tive by comparison.4,74

As shown in Tables 7 to 18, our approach gave results 
in generalization and time tests (measured in seconds) that 
are competitive with or better than those shown by OCA, 
SVMlight and SVMperf, though the accuracy in the training 
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Table 3. Computational complexity of the algorithms.

Algorithm Complexity

KA O(d * nts
2 )

SVMlight O(d * nts
2 )

OCA O(d * nts)

SVMperf O(d * nts)

EA approaches O(n * b)
 

Table 4. Results obtained from the Friedman test were the sum of 
squares (SS), mean squares (MS), degrees of freedom (df), χ2 value 
and P -value.

(A) Friedman test made to the Astro-Ph, Aut-Avn, C11, CCAT, RCV1, 
Real-Sim and Worm datasets.

Source SS df MS χ2 P-value

Columns 9.2857 3 3.0952 5.9091 0.1161

Error 23.7143 18 1.3175

Total 33 27

(B) Friedman test made to the PSP dataset.

Source SS df MS χ2 P-value

Columns 22.0833 3 7.3611 13.4746 0.0037

Error 7.4167 15 0.4944

Total 29.5000 23
 

Table 5. Mean rank obtained from the Friedman test for each solver.

(A) Mean rank from the Astro-Ph, Aut-Avn, C11, CCAT, RCV1, Real-
Sim and Worm datasets.

DE PSO SVMlight SVMperf

Mean 2.2857 1.8571 3.4286 2.4286

(B) Mean rank from the PSP dataset.

DE PSO SVMlight SVMperf

Mean 3.2 500 3.4167 2.3333 1
 

Table 6. Results from the Astro-Ph dataset. The best global results 
are underlined and the best results obtained by our approach are 
written in bold letters.

Algorithm Training Generalization Training Time

µABC 94.50% 92.65% 0.0243

ABC 94.58% 93.63% 0.0650

DE 94.56% 93.80% 0.0191

PSO 94.53% 93.77% 0.0212

KA 94.61% 92.68% 12.0500

SVMlight 99.27% 95.33% 0.2430

SVMperf 95.82% 93.85% 0.0195

OCA 100.00% 93.25% 0.0282

Table 7. Results from the Aut-Avn dataset.

Algorithm Training Generalization Training Time

µABC 97.23% 94.98% 0.0216

ABC 97.20% 94.58% 0.0725

DE 97.28% 96.13% 0.0172

PSO 97.65% 96.95% 0.0198

KA 97.34% 94.95% 12.5613

SVMlight 99.70% 95.65% 0.1380

SVMperf 98.52% 96.03% 0.0102

OCA 100.00% 90.10% 0.0384
 

Table 8. Results from the C11 dataset.

Algorithm Training Generalization Training Time

µABC 85.42% 81.33% 0.0221

ABC 86.52% 86.85% 0.0129

DE 87.01% 87.58% 0.0121

PSO 86.55% 86.44% 0.0198

KA 87.92% 83.80% 11.5700

SVMlight 98.12% 87.58% 0.0111

SVMperf 98.55% 87.58% 0.0102

OCA 100.00% 72.84% 0.0479
 

Table 9. Results from the CCAT dataset.

Algorithm Training Generalization Training Time

µABC 90.49% 86.18% 0.0287

ABC 91.11% 86.78% 0.0436

DE 91.82% 86.98% 0.0187

PSO 91.74% 86.55% 0.0387

KA 90.75% 86.58% 12.5626

SVMlight 98.71% 92.03% 0.3220

SVMperf 88.13% 84.08% 0.0199

OCA 99.55% 83.58% 0.0637

 

Table 10. Results from the RCV1 dataset.

Algorithm Training Generalization Training Time

µABC 92.78% 91.03% 0.0256

ABC 92.75% 93.10% 0.0488

DE 92.72% 93.00% 0.0154

PSO 93.42% 94.61% 0.0402

KA 92.96% 91.28% 12.5998

SVMlight 99.01% 94.85% 0.2830

SVMperf 96.51% 94.03% 0.0118

OCA 100.00% 88.15% 0.0704
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Table 11. Results from the Real-Sim dataset.

Algorithm Training Generalization Training Time

µABC 97.86% 96.28% 0.0336

ABC 98.25% 96.88% 0.0612

DE 98.21% 96.51% 0.0147

PSO 98.30% 96.46% 0.0311

KA 97.99% 96.20% 12.6350

SVMlight 99.67% 97.63% 0.1510

SVMperf 98.81% 97.28% 0.0107

OCA 99.73% 92.65% 0.0378

Table 12. Results from the Worm dataset.

Algorithm Training Generalization Training Time

µABC 81.60% 80.30% 0.0268

ABC 79.10% 77.77% 0.0178

DE 82.81% 81.70% 0.0201

PSO 81.01% 80.41% 0.0275

KA 80.86% 79.43% 12.6125

SVMlight 97.79% 95.35% 0.3150

SVMperf 99.86% 93.80% 0.0200

OCA 100% 89.00% 0.0840

Table 14. Training time results for PSP uniform frequency subsets.

Algorithm Ω = 7 Ω = 8 Ω = 9

µABC 0.0297s 0.0304s 0.0224s

ABC 0.0084s 0.0060s 0.0055s

DE 0.0054s 0.0041s 0.0026s

PSO 0.0065s 0.0056s 0.0059s

SVMlight 0.0210s 0.0220s 0.0200s

OCA 0.1978s 0.2039s 0.3558s

SVMperf 0.2910s 0.1820s 0.2900s

KA 1.2851s 1.2811s 1.2811s

Table 13. Training accuracy results for PSP uniform frequency 
subsets.

Algorithm Ω = 7 Ω = 8 Ω = 9

µABC 74.23% 74.88% 73.83%

ABC 74.24% 75.36% 74.40%

DE 74.77% 75.76% 74.29%

PSO 75.23% 75.35% 74.94%

SVMlight 86.98% 87.95% 88.40%

OCA 100.00% 100.00% 100.00%

SVMperf 100.00% 100.00% 100.00%

KA 75.16% 76.08% 75.18%

Table 16. Training accuracy results for PSP uniform length subsets.

Algorithm Ω = 7 Ω = 8 Ω = 9

µABC 74.86% 73.33% 74.60%

ABC 73.70% 70.95% 74.07%

DE 74.72% 72.23% 75.32%

PSO 74.31% 71.19% 75.99%

SVMlight 88.05% 91.45% 88.80%

OCA 100.00% 100.00% 100.00%

SVMperf 99.95% 100.00% 100.00%

KA 74.53% 71.04% 74.43%

Table 15. Cross-validation accuracy results for PSP uniform 
frequency subsets.

Algorithm Ω = 7 Ω = 8 Ω = 9

µABC 73.55% 73.08% 72.40%

ABC 73.75% 74.80% 72.93%

DE 74.43% 74.63% 73.08%

PSO 74.43% 74.05% 73.58%

SVMlight 73.33% 70.87% 70.68%

OCA 66.82% 65.28% 64.12%

SVMperf 66.90% 65.37% 64.22%

KA 74.20% 75.15% 73.80%

Table 17. Training time results for PSP uniform length subsets.

Algorithm Ω = 7 Ω = 8 Ω = 9

µAB 0.0338s 0.0203s 0.0101s

ABC 0.0064s 0.0058s 0.0024s

DE 0.0059s 0.0040s 0.0024s

PSO 0.0075s 0.0066s 0.0050s

SVMlight 0.0200s 0.0180s 0.0250s

OCA 0.1830s 0.1600s 0.1931s

SVMperf 0.1950s 0.1080s 0.1730s

KA 1.2963s 1.2827s 1.2690s

Table 18. Cross-validation accuracy results for PSP uniform length 
subsets.

Algorithm Ω = 7 Ω = 8 Ω = 9

µABC 74.03% 71.53% 73.55%

ABC 72.35% 69.85% 72.58%

DE 72.78% 70.48% 74.03%

PSO 73.25% 69.55% 75.05%

SVMlight 72.00% 72.34% 72.60%

OCA 64.28% 68.34% 67.05%

SVMperf 64.38% 68.41% 67.13%

KA 73.15% 69.40% 72.88%
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phase is not the strongest point of the algorithm. Notably, 
in terms of training and generalization, our approach shows 
similar or better results to the ones obtained by the original 
KA algorithm, but in a fraction of the time. The best global 
results shown on Tables 7 to 18 are underlined, and the best 
results obtained by our approach are written in bold letters.

As can be seen from the ROC curves in Figures 6A to 6G 
and in Table 19, the generalization performances of the clas-
sifiers shown in this paper are very similar (the curves over-
lap each other) with excellent values for area under the curve 
(AUC), ranging from 0.9160 to 0.9891. The ROC curves for 
the PSP dataset (Table 21 and Figs. 7A to 7F) gave good val-
ues for AUC, ranging from 0.8087 to 0.8345. Even though 
the generalization tests performed on the Worm dataset are 
not as good as the rest of the generalization tests, it gave the 
best AUC result compared to the other ROC curve results.

To detect diffierences between solvers across multiple test 
attempts, Matlab’s™ implemention of the Friedman test was 

applied to the results of the four solvers that gave the best  
generalization results (DE, PSO, SVMlight and SVMperf).78 For 
the test an α = 0.05 was used with 3 degrees of freedom, using 
as null hypothesis H0 the statement that there is no difference 
between the classifiers, and as alternative hypothesis H1 the 
statement that there is a difference. According to the X 2  table, 
if our X 2  value is greater than 7.815, the null hypothesis will 
be rejected. The results obtained from the tests were:

•	 Friedman test applied to the datasets shown in 
Table  1: X 2   =  5.9, a value smaller than 7.815, with 
P-value = 0.1161, which is greater than 0.05. From the 
results shown in Table 4A, we can state that hypothesis 
H0 is supported. The Tukey test was used to test which 
classifiers are statistically significant to one another.79 
From the test we obtained an honest significant differ-
ence of 2.95; when this value is compared to the results 
presented in Table 5A, it is easy to see that there is no 
statistically significant difference between the solvers, 
since the difference between each pair of means is less 
than this value.

•	 Friedman test applied to the PSP dataset: X 2  =  13.4,  
a value greater than 7.815, with P-value = 0.0037, which 
is smaller than 0.05. From the results shown in Table 4B, 
we can state that hypothesis H0 is rejected.

From the test we obtained an honest significant difference 
of 1.17; when this value is compared to the results presented 
in Table 5B it is apparent that there is a statistically significant 
difference between SVMperf and the rest of the solvers. This 
is easily noticed since SVMperf gave the worst results in the 
cross-validation tests for the PSP dataset.

Every possible pair of ROC curves obtained from the 
datasets shown in Table 11 was compared using MedCalc© 
to obtain their significance level. From the results shown in 
Table 20 it can be stated that hypothesis H0 is accepted in 
all the cases. The same procedure was applied to the ICOS 
PSP dataset. The results presented in Table 22 also support 
the H0 hypothesis.

Conclusions
We developed a simple-to-implement method for classifying 
sparse, largescale datasets using parallelism with four EA. 

Table 19. Roc curve areas obtained from large-scale datasets.

Dataset Area

Astro-Ph 0.9762

Aut-AVN 0.9803

C11 0.9160

CCAT 0.9292

RCV1 0.9590

Real-Sim 0.9865

Worm 0.9891

 

Table 20. Roc curve significance level obtained from large-scale 
datasets.

Aut-AVN C11 CCAT RCV1 Real-Sim Worm

Astro-Ph 0.9992 0.918 0.9275 0.9483 0.9817 0.9721

Aut-AVN 0.9206 0.9303 0.9537 0.9851 0.9775

C11 0.9867 0.9471 0.9108 0.906

CCAT 0.9595 0.9194 0.914

RCV1 0.9351 0.9246

Real-Sim 0.9925

 

Table 21. Roc curve areas obtained from ICOS PSP dataset.

Uniform: Ω Area

Length 7 0.8134

8 0.8345

9 0.8242

Frequency 7 0.8248

8 0.8229

9 0.8087

Table 22. Roc curve significance level obtained from ICOS PSP 
dataset (where UF is uniform frequency and UL is uniform length).

UF8 UF9 UL7 UL8 UL9

UF7 0.9988 0.99 0.9934 0.9945 0.9996

UF8 0.9922 0.9951 0.9941 0.9993

UF9 0.9975 0.9866 1.0099

UL7 0.9896 0.9943

UF8 0.9947
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Figure 6. ROC curves obtained from large-scale datasets.

As can be seen in the results, the approach also works for 
classifying not-so-sparse data in very short amounts of time 
without increasing the complexity of the algorithm. Even 
though the approach did not give good results in the training 
phase, it gave good generalization results in competitive or 
smaller amounts of time compared with those obtained by 
algorithms such as KA, OCA, SVMlight and SVMperf for  
classifying several datasets from different areas and PS data. 
The simplicity of the EA and training function makes it 
easier to implement and parallelize the approach. From the 

Friedman test it can be concluded that there is no difference 
in terms of generalization between the approaches that use 
PSO and DE, compared to SVMlight. The Tukey test confirms 
that there is no statistically significant difference between 
the three algorithms, from which it can be concluded that 
they have the same generalization capabilities. The ROC 
curve comparisons also show that the algorithms’ ranges 
from good to excellent, since the area under the curve is 
greater than 0.8. These results combined with the simplicity 
and lineal complexity of the algorithms is what makes this 
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Figure 7. ROC curves obtained from the ICOS PSP dataset.

approach an appealing algorithm to be used on large-scale 
classification problems.

Comparing the four EAs using variants proposed, it is 
easy to notice that the DE version is the fastest and also has 
a good generalization capability; future improvements of the 
method will focus on the DE approach.

Future work includes a multiclass version of this approach, 
an implementation of the algorithm that can run in computer 
clusters, and improvements to the accuracy of the training 
capability of the algorithms.
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