
285Evolutionary Bioinformatics 2016:12

Introduction
With the drastic increase of data to be processed in really short
amounts of time, new problems have appeared. Chromosome
classification, spam filtering, defining which advertisement to
show to a person on a web page, recognition of human activi-
ties and protein structure prediction are a few applications that
involve immense amounts of high-dimensional data.1,2 Some-
times the dimension and/or the number of data samples is too
large, making the storage of a dataset in a computer impossible.
This problem is solved by large-scale classification learning, which
aims to find a function that relates the data and their correspond-
ing class labels for an amount of data that cannot be stored in a
modern computer’s memory.3 The main concern (constraint) is
the amount of time that an algorithm takes to obtain an accurate
result, rather than the number of samples to process.4

A typical problem that support vector machines (SVMs)
have to face while working with a large dataset is that learning
algorithms are typically quadratic and require several scans of
a dataset. Three common strategies can be used to reduce this
practical complexity:3,4

•	 Solving several smaller problems by working on subsets of
the training data instead of the complete large dataset.

•	 Parallelizing the learning algorithm.

•	 Designing a less complex algorithm that gives an approximate
solution with equivalent or superior performance.

This work presents a novel approach to solving large-scale
learning problems by designing a less complex algorithm to
train a large-scale SVM. Our approach uses a combination of
Kernel-Adatron (KA) and some state-of-the-art evolutionary
algorithms (EAs), to solve, principally, protein structure pre-
diction (PSP) and other large-scale learning problems.5 The
obtained algorithm works with small sub-problems, has low
computational complexity and is easy to implement; in addi-
tion to providing accurate generalization results, such meth-
odology is also highly parallelizable.

Support vector machines. Since the SVM algorithm was
first introduced by Vladimir Vapnik in 1995, it has been one
of the most popular methods for classification because of: its
simple model, the use of kernel functions and the convexity
of the function to optimize (it only has a global minimum).6
SVM’s characteristics make it more appealing for classification
problems with high precision requirements than other models
such as multilayer perceptron, radial basis function network,
Hopfield network, etc.7–9 Many large-scale training algorithms
have been proposed for SVMs with the main idea is of minimiz-
ing a regularized risk function R and maximizing the margin of
separation between classes (Fig. 1) by solving Equation 1

Support Vector Machines Trained with Evolutionary
Algorithms Employing Kernel Adatron for Large Scale
Classification of Protein Structures

Nancy Arana-Daniel, Alberto A. Gallegos, Carlos López-Franco, Alma Y. Alanís, Jacob Morales
and Adriana López-Franco
Centro Universitario de Ciencias Exactas e Ingenieras, Universidad de Guadalajara, Guadalajara, Jalisco, México.

Abstract: With the increasing power of computers, the amount of data that can be processed in small periods of time has grown exponentially, as has
the importance of classifying large-scale data efficiently. Support vector machines have shown good results classifying large amounts of high-dimensional
data, such as data generated by protein structure prediction, spam recognition, medical diagnosis, optical character recognition and text classiffication, etc.
Most state of the art approaches for large-scale learning use traditional optimization methods, such as quadratic programming or gradient descent, which
makes the use of evolutionary algorithms for training support vector machines an area to be explored. The present paper proposes an approach that is simple
to implement based on evolutionary algorithms and Kernel-Adatron for solving large-scale classiffication problems, focusing on protein structure predic-
tion. The functional properties of proteins depend upon their three-dimensional structures. Knowing the structures of proteins is crucial for biology and can
lead to improvements in areas such as medicine, agriculture and biofuels.

Keywords: support vector machines, evolutionary algorithms, kernel-adatron, large scale learning, machine learning, protein structure prediction

Citation: Daniel et al. Support Vector Machines Trained with Evolutionary Algorithms
Employing Kernel Adatron for Large Scale Classification of Protein Structures.
Evolutionary Bioinformatics 2016:12 285–302 doi: 10.4137/EBO.S40912.

TYPE: Original Research

Received: September 1, 2016. ReSubmitted: October 19, 2016. Accepted for
publication: October 20, 2016.

Academic editor: Liuyang Wang, Associate Editor

Peer Review: Three peer reviewers contributed to the peer review report.
Reviewers' reports totaled 679 words, excluding any confidential comments to the
academic editor.

Funding: Authors disclose no external funding sources.

Competing Interests: Authors disclose no potential conflicts of interest.

Correspondence: nancyaranad@gmail.com

Copyright: © the authors, publisher and licensee Libertas Academica Limited. This is
an open-access article distributed under the terms of the Creative Commons CC-BY-NC
3.0 License.

�Paper subject to independent expert blind peer review. All editorial decisions made
by independent academic editor. Upon submission manuscript was subject to anti-
plagiarism scanning. Prior to publication all authors have given signed confirmation of
agreement to article publication and compliance with all applicable ethical and legal
requirements, including the accuracy of author and contributor information, disclosure of
competing interests and funding sources, compliance with ethical requirements relating
to human and animal study participants, and compliance with any copyright requirements
of third parties. This journal is a member of the Committee on Publication Ethics (COPE).

�Published by Libertas Academica. Learn more about this journal.

http://www.la-press.com/journal-evolutionary-bioinformatics-j17
http://www.la-press.com
http://dx.doi.org/10.4137/EBO.S40912
mailto:nancyaranad@gmail.com
http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17

Daniel et al

286 Evolutionary Bioinformatics 2016:12

	 w F w w CR w
w D

* arg min () : (),= = +
∈ℜ

|| ||1
2

2 	 (1)

where w is a normal vector to the separating hyperplane,
1
2

2|| ||w is a quadratic regularization term and C . 0 is the
fixed constant that scales the risk function.10–13 Equation 1 is
called the primal formulation.14 By using Lagrange multipli-
ers, the primal formulation can be presented in its dual form:

	

L Y Y K X X

sub

i
i

n

i j i j i j
j

n

i

n
() arg max (,)α α α α= −











= ==
∑ ∑∑

1 11

jject to C and Yi i i
i

n
0 0

1

≤ ≤ =
=
∑α α

	 (2)

where C is a fixed constant, X Yi i i

n,() = 1
 is a training set, αi

are Lagrange multipliers, K(Xi, Xj) is the value of the kernel
matrix defined by the inner product 〈Xi, Xj 〉 (when a linear
kernel K is used) and Yi ∈ {±1} is a class label.4

The dual formulation has the same optimal values as the
primal, but the main advantage of this representation is the use of
the “kernel trick” (see Fig. 2). Since SVMs can only classify data
in a linear, separable feature space, the role of the kernel function
is to induce such feature space by implicitly mapping the training
data into a higher dimensional space where data is linearly sepa-
rable.14,15 There are two main approaches for large-scale SVM
training algorithms: those that solve the primal SVM formula-
tion, shown in Equation 1, by a gradient-based method (primal
estimated subgradient solver for SVM, careful quasi-Newton sto-
chastic gradient descent, forward looking sub-gradient, etc.) and
those that solve the dual formulation of Equation 2 by quadratic

programming (QP) methods (SVM for multivariate performance
measure, library for large linear classification and bundle method
for risk minimization, etc.).4,11,16,17 There are options that do not
fall into these categories, such as the optimized cutting plane algo-
rithm (OCA), which uses an improved cutting plane technique
and is based on the work of SVM for multivariate performance
measure (SVMperf) and bundle method for risk minimization.
OCA has fast convergence compared to methods like stochas-
tic gradient descent and primal estimated sub-gradient solver for
SVM (Pegasos), and it has shown good classification results and
offers computational sublinear scaling.13 Nevertheless, the use of
a QP solver to solve a linear constraint problem (where each lin-
ear constraint is a cutting plane) makes it a complex approach to
implement, even if the number of constraints is drastically lower
than the data dimensionality. Gradient-based methods tend to
be fast algorithms (especially those that use stochastic gradient
descent) and have good generalization capabilities. However,
they are highly dependent on step size to obtain a good speed of
convergence. If the step size is not chosen carefully or it does not
have an adjustment criteria, this can produce slow convergence.4
The dual QP methods can handle kernels easily and can converge
quickly by combining them with other optimization techniques.
The main disadvantage of these methods is the computational
complexity of the quadratic programming solvers and the fact
that they are more difficult to implement than a gradient descent
method or an EA.4,18–21

In the past years, several evolutionary computation-based
training algorithms for SVM have been proposed.22–25 These
algorithms solve the dual formulation (Equation 2), tend to
be easy to implement and have shown good results for small
amounts of data. The disadvantage on their implementation
is their computational complexity of O(n2) or higher, where
n represents the number of training samples. Since the com-
plete kernel is needed on each iteration to calculate the fitness
function, as the number of training samples grows, the time
needed to process the data will increase drastically.

Evolutionary algorithms. EAs are global optimization
methods that scale well to higher dimensional problems. They
are robust with respect to noisy evaluation functions, and can
be implemented and parallelized with relative ease.26 Even

X2

Optimal hyperplane

Maximum
margin

X1

Figure 1. A binary dataset is composed of positive Xi
+ and negative

Xi
− labeled values. For purposes of generalizing a dataset the

hyperplane with the largest margin gives the best results, although there
can be several hyperplanes that can optimally separate it.

Figure 2. Datasets that are not linearly separable may be separated by
a hyperplane in higher dimensions after applying the kernel trick.

http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17

Support vector machines trained

287Evolutionary Bioinformatics 2016:12

when premature convergence to a local extremum may occur,
it has been proven that an algorithm that is “not quite good”
or “poor” at optimization can be excellent at generalization for
a large-scale learning task.4

This work presents a series of parallelized algorithms based
on the KA algorithm as fitness function combined with Artifi-
cial Bee Colony (ABC), micro-Artificial Bee Colony (µABC),
Diffierential Evolution (DE) and Particle Swarm Optimiza-
tion (PSO), in order to solve the SVM learning problem. The
EA algorithms combined with KA were chosen based on good
results shown in other areas, their exploration and exploitation
capabilities, and low computational complexity.27–33

Large-scale training algorithms for SVMs using EA is a
promising field that has not been well explored. Although par-
allelization is a highly desirable approach to the large-scale clas-
sification problem, most large-scale SVM training algorithms
do not take this into consideration to obtain better results in a
shorter amount of time. This is in part because testing complex
parallel applications to guarantee a correct behavior is chal-
lenging; in scenarios, such as where inherent data dependencies
exist, a complex task cannot be partitioned because of sequen-
tial constraints, making parallelization less convenient.3,4 One
of the main goals in parallelizing an EA is to reduce the search
time. This is a very important aspect for some classes of prob-
lems with firm requirements on search time, such as in dynamic
optimization problems and real-time planning.34

Protein structure prediction. A protein structure (PS)
is the three-dimensional arrangement of atoms in a protein
molecule.35 These structures arise because particular sequences
of amino-acids in polypeptide chains fold to generate, from
linear chains, compact domains with specific 3D structures
(Fig. 3). The folded domains can serve as modules for building
up large assemblies such as virus particles or muscle fibers, or
they can provide specific catalytic or binding sites, as found in
enzymes or proteins that carry oxygen or regulate the function
of DNA. PSP predicts the three-dimensional strucutres of a
protein by using its first structure, its amino-acid sequence, to
predict its folding and its secondary, tertiary and quaternary

structure.36,37 This makes PSP an essential tool in proteomics
since the molecular function of a protein depends on its
threedimensional structure, which is often unknown.

In the past 50 years there has been enormous growth
in the available information regarding genomic sequences,
to the point that the pace is difficult to follow. At present,
more protein coding sequences are known than their three-
dimensional structures. Protein folding is a large-scale prob-
lem because 20 different amino acids can generate such a
large number of combinations, and there are also many ways
for different amino-acid sequences to generate similar struc-
tural domains in proteins.35 It has been suggested that many
proteins contain enough information in their amino-acid
sequences to determine their three-dimensional structure,
making possible the prediction of new three-dimensional
structures from an amino-acid sequence since it is known that
sequence similarity does confer structural similarity.38,39 Fur-
thermore, to understand the biological function of proteins it
is necessary to deduce or predict the three-dimensional struc-
ture from the amino-acid sequence, since their functional
properties depend upon their structures. If the predictions
are accurate enough, the gap between the growing amount of
sequence information and their corresponding structures can
be diminished.

PSP is, overall, an optimization problem where each
amino acid can be characterized by several structural features.
A good prediction of these features helps to obtain better
models for the 3D-PSP problem. These features can be pre-
dicted as classification/regression problems, where the goal is
to determine the shape (known as fold) that a given amino-acid
sequence will adopt. The problem can take two possible direc-
tions.40 The sequence may adopt a new fold, or bear resem-
blance to an existing fold in some protein structure database:

•	 If two sequences share evolutionary ancestry, they are
called homologous and the structure for the query pro-
tein can be built by choosing the structure of the known
homologous sequence as a template.

Figure 3. Left: Amino-acid sequence of a protein. Right: A representation of a three-dimensional structure of a protein.

http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17

Daniel et al

288 Evolutionary Bioinformatics 2016:12

•	 If no template structure is found for the query protein,
the structure must be built from scratch.

Many methods have been developed to assign folds to
a protein coding sequence.41 These methods can be divided
into three groups: sequencestructure homology recognition
methods, threading methods and machine-learning-based
methods. Sequence-structure homology and threading meth-
ods methods align the target sequence onto known structural
templates and calculate their sequence-structure compat-
ibilities, using, for example, environment-specific substitu-
tion tables or pseudo-energy-based functions to calculate if it
is possible that a template is a fold of a target sequence.42,43
Sequence-structure homology methods (like FUGUE and
3DPSSM) fail when two proteins are structurally similar, but
share little in the way of sequence homology.44,45 Threading
methods (such as THREADER) depend on data derived from
solved structures, but the number of proteins whose structure
has been solved is much smaller than the number of proteins
that have been sequenced.46 Machine learning-based methods
for protein fold recognition, like the approach presented in this
paper, see the problem as a fold classification problem, where
a classifier is built using a dataset with sequences of features
of proteins with a known structure. The classifier can assign a
structure-based label to an unknown protein (one that has not
yet been solved).

In recent years, a number of diffierent SVM-based meth-
ods have been developed, producing better results than those
obtained by pairwise sequence comparisons.40,43,47–49 These
algorithms have made improvements in the detection of
homologous structures with low levels of sequence similarity
(remote homology detection).

Most of the state of the art for PSP classification is not
focused on large-scale data, and even if some approaches have
shown good results in small-scale PSP classification, most use
versions of SVM reliant on kernel functions or neural net-
works; these do not scale well as the dimension and/or the
number of data to classify grows.48,50–54 Because of this, some
approaches tend to select an optimized feature subset with a
moderate number of samples to improve the generalization
performance of the SVM instead of using the complete data-
set. This reduces the amount of data to compute, making it
more practical to process with the original SVM approach, but
also more time consuming since the dataset needs to be selec-
tively preprocessed.55 These methods might be good for small
or medium amounts of data, but protein folding, because of
its combinational nature, can generate an immense amount of
data to process. This is where an algorithm especially designed
for large-scale data is needed. Sequencing projects are fast at
producing protein coding sequences, but only a small portion
of protein coding sequences have experimentally solved 3D
structures. This is due to the expensive and timeconsuming
laboratory methods, such as X-ray crystallography and nuclear
magnetic resonance (NMR).41 This problem is becoming more

pressing as the number of known protein coding sequences
expands as a result of genome and other sequencing projects.54
Because of this, tools that can predict PS rapidly and accu-
rately, like the one presented in this paper, are needed. The
full potential of genome projects will be realized only once we
discover and understand the functions of these new proteins.
This understanding will be facilitated by structural informa-
tion for all or almost all proteins.

Methods
The kernel adatron algorithm. The Adaptive Perceptron

algorithm (or Adatron) was first introduced by J. K. Anlauf
and M. Biehl in 1989 for training linear classifiers.56 This
algorithm was proposed as a method for calculating the larg-
est margin classifier. The Adatron is used for on line learning
perceptrons and guarantees convergence to an optimal solu-
tion, when this exists.57

In 1998, T. Fries et al proposed the KA algorithm. Basi-
cally, the KA algorithm is an adaptation of the Adatron algo-
rithm for classification with kernels in high-dimensional spaces.5
It combines the simplicity of implementation of Adatron with
an SVM’s capability of working in nonlinear feature spaces to
construct a large margin hyperplane using online learning.15

An advantage of KA algorithm is the use of gradient
ascent instead of quadratic programming, which is easier to
implement and significantly faster to calculate.

To implement KA algorithm, it is necessary to calculate
the dot product w ⋅ Xi, where X is the set of training points and
w denotes the normal vector to the hyperplane that divides the
classes with a maximum margin (Fig. 1). Since the kernel K is
related to the high-dimensional mapping ϕ(Xi) by equation

	 K X X X Xi j i j, ,() = () ⋅ ()ϕ ϕ 	 (3)

where the normal vector w to the separating hyperplane, can
be expressed as

	
w Y Xi i i

i

n
= ()

=
∑ α ϕ

1

,	 (4)

then, by using the lineal kernel K, the dot product can be
expressed as

	
z Y K X Yi j j i j

j

n
= ()

=
∑ α , .

1

	 (5)

To update the multipliers, a change in αi must be proposed
to be evaluated. The change can be calculated as follows

	 δα η γi i= −()1 ,	 (6)

	 γ i i iY z= , 	 (7)

http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17

Support vector machines trained

289Evolutionary Bioinformatics 2016:12

where η is the step size and δαi is the proposed change to αi.
If αi +δαi # 0 it would result in a negative αi. To avoid this
problem, αi is set to 0. Otherwise, update αi ← αi + δαi. The
bias b (Fig. 1) can be obtained as follows:

	
b z zi i= () + ()()+ −1

2
min max , 	 (8)

where zi
+ are the patterns with class label +1 and zi

− are those
with class label −1.

The pseudocode is described briefly in Algorithm 1.

Algorithm 1. Kernel Adatron Algorithm.

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:

Initialize αi = 1.
repeat

For (Xi, Yi) calculate zi with Equation 5.
Calculate γi with Equation 7.
Calculate δαi with Equation 6.
if (αi + δαi) # 0 then

αi = 0
end if
if (αi + δαi) . 0 then

αi = αi + δαi
end if
Calculate b with Equation 8

until The stopping criteria is met.

Evolutionary algorithms. Evolutionary computing is
a subfield of artificial intelligence that includes a range of
problem-solving techniques based on principles of biological
evolution. The principles for using evolutive processes to solve
optimization problems originated in the 1950s.58

The EA are optimization methods that are part of evolu-
tionary computing, applying models based on biological evolu-
tion. In EA, a population of possible solutions is composed of
individuals that can be compared according to their aptitude
to improve the population; the most qualified candidates are
those that obtain better results by a fitness function evaluation.
The evolution of the population is obtained through iterations,
in which a series of operations are applied to the individuals
of the population (reproduction, mutation, recombination or
selection), from these operations a new set of potentially better
solutions are generated. The way the population evolves the
possible solutions, and the way it chooses the new global best
solutions, is something inherent to each EA.59

A swarm intelligence algorithm is based on swarms that
occur in nature; PSO and ABC are two prominent swarm
algorithms. There is a debate on whether swarm intelligence-
based algorithms are EAs or not, but since one of the inven-
tors of PSO refers to it as an EA, and swarm intelligence
algorithms are executed in the same general way as EAs, by
evolving a population of candidate problem solutions that
improves with each iteration, we consider swarm intelligence
to be an EA.59,60

As mentioned before, the KA algorithm requires the αi
value to be adjusted through iterations. In this approach, the
adjustment is made using EA (Fig. 4). This type of algorithm
was chosen as an optimization method because they are easy

to implement, to parallelize and have shown good results in
diverse areas such as computer vision, image processing and
path planning.27,28,30,61–63

Artificial bee colony algorithm. The ABC algorithm was
first introduced by Karaboga in 2005.64 This algorithm is
based on honey bee foraging behavior. The bees are divided
into three classes:

•	 Employed: Bee with a food source.
•	 Onlookers: Bee that watches the dances of employed bees

and choose food sources depending on dances.
•	 Scouts: Employed bee that abandons its food source to

find a new one.

Each food source is equivalent to a possible solution to
the optimization problem and, as in nature, individuals are
more likely to be attracted to sources with a larger amount of
food (a better result obtained by the fitness function). For each
food source, only one employed bee is assigned, and when it
abandons its food source it becomes a scout. The number of
the onlooker bees is also equal to the number of solutions in
the population.

Initially, ABC algorithm generates a random population
P of n solutions. Each solution xi ∈ P is a D-dimensional vec-
tor, to be evaluated by a fitness function f(), also known as food
source. The algorithm searches iteratively for the better food
sources based on the findings made by employed, onlooker
and scout bees. First, the i-th employed bee generates a ran-
dom modification in the j-th position of its corresponding
food source xij, producing a new potential food source vi. The
potential food source can be obtained by Equation 9

	 v x x xij ij ij ij kj= + −φ (),	 (9)

where k ∈ 1, 2, …, n is a randomly chosen index diffierent
from i and φij is a uniformly distributed random number
between [−1, 1].

If the amount of nectar (the value obtained by the fit-
ness function) is greater than the old one, the employed bee
takes it as its new food source xi. Otherwise, the food source
xi remains unchanged.

Once positions of the employed bees have been updated,
the information is shared with the onlooker bees. Onlooker
bees choose their food sources based on a probability pi that
is directly related to the amount of nectar. The value of pi is
obtained as follows

	

p
f

f
i

i

m
m

n=

=
∑

1

, 	 (10)

where fi is the fitness value of the i-th food source. pi is
choosen by a roulette wheel selection mechanism (the better
the i-th solution, the higher its chances of being selected).

http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17

Daniel et al

290 Evolutionary Bioinformatics 2016:12

A new potential food source vi is calculated using
Equation 9, where xij is selected based on the roulette wheel
selection result. And, as with employed bees, if the amount of
nectar improves, vi replaces xi; otherwise, xi remains unchanged.

If a position xi cannot be improved through a certain
number of iterations, the i-th food source is abandoned. If this

occurs, the scout bee changes its actual food source for a new
food source to replace xi as follows

	 x lb rand ub lbij j j j= + −(,)(),0 1 	 (11)

where rand(0, 1) is a normally distributed random number
within [0, 1], and lb and ub are lower and upper bounds of

Define initialization parameters
to be used by the EA

Initialize randomly
and evaluate the

i-th solution vector

Wait until
all vectors

are evaluated

Search for global
best solution

Stop
algorithm

Yes

No

Request other
solution vectors

Calculate the i-th new
candidate solution

vector

Evaluate the i-th new
candidate solution vector

Request kernel matrix
generated randomly

from sub-sets

Compare the i-th solution
vector with the i-th new

candidate solution vector

Wait until all
comparations

are made

No
Is the

candidate
solution
better?

Yes

The candidate vector
becomes the new i-th

solution vectors

Extract data
from dataset

Is the
stoping

condition
met?

Figure 4. The diagram explains the basic idea behind the algorithm described in this paper.

http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17

Support vector machines trained

291Evolutionary Bioinformatics 2016:12

the j-th dimension, respectively. The pseudocode is briefly
described in Algorithm 2.

µArtificial bee colony algorithm. The µABC algorithm was
first introduced by Rajasekhar in 2012.29 This algorithm is a vari-
ant of the ABC algorithm with a small population (only 3 bees).

The population of bees evolves through iterations and
only the best bee is kept unaltered, whereas the rest of the bees
are reinitialized with modifications based on the food source
with the best fitness.

After the employed and onlooker phases have been com-
pleted (in the same way as in the ABC algorithm) the popula-
tion is ranked according to its fitness values. The bee with the
best fitness remains in its food source, while the second best
fitness is moved to a position near to the best one in order to
facilitate a local search. The bee with the worst position is ini-
tialized to a random position to avoid premature convergence.

Unlike ABC, more than one variable is modified from
the food source. For each parameter xij, a uniformly distributed
random number randij(0, 1) is generated and if this number is
less than the Frequency Control Rate (FCR) parameter, which
is user defined, then the variable xij is modified as follows

	
v

x x x if rand FCR
xij

ij ij ij kj

ij
=

+ − ≤





φ (), (,)0 1

otherwise 	 (12)

Algorithm 2. Artificial Bee Colony Algorithm.

1:
2:
3:

4:
5:
6:
7:

8:

9:
10:
11:
12:
13:
14:
15:

Initialize xi
repeat

Produce a new solution vi for the employed phase
with Equation 9.

if f(vi) , f(xi) then
xi ← vi.

end if
Calculate the probability values pi with Equation 10

for the solution xi.
Produce a new solution vi for the onlooker phase

with Equation 9, selecting xi based on pi.
if f(ui) , f(xi) then

xi ← vi.
end if
if xi is an abandoned solution for the scout phase then

Replace xi by using the Equation 11.
end if

until The stopping condition is met.

The value of fij is a uniformly distributed random number,
maintained in the range of [−RF, RF], where RF is the range
factor. RF changes automatically during the search by tuning
its value in accordance with Rechenberg’s 1/5 rule. This rule
states that 1/5 of the total mutations in every t iterations ϕ(t)
should be successful mutations. According to the number of
successes ϕ(t), the value of RF is adjusted according to

	

RF it

RF t if t

RF t if tnew

old

old()

() * . () /

() / . () /+ =

<

>1

0 85 1 5

0 85 1 5

ϕ

ϕ

RRF t if told () () /ϕ =









 1 5

	 (13)

The pseudocode is briefly described in Algorithm 3.

Algorithm 3. Micro Artificial Bee Colony Algorithm.

1:
2:
3:

4:
5:
6:
7:
8:

9:
10:
11:
12:

13:
14:

Initialize xi
repeat

Produce a new solution vi for the employed phase with
Equation 12.
if f(vi) , f(xi) then

xi ← vi.
end if
Calculate probability values pi with Equation 10 for solution xi.
Produce a new solution vi for the onlooker phase with

Equation 12, selecting xi based on pi.
if f(ui) , f(xi) then

xi ← vi.
end if
Move second best solution x2b to a position very close to

best solution x1b.
Move worst solution x3b to a random position.

until The stopping condition is met.

Diffierential evolution. DE was first introduced by R. Storn
and K. V. Price in 1995.65 In DE each individual xi of the popula-
tion is a D-dimensional vector that represents a candidate solution
from a set of n solutions. Each individual, called a vector, is evalu-
ated by a fitness function f() to define its strength as a solution.
The fundamental idea behind DE is creating new candidate solu-
tions based on other solutions that have been previously found.
DE takes the difference vector between two randomly chosen
individuals, xr2 and xr3, and adds a scaled version of this vector to
a third individual, chosen randomly xr1 or the best individual xb
in the population. For the algorithm described in this paper, we
used xr1 = xb. This new individual is called a mutant vector vi

	 vi = xr1 + F(xr2 – xr3),	 (14)

where F is a user-defined scaling factor. This mutant vector
vi is later combined with xi by crossover to create a candidate
solution to be evaluated by an objective function. The cross-
over is implemented as follows

	

u
v if r CROV or j J

x otherwise

for i n

ij

ij ij r

ij
=

< =




=

() (),

, , , ;1 2…

aand j D= 1 2, , , ;…
	 (15)

where uij is the crossed vector, rij is a random number between
[0, 1], CROV is the user-defined constant crossover rate ∈[0, 1]
and Jr is a random integer ∈[0, D] redefined on each iteration.
The pseudocode is briefly described in Algorithm 4.

Algorithm 4. Differential Evolution Algorithm.

1:
2:
3:

4:
5:
6:
7:
8:
9:

Initialize F = [0.4, 0.9], CROV and xi
repeat

For each xi choose three random integers (r1, r2, r3), where
r1 ≠ r2 ≠ r3 and r1, r2, r3 ∈ [1, n].

Generate n mutant vectors with Equation 14.
Generate n crossed vectors with Equation 15.
if f(ui) , f(xi) then

xi ← ui.
end if

until The stopping condition is met.

http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17

Daniel et al

292 Evolutionary Bioinformatics 2016:12

Particle swarm optimization. The PSO algorithm was first
introduced by Kennedy and Russell in 1995.66 This algorithm
exploits a population of potential solutions. The population of
solutions is called a swarm and each individual from a swarm
is called a particle. A swarm is defined as a set of n particles.
Each particle i is represented as a D-dimensional position vec-
tor xi, which is evaluated by a fitness function f (). Based on the
results of the evaluation, it is easy to measure improvement in
new particles compared to old ones. The particles are assumed
to move within the search space iteratively. This is done by
adjusting their position using a proper position shift, called
velocity vi. For each iteration t, the velocity changes by apply-
ing Equation 16 to each particle.

	 v t v t c P x c P xi i ibest i gbest i() () () (),+ = + − + −1 1 1 2 2ω ϕ ϕ 	 (16)

where ϕ1 and ϕ2 are random variables uniformly distributed
within [0,1]; c1 and c2 are weighting factors, also called the
cognitive and social parameters, respectively; ω is called the
inertia weight, which decreases linearly from ωstart to ωend dur-
ing iterations. Pibest and Pgbest represent the best position visited
by a particle and the best position visited by the swarm before
the current iteration t, respectively.

The position update is applied by Equation 17 based on
the new velocity and the current position.

	 x t x t v ti i i() () ().+ = + +1 1 	 (17)

The basic algorithm is as follows:

Algorithm 5. Particle Swarm Optimization.

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:

Initialize c1, c2, vi and xi
Pibest ← xi.
Select from xi, Pgbest.
repeat

Obtain velocity vi with Equation 16.
Update position xi with Equation 17.
if f(xi) , f(Pibest) then

Pibest ← xi
if f(Pibest) , f(Pgbest) then
Pgbest ← Pibest

end if
end if

until The stopping condition is met.

To solve the uncontrolled increase of magnitude of the
velocities (swarm explosion effect), it is often necessary to
restrict the velocity with a clamping at desirable levels, prevent-
ing particles from taking extremely large steps from their cur-
rent positions.67

	

v t
v if v t v

v if v t vij

ij

ij
()

() ,

()
+ =

+ >

− + > −






1

1

1

max max

max max

Although the use of a maximum velocity thresh-
old improves the performance, by controlling the swarm
explosions, without the inertia weight the swarm would
not be able to concentrate its particles around the most

promising solutions in the last phase of the optimization
procedures.67

Kernel adatron trained with evolutionary algorithms.
The basic idea behind the proposed algorithms is to use a
“divide and conquer” strategy, where each individual in the
population of the EA (vector in DE, particle in PSO, food
source in ABC and µABC) is seen as a sub-process, in this
case a thread (Fig. 5), that will solve a part of the whole prob-
lem. Once each sub-process reaches a result, it is compared to
the results of its peers to improve future results.

DE, PSO, ABC and µABC are easily parallelized
because each individual can be evaluated independently. The
only phases in which the algorithms require communication
between their individuals are the phases that involve mutation
and the selection of the fittest individual. Also, the process to
obtain the kernel matrix can be easily parallelized by dividing
the process into several subtasks. For this approach, a lineal
kernel is used (represented by the dot product 〈Xi, Xj 〉), since it
was the kernel that gave the best results.

Core

Core

Core

Core

Thread
0

Thread
1

Thread
2

Thread
N

Data
N

Data
2

Data
1

Data
0

Memory

Figure 5. A thread is a component of a process. Multiple threads can
exist within the same process; they are executed concurrently and share
resources, such as memory.

http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17

Support vector machines trained

293Evolutionary Bioinformatics 2016:12

On each variant of the proposed algorithm, individual
xi (particle, vector or bee) represents a D-dimensional vector
composed of multipliers to be optimized over iterations by the
EA. The fitness function f() to be used by the EA is described
by Equation 18:

	 f x abs() (),= −1 Θ 	 (18)

where Θ is the margin between classes of the hyperplane,
which can be estimated as follows:

	
Θ = −+ −1

2
(() ()).min maxz zi i 	 (19)

The value zi can be obtained with Equation 5. The values
of z can be divided into zi

+ and zi
− depending on their class

label, +1 and −1, respectively. The KA algorithm has the
implementational simplicity of the Adatron model and can
find a solution very rapidly compared to traditional methods
like kernel-perceptron and SVM.5 The algorithm comes with
all the theoretical guarantees given by support vector theory
for large margin classifiers, as well as the convergence proper-
ties studied in the statistical learning literature.68 However,
the algorithm uses basic operations and has a complexity of
O(n2). Because of this, the algorithm has been modified so
it can be trained using an EA with a computationally more
attractive fitness function.

The main problem of KA is calculating the zi values. This
results in an impractical fitness function, since it turns the
linear computational complexity of the EA into quadratic. To
solve this problem, it is proposed to use subsets of values to
approximate a subset of zi for evaluating a candidate solution,
instead of calculating each exact value of zi. Each subset is
generated randomly and uses a much smaller fixed number of
values (defined as nvals in Algorithm 6) than the number of
values contained by the kernel matrix. The fitness function is
described in Algorithm 6.

Algorithm 6. Fitness Function.

1: Initialize nvals, z INFINITY z INFINITYmin max,+ += = −

2: Generate a vector rvec with nvals number of integer elements.
Where rveci ∈[0, nts]

3: for each element in rveci do

4:
 z Y K X Xi rvec rvec rvec rvec

j

n

j j j i

vals

=
=

∑ α (,)
1

5: if zi ∈ z+ and zi , zmin
+ then

6: z zimin
+ =

7: else

8: z zimax
− =

9: end if
10: end for

11: Θ = −()+ −1
2

z zmin max

12: return abs(1 – Θ)

The number of data to be used by the fitness function
nvals in this approach needn’t necessarily increase drastically
with an increase in the number of training samples of the data
set nts or dimensionality of the problem. The value for nvals
was obtained from several tests done by running PSO on each
variant of the algorithm on several datasets, and obtaining
the average of the optimal number of samples needed by each
approach. The value for nvals was merely 400 data samples,
which gave the best results in the tests made on the datasets
mentioned in Results and Discussion Section. Since all the
results were near 400 samples selected randomly, this number
was taken as a constant number of samples for nvals in all the
tests, independently of nts.

The fitness function complexity is O(1), if the kernel matrix
K is previously computed, or O(d) for any K X Xrvec rvecj i

,()
value that is calculated by the fitness function, where d is
the maximum number of non-zero features in any of the train-
ing samples.

Interdisciplinary computing and complex biosystems
protein structure prediction benchmarks repository. The
Interdisciplinary Computing and Complex BioSystems Pro-
tein Structure Prediction (ICOS PSP) benchmarks repositoryI
contains datasets suitable for testing classification algorithms
based on real data.69,70 The dataset is based on PSP, aiming to
predict the three-dimensional structures of amino-acid chains
based on several structural features. The features are extracted
by using a window of size Ω on amino-acid chain to predict
the Coordination Number (CN) for residue i by using the
information of its neighbors. Where a residue i refers to a spe-
cific amino-acid within the polymeric chain of a protein, the
CN is the number of residues from the same protein that are in
contact with a given residue in the native state. Two residues
are said to be in contact when the distance between them is
below a certain threshold. The dataset is derived from a set of
1050 protein chains and approximately 260,000 amino-acids
(instances) selected using the PDB-REPRDB database. In
order to predict the real-valued CN using classification tech-
niques, the continuous domain was mapped onto a finite set
of categories.II Two different criteria were used to generate
sets with two, three and five classes (or states) to form classes
with balanced and imbalanced class distribution, uniform fre-
quency and uniform length, respectively.71,72

Binning is the simplest method to discretize a continuous-
valued attribute by creating a specified number of bins. The
bins can be created by uniform frequency or length. In both,
arity k is used to determine the number of bins, which are
associated with a distinct discrete value. For uniform length,
the continuous range of a feature is evenly divided into
intervals that have equal length and each interval represents
a bin. In uniform frequency, an equal number of continuous

I �The ICOS PSP benchmarks repository is available at http://ico2 s.org/datasets/psp_
benchmark.html.

II �The description of the dataset is available at http://ico2 s.org/datasets/psp/motivation.
html.

http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17
http://ico2�s.org/datasets/psp benchmark.html
http://ico2�s.org/datasets/psp benchmark.html

Daniel et al

294 Evolutionary Bioinformatics 2016:12

values are placed in each bin.72 For this dataset the bins are
computed separately for each training set using all of its
instances, and afterwards applied also to the corresponding
test set. To construct the datasets, a Ω window size ranging
from 0 to 9 amino acids was used. The primary sequence of
the protein and the CN definition of each amino acid were
extracted from the PDB file. As in,73 a standard bootstrapping
technique was used, which is useful for the robust estimation
of prediction accuracy and its error; that is, a dataset of 1050
protein chains was randomly divided into 2 groups: the train-
ing set of 950 chains and the test set of 100 chains. This divi-
sion of the whole dataset was repeated 10 times, resulting in
10 pairs of training and test sets. Each training set contains
more than 2x105 residues. For this paper, only the subset divided
into two states was used since the approach is proposed for
binary classification.

Results and Discussion
The data to classify was taken from the Interdisciplinary Com-
puting and Complex BioSystems Protein Structure Prediction
Benchmarks Repository and seven other datasets from diverse
fields that are commonly used to test large-scale classifiers; the
datasets are briefly described in Tables 1 and 2.

From the PSP dataset, only the subsets discretized with
uniform length and uniform frequency, with window sizes
ranging from 7 to 9, were used for training and generalization
because of their density and dimensionality. The Astro-Ph
dataset is focused on classifying abstracts of scientific papers
from Physics ArXiv.74 The Aut-Avn and Real-Sim classifica-
tion datasets come from a collection of UseNet articles from
four discussion groups: for simulated auto racing, simulated
aviation, real autos and real aviation. CCAT and C11 are
obtained from the Reuters RCV1 collection, and address the
problem of separating corporate related articles.3 The Worm
dataset focuses on classifying worm RNA splices.III,13

The experiments were performed on an Intel® Core
i7–3770™IV machine with 16 GB of RAM and Fedora
Linux 20V operating system. The code was written in C++
using POSIX ThreadsVI and Armadillo.75 For the implemen-
tation of the algorithms, the Armadillo random number gen-
erator was used; the C++ random number generator was more
expensive computationally speaking and increased the execu-
tion time drastically.

For the experiments done in this section, our approach
is compared against algorithms like OCA, SVMlight,
SVMperf and the original KA algorithm, from which the
first three algorithms are large-scale SVM classifiers used in
diverse fields.1,2

III �The datasets can be obtained at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/data-
sets/binary.html and http://users.cecs.anu.edu.au/~xzhang/data/

IV �Intel and Intel Core are trademarks of Intel Corporation.
V �Fedora is a trademark of Red Hat, Inc.
VI �For more information about POSIX: http://pubs.opengroup.org/onlinepubs/

9699919799/

Something to be taken into account is that it is much
easier to implement and parallelize EA algorithms than
to implement or parallelize the QP solvers used by OCA,
SVMlight and SVMperf.13,74,76 The work presented in this paper
was developed and tested on a multi-core computer, but since
the algorithm is easily parallelizable, it can be implemented
to run on a computer cluster with fewer complications than
implementing a parallelized version of the previously men-
tioned algorithms for the same cluster. It is expected that, by
using this type of hardware, the training and evaluation time
can be reduced, even when processing a considerably larger
amount of data.

For the EA fitness function, a linear kernel was used in
all the algorithms since it gave the best results in the general-
ization tests. Several tests were made using a radial basis func-
tion kernel. In general, the results showed a slight increase in
the training accuracy (not sufficient to compete with the other
approaches in the training phase), the generalization accuracy
decreased slightly and the processing time increased because
of the extra operations that had to be performed to calculate
the kernel. Because of this, only the results obtained with the
linear kernel are shown.

Previous to the tests, from each dataset a subset of 4000
training samples was randomly extracted and normalized for
binary training classification and cross-validation. Because of
hardware limitations, the amount of training samples used on
each dataset is not large-scale, so that it could be stored in the
computer’s memory. However, since the KA algorithm pos-
sess the guarantees given by the support vector theory and,
as explained later in this section, the algorithm scales well

Table 2. Brief description of the ICOS PSP dataset.

Uniform: Ω Dimension Density

Length 7 300 86.04%

8 340 86.98%

9 380 88.79%

Frequency 7 300 87.24%

8 340 87.07%

9 380 89.17%

Table 1. Brief description of large-scale datasets. Density denotes
the average percentage of non-zero features of the data vectors.

Dataset Dimension Density

Astro-Ph 99757 0.08%

Aut-Avn 20707 0.23%

C11 47236 0.16%

CCAT 47236 0.16%

RCV1 47236 0.18%

Real-Sim 20958 0.23%

Worm 804 25.00%

http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17

Support vector machines trained

295Evolutionary Bioinformatics 2016:12

with the increase in the amount of data and dimensionality,
the algorithm can easily be used with a larger amount of data
without problems.68 The dimensionality and density of the
datasets can be seen in Tables 1 and 2. The generalization
accuracy was obtained by applying a 10-fold cross-validation
to each dataset. To test the accuracy of training capability of
each algorithm, the SVM was trained using 3600 training
samples per run, which represents the nts value for a dataset,
and 400 samples were used for testing.

The values used to train the SVM with each EA were
obtained by running PSO on each variant of the algorithm
to determinate the optimal values. This is not to be confused
with the PSO variant that uses KA to classify data. The fol-
lowing values were used by the EAs while using the large-
scale datasets:

•	 The µABC version used: RF = 0.0001, C = 0.0001,
FCR = 0.0001 and maximum of 5 attempts before aban-
doning a food source.

•	 The ABC version used: C = 2, fij values ranging between
[−2, 2], 5 food sources and a maximum of 9 attempts
before abandoning a food source.

•	 The DE algorithm used: C = 2.38958, F = 1.87016 and
CROV = 0.9 and 6 vectors.

•	 The PSO algorithm used: vmax = 1.49684, wstart = 1.18472,
wend = 0.000511895, c1 = 1.03971 c2 = 1.48063, C = 6.74659
and 15 particles.

For the PSP dataset, the following values were, used by
the EAs:

•	 The µABC version used: RF = 0.001, C = 0.0001,
FCR = 0.001, with maximum of 5 attempts before aban-
doning a food source and a maximum of 25 iterations as
stopping condition.

•	 The ABC version used: C = 5, fij values ranging between
[−2, 2], 8 food sources, a maximum of 9 attempts before
abandoning a food source and a maximum of 20 itera-
tions as stopping condition.

•	 The DE algorithm used: C = 2.65435, F = 0.719909 and
CROV = 0.1, with 6 vectors and a maximum of 23 itera-
tions as stopping condition.

•	 The PSO algorithm used: vmax = 0.1, wstart = 0.0494229,
wend = 0.0001, c1 = 1.13755 c2 = 0.11384, C = 3.5 with 10 par-
ticles and a maximum of 30 iterations as stopping condition.

The C value in SVM has two main purposes: it func-
tions as constant that scales the risk function for the primal
formulation in Equation 1 and it limits the values that any αi
can take in the dual formulation in Equation 2. In this paper,
the value of C is used in the same way as in the dual formula-
tion, for limiting the values of αi. A total of 200 iterations
was used as stopping condition by the EA for the datasets
described in Table 1, because all the algorithms trained with

PSO returned values close to 200 iterations as the optimal
value for the stopping condition, with 200 being the highest
number of iterations.

As stated in Section The Kernel Adatron Algorithm, the
KA algorithm has appealing advantages such as the simplicity
of implementation of Adatron and the capability of working
in high-dimension feature spaces to construct a large margin
hyperplane. But the main concern of implementing the origi-
nal KA approach is working with the kernel matrix, since its
computational complexity is of O(d*nts

2), where d is the maxi-
mum number of non-zero features in any data vector of the
training subset and nts is the number of training samples. Nev-
ertheless, there are scenarios, such as that presented in Table 1,
where the density of the data samples is low in most cases, so
the number of operations to calculate the kernel matrix can
be drastically reduced. On the other hand, independently of
the density, if it is treated as a divide and conquer problem the
computational complexity is reduced, at worst case scenario,
to O(d*n tts

2 /), where t is the number of threads. Methods like
Sequential Minimal Optimization or chunking can be used to
reduce the computational complexity, but these algorithms, in
the worst case scenario, scale to O nts

2() and O nts
3(), respectively,

which makes them expensive computationally speaking.77

The approach proposed in this paper always uses, per itera-
tion, a subset of randomly chosen training samples with a much
smaller fixed size, and it is independent of the number of train-
ing samples nts in the dataset. Because of this, the complex-
ity remains linear O(d) (O(d/t) if it is parallelized) even if the
dataset increases in size. For all the experiments made using
the datasets described in Table 1, a total of 60 randomly chosen
training samples from a dataset were used every time the fit-
ness function was called. For the PSP dataset, the number of
samples used per fitness function call was 400, over three times
more data than with the other datasets, but still a considerably
small amount of samples considering the density and the com-
plete number of samples. These values were also obtained with
PSO. Since the approaches shown in this paper works with data
subsets, some precision in the accuracy of the training phase is
lost to gain a better generalization capability in a small amount
of time.

For the approach shown in this paper, the EAs the com-
putational complexity is linear O(n), where n is the number
of individuals in the population of the EA, and O(d) for the
fitness function, so the whole complexity of the algorithm is
O(n * b) (Table 3). Compared to SVMlight and KA, in which
computational complexity is equal to higher than O(d * nts

2),
the approach shown in this paper is more appealing.4 Algo-
rithms such as OCA and SVMper f show a computational
complexity of O(d * nts), which makes this approach competi-
tive by comparison.4,74

As shown in Tables 7 to 18, our approach gave results
in generalization and time tests (measured in seconds) that
are competitive with or better than those shown by OCA,
SVMlight and SVMperf, though the accuracy in the training

http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17

Daniel et al

296 Evolutionary Bioinformatics 2016:12

Table 3. Computational complexity of the algorithms.

Algorithm Complexity

KA O(d * nts
2 )

SVMlight O(d * nts
2 )

OCA O(d * nts)

SVMperf O(d * nts)

EA approaches O(n * b)

Table 4. Results obtained from the Friedman test were the sum of
squares (SS), mean squares (MS), degrees of freedom (df), χ2 value
and P -value.

(A) Friedman test made to the Astro-Ph, Aut-Avn, C11, CCAT, RCV1,
Real-Sim and Worm datasets.

Source SS df MS χ2 P-value

Columns 9.2857 3 3.0952 5.9091 0.1161

Error 23.7143 18 1.3175

Total 33 27

(B) Friedman test made to the PSP dataset.

Source SS df MS χ2 P-value

Columns 22.0833 3 7.3611 13.4746 0.0037

Error 7.4167 15 0.4944

Total 29.5000 23

Table 5. Mean rank obtained from the Friedman test for each solver.

(A) Mean rank from the Astro-Ph, Aut-Avn, C11, CCAT, RCV1, Real-
Sim and Worm datasets.

DE PSO SVMlight SVMperf

Mean 2.2857 1.8571 3.4286 2.4286

(B) Mean rank from the PSP dataset.

DE PSO SVMlight SVMperf

Mean 3.2 500 3.4167 2.3333 1

Table 6. Results from the Astro-Ph dataset. The best global results
are underlined and the best results obtained by our approach are
written in bold letters.

Algorithm Training Generalization Training Time

µABC 94.50% 92.65% 0.0243

ABC 94.58% 93.63% 0.0650

DE 94.56% 93.80% 0.0191

PSO 94.53% 93.77% 0.0212

KA 94.61% 92.68% 12.0500

SVMlight 99.27% 95.33% 0.2430

SVMperf 95.82% 93.85% 0.0195

OCA 100.00% 93.25% 0.0282

Table 7. Results from the Aut-Avn dataset.

Algorithm Training Generalization Training Time

µABC 97.23% 94.98% 0.0216

ABC 97.20% 94.58% 0.0725

DE 97.28% 96.13% 0.0172

PSO 97.65% 96.95% 0.0198

KA 97.34% 94.95% 12.5613

SVMlight 99.70% 95.65% 0.1380

SVMperf 98.52% 96.03% 0.0102

OCA 100.00% 90.10% 0.0384

Table 8. Results from the C11 dataset.

Algorithm Training Generalization Training Time

µABC 85.42% 81.33% 0.0221

ABC 86.52% 86.85% 0.0129

DE 87.01% 87.58% 0.0121

PSO 86.55% 86.44% 0.0198

KA 87.92% 83.80% 11.5700

SVMlight 98.12% 87.58% 0.0111

SVMperf 98.55% 87.58% 0.0102

OCA 100.00% 72.84% 0.0479

Table 9. Results from the CCAT dataset.

Algorithm Training Generalization Training Time

µABC 90.49% 86.18% 0.0287

ABC 91.11% 86.78% 0.0436

DE 91.82% 86.98% 0.0187

PSO 91.74% 86.55% 0.0387

KA 90.75% 86.58% 12.5626

SVMlight 98.71% 92.03% 0.3220

SVMperf 88.13% 84.08% 0.0199

OCA 99.55% 83.58% 0.0637

Table 10. Results from the RCV1 dataset.

Algorithm Training Generalization Training Time

µABC 92.78% 91.03% 0.0256

ABC 92.75% 93.10% 0.0488

DE 92.72% 93.00% 0.0154

PSO 93.42% 94.61% 0.0402

KA 92.96% 91.28% 12.5998

SVMlight 99.01% 94.85% 0.2830

SVMperf 96.51% 94.03% 0.0118

OCA 100.00% 88.15% 0.0704

http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17

Support vector machines trained

297Evolutionary Bioinformatics 2016:12

Table 11. Results from the Real-Sim dataset.

Algorithm Training Generalization Training Time

µABC 97.86% 96.28% 0.0336

ABC 98.25% 96.88% 0.0612

DE 98.21% 96.51% 0.0147

PSO 98.30% 96.46% 0.0311

KA 97.99% 96.20% 12.6350

SVMlight 99.67% 97.63% 0.1510

SVMperf 98.81% 97.28% 0.0107

OCA 99.73% 92.65% 0.0378

Table 12. Results from the Worm dataset.

Algorithm Training Generalization Training Time

µABC 81.60% 80.30% 0.0268

ABC 79.10% 77.77% 0.0178

DE 82.81% 81.70% 0.0201

PSO 81.01% 80.41% 0.0275

KA 80.86% 79.43% 12.6125

SVMlight 97.79% 95.35% 0.3150

SVMperf 99.86% 93.80% 0.0200

OCA 100% 89.00% 0.0840

Table 14. Training time results for PSP uniform frequency subsets.

Algorithm Ω = 7 Ω = 8 Ω = 9

µABC 0.0297s 0.0304s 0.0224s

ABC 0.0084s 0.0060s 0.0055s

DE 0.0054s 0.0041s 0.0026s

PSO 0.0065s 0.0056s 0.0059s

SVMlight 0.0210s 0.0220s 0.0200s

OCA 0.1978s 0.2039s 0.3558s

SVMperf 0.2910s 0.1820s 0.2900s

KA 1.2851s 1.2811s 1.2811s

Table 13. Training accuracy results for PSP uniform frequency
subsets.

Algorithm Ω = 7 Ω = 8 Ω = 9

µABC 74.23% 74.88% 73.83%

ABC 74.24% 75.36% 74.40%

DE 74.77% 75.76% 74.29%

PSO 75.23% 75.35% 74.94%

SVMlight 86.98% 87.95% 88.40%

OCA 100.00% 100.00% 100.00%

SVMperf 100.00% 100.00% 100.00%

KA 75.16% 76.08% 75.18%

Table 16. Training accuracy results for PSP uniform length subsets.

Algorithm Ω = 7 Ω = 8 Ω = 9

µABC 74.86% 73.33% 74.60%

ABC 73.70% 70.95% 74.07%

DE 74.72% 72.23% 75.32%

PSO 74.31% 71.19% 75.99%

SVMlight 88.05% 91.45% 88.80%

OCA 100.00% 100.00% 100.00%

SVMperf 99.95% 100.00% 100.00%

KA 74.53% 71.04% 74.43%

Table 15. Cross-validation accuracy results for PSP uniform
frequency subsets.

Algorithm Ω = 7 Ω = 8 Ω = 9

µABC 73.55% 73.08% 72.40%

ABC 73.75% 74.80% 72.93%

DE 74.43% 74.63% 73.08%

PSO 74.43% 74.05% 73.58%

SVMlight 73.33% 70.87% 70.68%

OCA 66.82% 65.28% 64.12%

SVMperf 66.90% 65.37% 64.22%

KA 74.20% 75.15% 73.80%

Table 17. Training time results for PSP uniform length subsets.

Algorithm Ω = 7 Ω = 8 Ω = 9

µAB 0.0338s 0.0203s 0.0101s

ABC 0.0064s 0.0058s 0.0024s

DE 0.0059s 0.0040s 0.0024s

PSO 0.0075s 0.0066s 0.0050s

SVMlight 0.0200s 0.0180s 0.0250s

OCA 0.1830s 0.1600s 0.1931s

SVMperf 0.1950s 0.1080s 0.1730s

KA 1.2963s 1.2827s 1.2690s

Table 18. Cross-validation accuracy results for PSP uniform length
subsets.

Algorithm Ω = 7 Ω = 8 Ω = 9

µABC 74.03% 71.53% 73.55%

ABC 72.35% 69.85% 72.58%

DE 72.78% 70.48% 74.03%

PSO 73.25% 69.55% 75.05%

SVMlight 72.00% 72.34% 72.60%

OCA 64.28% 68.34% 67.05%

SVMperf 64.38% 68.41% 67.13%

KA 73.15% 69.40% 72.88%

http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17

Daniel et al

298 Evolutionary Bioinformatics 2016:12

phase is not the strongest point of the algorithm. Notably,
in terms of training and generalization, our approach shows
similar or better results to the ones obtained by the original
KA algorithm, but in a fraction of the time. The best global
results shown on Tables 7 to 18 are underlined, and the best
results obtained by our approach are written in bold letters.

As can be seen from the ROC curves in Figures 6A to 6G
and in Table 19, the generalization performances of the clas-
sifiers shown in this paper are very similar (the curves over-
lap each other) with excellent values for area under the curve
(AUC), ranging from 0.9160 to 0.9891. The ROC curves for
the PSP dataset (Table 21 and Figs. 7A to 7F) gave good val-
ues for AUC, ranging from 0.8087 to 0.8345. Even though
the generalization tests performed on the Worm dataset are
not as good as the rest of the generalization tests, it gave the
best AUC result compared to the other ROC curve results.

To detect diffierences between solvers across multiple test
attempts, Matlab’s™ implemention of the Friedman test was

applied to the results of the four solvers that gave the best
generalization results (DE, PSO, SVMlight and SVMperf).78 For
the test an α = 0.05 was used with 3 degrees of freedom, using
as null hypothesis H0 the statement that there is no difference
between the classifiers, and as alternative hypothesis H1 the
statement that there is a difference. According to the X 2 table,
if our X 2 value is greater than 7.815, the null hypothesis will
be rejected. The results obtained from the tests were:

•	 Friedman test applied to the datasets shown in
Table 1: X 2 = 5.9, a value smaller than 7.815, with
P-value = 0.1161, which is greater than 0.05. From the
results shown in Table 4A, we can state that hypothesis
H0 is supported. The Tukey test was used to test which
classifiers are statistically significant to one another.79
From the test we obtained an honest significant differ-
ence of 2.95; when this value is compared to the results
presented in Table 5A, it is easy to see that there is no
statistically significant difference between the solvers,
since the difference between each pair of means is less
than this value.

•	 Friedman test applied to the PSP dataset: X 2 = 13.4,
a value greater than 7.815, with P-value = 0.0037, which
is smaller than 0.05. From the results shown in Table 4B,
we can state that hypothesis H0 is rejected.

From the test we obtained an honest significant difference
of 1.17; when this value is compared to the results presented
in Table 5B it is apparent that there is a statistically significant
difference between SVMperf and the rest of the solvers. This
is easily noticed since SVMperf gave the worst results in the
cross-validation tests for the PSP dataset.

Every possible pair of ROC curves obtained from the
datasets shown in Table 11 was compared using MedCalc©
to obtain their significance level. From the results shown in
Table 20 it can be stated that hypothesis H0 is accepted in
all the cases. The same procedure was applied to the ICOS
PSP dataset. The results presented in Table 22 also support
the H0 hypothesis.

Conclusions
We developed a simple-to-implement method for classifying
sparse, largescale datasets using parallelism with four EA.

Table 19. Roc curve areas obtained from large-scale datasets.

Dataset Area

Astro-Ph 0.9762

Aut-AVN 0.9803

C11 0.9160

CCAT 0.9292

RCV1 0.9590

Real-Sim 0.9865

Worm 0.9891

Table 20. Roc curve significance level obtained from large-scale
datasets.

Aut-AVN C11 CCAT RCV1 Real-Sim Worm

Astro-Ph 0.9992 0.918 0.9275 0.9483 0.9817 0.9721

Aut-AVN 0.9206 0.9303 0.9537 0.9851 0.9775

C11 0.9867 0.9471 0.9108 0.906

CCAT 0.9595 0.9194 0.914

RCV1 0.9351 0.9246

Real-Sim 0.9925

Table 21. Roc curve areas obtained from ICOS PSP dataset.

Uniform: Ω Area

Length 7 0.8134

8 0.8345

9 0.8242

Frequency 7 0.8248

8 0.8229

9 0.8087

Table 22. Roc curve significance level obtained from ICOS PSP
dataset (where UF is uniform frequency and UL is uniform length).

UF8 UF9 UL7 UL8 UL9

UF7 0.9988 0.99 0.9934 0.9945 0.9996

UF8 0.9922 0.9951 0.9941 0.9993

UF9 0.9975 0.9866 1.0099

UL7 0.9896 0.9943

UF8 0.9947

http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17

Support vector machines trained

299Evolutionary Bioinformatics 2016:12

A

C

E

G

F

D

1

Astro-Ph dataset

S
en

si
ti

vi
ty

 (
tr

u
e

p
o

si
ti

ve
 r

at
e)

S
en

si
ti

vi
ty

 (
tr

u
e

p
o

si
ti

ve
 r

at
e)

S
en

si
ti

vi
ty

 (
tr

u
e

p
o

si
ti

ve
 r

at
e)

S
en

si
ti

vi
ty

 (
tr

u
e

p
o

si
ti

ve
 r

at
e)

S
en

si
ti

vi
ty

 (
tr

u
e

p
o

si
ti

ve
 r

at
e)

S
en

si
ti

vi
ty

 (
tr

u
e

p
o

si
ti

ve
 r

at
e)

S
en

si
ti

vi
ty

 (
tr

u
e

p
o

si
ti

ve
 r

at
e)

C11 dataset CCAT dataset

Real-Sim datasetRCV1 dataset

Worm dataset

1-specificity (false positive rate) 1-specificity (false positive rate)

1-specificity (false positive rate)1-specificity (false positive rate)

1-specificity (false positive rate) 1-specificity (false positive rate)

1-specificity (false positive rate)

Aut-Avn dataset

0.9
PSO
DE
ABC
µABC

PSO
DE
ABC
µABC

PSO
DE
ABC
µABC

PSO
DE
ABC
µABC

PSO
DE
ABC
µABC

PSO
DE
ABC
µABC

PSO
DE
ABC
µABC

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.9

10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B

Figure 6. ROC curves obtained from large-scale datasets.

As can be seen in the results, the approach also works for
classifying not-so-sparse data in very short amounts of time
without increasing the complexity of the algorithm. Even
though the approach did not give good results in the training
phase, it gave good generalization results in competitive or
smaller amounts of time compared with those obtained by
algorithms such as KA, OCA, SVMlight and SVMperf for
classifying several datasets from different areas and PS data.
The simplicity of the EA and training function makes it
easier to implement and parallelize the approach. From the

Friedman test it can be concluded that there is no difference
in terms of generalization between the approaches that use
PSO and DE, compared to SVMlight. The Tukey test confirms
that there is no statistically significant difference between
the three algorithms, from which it can be concluded that
they have the same generalization capabilities. The ROC
curve comparisons also show that the algorithms’ ranges
from good to excellent, since the area under the curve is
greater than 0.8. These results combined with the simplicity
and lineal complexity of the algorithms is what makes this

http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17

Daniel et al

300 Evolutionary Bioinformatics 2016:12

A Uniform frequency dataset. Window size: 7 Uniform length dataset. Window size: 7

Uniform length dataset. Window size: 8Uniform frequency dataset. Window size: 8

Uniform frequency dataset. Window size: 9 Uniform length dataset. Window size: 9

1-specificity (false positive rate)

1

0.9
PSO
DE
ABC
µABC

PSO
DE
ABC
µABC

PSO
DE
ABC
µABC

PSO
DE
ABC
µABC

PSO
DE
ABC
µABC

PSO
DE
ABC
µABC

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0

0 0

0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1-specificity (false positive rate)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

1-specificity (false positive rate)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

1-specificity (false positive rate)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

1-specificity (false positive rate)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

1-specificity (false positive rate)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
en

si
ti

vi
ty

 (
tr

u
e

p
o

si
ti

ve
 r

at
e)

S
en

si
ti

vi
ty

 (
tr

u
e

p
o

si
ti

ve
 r

at
e)

S
en

si
ti

vi
ty

 (
tr

u
e

p
o

si
ti

ve
 r

at
e)

S
en

si
ti

vi
ty

 (
tr

u
e

p
o

si
ti

ve
 r

at
e)

S
en

si
ti

vi
ty

 (
tr

u
e

p
o

si
ti

ve
 r

at
e)

S
en

si
ti

vi
ty

 (
tr

u
e

p
o

si
ti

ve
 r

at
e)

B

C D

E F

Figure 7. ROC curves obtained from the ICOS PSP dataset.

approach an appealing algorithm to be used on large-scale
classification problems.

Comparing the four EAs using variants proposed, it is
easy to notice that the DE version is the fastest and also has
a good generalization capability; future improvements of the
method will focus on the DE approach.

Future work includes a multiclass version of this approach,
an implementation of the algorithm that can run in computer
clusters, and improvements to the accuracy of the training
capability of the algorithms.

Acknowledgment
We are very thankful to the projects SEP CONACYT
CB-258068 and CB-256769 for supporting this work.

Author Contributions
Conceived and proposed the initial idea of the work: NAD.
Conceived and designed the experiments: NAD, AAG, JM,
ALF, CLF. Analyzed the data: NAD, AAG, JM, ALF,
AYA. Wrote the first draft of the manuscript: NAD, AAG,
AYA, CLF. Contributed to the writing of the manuscript:

http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17

Support vector machines trained

301Evolutionary Bioinformatics 2016:12

NAD, AAG, AYA, CLF. Agree with manuscript results
and conclusions: NAD, AAG, CLF, AYA, JM, ALF. Jointly
developed the structure and arguments for the paper: NAD,
AAG, CLF, AYA, JM, ALF. Made critical revisions and
approved final version: NAD, AAG, CLF, AYA, JM, ALF.
All authors reviewed and approved of the final manuscript.

Reference
	 1.	 Kao J, Chuang J, Wang T. Chromosome classification based on the band profile

similarity along approximate medial axis. Pattern Recognition. 2008;41:77–89.
	 2.	 Fawcett T. “In vivo” spam filtering: A challenge problem for KDD. SIGKDD

Explorations Newsletter. 2003;5:140–8.
	 3.	 Bottou L, Chapelle O, DeCoste D, Weston J. Large-scale kernel machines. Neural

Information Processing. MIT Press 2007.
	 4.	 Menon AK. Large-scale support vector machines: Algorithms and theory.

Research Exam, University of California, San Diego. 2009: 1–17.
	 5.	 Frieß TT, Cristianini N, Campbell C. The Kernel-Adatron algorithm: A fast

and simple learning procedure for support vector machines. In Proceedings of the
Fifteenth International Conference on Machine Learning Morgan Kaufmann 1998.

	 6.	 Cortes C, Vapnik V. Support vector networks. Machine Learning. 1995;20:273–97.
	 7.	 Osowski S, Siwek K, Markiewicz T. MLP and SVM networks: A comparative

study. In Proceedings of the 6th Nordic Signal Processing Symposium. 2004:9–11.
	 8.	 Lee Y, Kim MW, Song HK, Park SC. Analysis of classification performance for

Hopfield network with predefined correlated exemplar patterns. In International
Joint Conference on Neural Networks. 1990;1:803–8.

	 9.	 Lippmann RP. Pattern classification using neural networks. Communications
Magazine. 1989;27:47–50.

	 10.	 Kivinen J, Smola AJ, Williamson RC. Online learning with kernels. Transactions
on Signal Processing, IEEE. 2004;52:2165–76.

	 11.	 Shalev-Shwartz S, Nathan S. SVM optimization: Inverse dependence on
training set size. In Proceedings of the 25th International Conference on Machine
Learning: 2008:928–35.

	 12.	 Teo CH, Smola A, Vishwanathan SVN, Le QV. A scalable modular convex
solver for regularized risk minimization. In Proceedings of the 13th ACM SIG-
KDD International Conference on Knowledge Discovery and Data Mining. 2007:
727–36.

	 13.	 Franc V, Sonnenburg S. Optimized cutting plane algorithm for large-scale risk
minimization. Journal of Machine Learning Research. 2009;10:2157–92.

	 14.	 Haykin S. Neural networks: A comprehensive foundation Prentice-Hall 3ed. 2007.
	 15.	 Müller KR, Mika S, Rätsch G, Tsuda K, Schölkopf B. An introduction to

kernel-based learning algorithms. IEEE Transactions on Neural Networks.
2001;12:181–201.

	 16.	 Shalev-Shwartz S, Singer Y, Nathan S. Pegasos: Primal estimated subgradient
solver for SVM. In Proceedings of the 24th International Conference on Machine
Learning. 2007:807–14.

	 17.	 Bordes A, Bottou L, Gallinari P. SGD-QN: Careful quasi-Newton stochastic
gradient descent. Journal of Machine Learning Research. 2009;10:1737–54.

	 18.	 Vavasis SA. Complexity theory: Quadratic programming. In Encyclopedia of
Optimization. Springer, US; 2009:451–4.

	 19.	 Garcia E, Rangel P, Lozano F. Adaptive support vector machines for time series
prediction. In Proceedings of XI Simposio de Tratamiento de Señales, Imagenes y
Vision Artificial. 2006.

	 20.	 Floudas CA, Visweswaran V. Quadratic optimization; Springer, US;2:1995.
	 21.	 Frasch JV, Sager S, Diehl M. A parallel quadratic programming method for

dynamic optimization problems. Mathematical Programming Computation.
2013:1–41.

	 22.	 Mierswa I. Evolutionary learning with kernels: A generic solution for large mar-
gin problems. In Proceedings of the 8th Annual Conference on Genetic and Evolu-
tionary Computation (GECCO ’06): ACM Press, New York, NY, USA; 2006:
1553–60.

	 23.	 Lessmann S, Stahlbock R, Crone SF. Genetic algorithms for support vector
machine model selection. In In International Joint Conference on Neural Networks.
2006:3063–9.

	 24.	 Adankon MM, Cheriet M. Genetic algorithm-based training for semi-supervised
SVM. Neural Computing and Applications. 2010;19:1197–206.

	 25.	 Huaitie X, Guoyu F, Zhiyong S, Jianjun C. Hybrid optimization method for
parameter selection of support vector machine. In IEEE International Conference
on Intelligent Computing and Intelligent Systems (ICIS). 2010;1:613–6.

	 26.	 Sudholt D. Parallel evolutionary algorithms. In Handbook of Computational
Intelligence. Springer;2015:929–59.

	 27.	 Karaboga D, Gorkemli B, Ozturk C, Karaboga N. A comprehensive survey:
Artificial bee colony (ABC) algorithm and applications. Artificial Intelligence
Review. 2014;42: 21–57.

	 28.	 Das S, Suganthan PN. Differential evolution: A survey of the state-of-the-art.
IEEE Transactions Evolutionary Computation. 2011;15:4–31.

	 29.	 Rajasekhar A, Das S, Das S. µABC: A micro artificial bee colony algorithm for
large-scale global optimization. In GECCO’12 Companion: ACM; 2012:1399–400.

	 30.	 Arana-Daniel N, Gallegos A, Lopez-Franco C, Alanis AY. Smooth global and
local path planning for mobile robot using particle swarm optimization, radial
basis functions, splines and Bézier curves. In 2014 IEEE Congress on Evolution-
ary Computation (CEC): 175–82 IEEE 2014.

	 31.	 Yoshida H, Kawata K, Fukuyama Y, Takayama S, Nakanishi Y. A particle swarm
optimization for reactive power and voltage control considering voltage security
assessment. Power Systems, IEEE Transactions on. 2000;15:1232–9.

	 32.	 Noman N, Iba H. Differential evolution for economic load dispatch problems.
Electric Power Systems Research. 2008;78:1322–31.

	 33.	 Karaboga D, Akay B, Ozturk C. Artificial bee colony (ABC) optimization algo-
rithm for training feed-forward neural networks. In Modeling Decisions for Artifi-
cial Intelligence: Springer; 2007:318–29.

	 34.	 Indiveri G. Handbook of computational intelligence Berlin, Heidelberg: Springer-
Verlag;2015.

	 35.	 Branden CI. Introduction to protein structure Garland Science 1999.
	 36.	 Westhead DR, Thornton JM. Protein structure prediction. Current opinion in

biotechnology. 1998;9:383–9.
	 37.	 Skolnick J, Zhang Y. Protein structure prediction. Systems Biology. 2007;1:

187–218.
	 38.	 Marks DS, Hopf TA, Sander C. Protein structure prediction from sequence

variation. Nature Biotechnology. 2012;30:1072–80.
	 39.	 Hegyi H, Gerstein M. The relationship between protein structure and function:

A comprehensive survey with application to the yeast genome. Journal of molecu-
lar biology. 1999;288:147–64.

	 40.	 Rangwala H, Karypis G. Introduction to protein structure prediction John Wiley &
Sons, Inc. New York 2010.

	 41.	 Sta¸por K. Using machine learning approach for protein fold recognition. Studia
Informatica. 2011;32.

	 42.	 Hill JR, Kelm S, Shi J, Deane CM. Environment specific substitution
tables improve membrane protein alignment. Bioinformatics [ISMB/ECCB].
2011;27:15–23.

	 43.	 Shamim MTA, Anwaruddin M, Nagarajaram HA. Support vector machine-
based classification of protein folds using the structural properties of amino-acid
residues and amino-acid residue pairs. Bioinformatics. 2007;23:3320–7.

	 44.	 Kelley LA, MacCallum RM, Sternberg MJE. Enhanced genome annotation
using structural profiles in the program 3D-PSSM. Journal of Molecular Biology.
2000;299:501–22.

	 45.	 Shi J, Blundell TL, Mizuguchi K. FUGUE: Sequence-structure homology rec-
ognition using environment-specific substitution tables and structure-dependent
gap penalties. Journal of Molecular Biology. 2001;310:243–57.

	 46.	 Jones DT, Taylort WR, Thornton JM. A new approach to protein fold recogni-
tion. Nature. 1992;358:86–9.

	 47.	 Ho HK, Zhang L, Ramamohanarao K, Martin S. Protein supersecondary struc-
tures: A survey of machine learning methods for secondary and supersecondary protein
structure prediction.: Totowa, NJ: Humana Press; 2013:87–106.

	 48.	 Mandle AK, Jain P, Shrivastava SK. Protein structure prediction using support
vector machine. International Journal on Soft Computing. 2012;3:67.

	 49.	 Cai YD, Liu XJ, Biao Xu X, Zhou GP. Support vector machines for predicting
protein structural class. BMC Bioinformatics. 2001;2:3.

	 50.	 Wang S, Peng J, Ma J, Xu J. Protein secondary structure prediction using deep
convolutional neural fields. Scientific reports. 2016;6.

	 51.	 Hue M, Riffle M, Vert JP, Noble WS. Large-scale prediction of protein-protein
interactions from structures. BMC bioinformatics. 2010;11:1.

	 52.	 Cai YD, Liu XJ, Xu X, Chou KC. Prediction of protein structural classes by sup-
port vector machines. Computers & Chemistry. 2002;26:293–6.

	 53.	 Chen C, Zhou X, Tian Y, Zou X, Cai P. Predicting protein structural class with
pseudo-amino acid composition and support vector machine fusion network.
Analytical biochemistry. 2006;357:116–21.

	 54.	 Guo J, Chen H, Sun Z, Lin Y. A novel method for protein secondary structure
prediction using dual-layer SVM and profiles. Proteins: Structure, Function, and
Bioinformatics. 2004;54:738–43.

	 55.	 Li ZC, Zhou XB, Lin YR, Zou XY. Prediction of protein structure class by
coupling improved genetic algorithm and support vector machine. Amino Acids.
2008;35:581–90.

	 56.	 Anlauf JK, Biehl M. The Adatron: An adaptive perceptron algorithm. Europhysics
Letters. 1989;10:687.

	 57.	 Opper M. Learning times of neural networks: exact solution for a perceptron
algorithm. Physical Review A. 1988;38:3824.

	 58.	 Dianati M, Song I, Treiber M. An Introduction to Genetic Algorithms and
Evolution Strategies. tech. rep. University of Waterloo, Ontario, N2 L 3G1,
Canada; 2002.

	 59.	 Simon D. Evolutionary optimization algorithms Wiley 2013.
	 60.	 Shi Y, Eberhart RC. Empirical study of particle swarm optimization. In Proceed-

ings of the 1999 Congress on Evolutionary Computation. 3:1950–99.

http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17

Daniel et al

302 Evolutionary Bioinformatics 2016:12

	 61.	 Benala TR, Jampala SD, Villa H, Konathala B. A novel approach to image edge
enhancement using artificial bee colony optimization algorithm for hybridized
smoothening filters. In Nature & Biologically Inspired Computing: IEEE;2009:
1071–6.

	 62.	 Fraga LGL. Self-calibration from planes using differential evolution. In Progress
in Pattern Recognition, Image Analysis, Computer Vision, and Applications: 724–31
Springer 2009.

	 63.	 AlRashidi MR, El-Hawary ME. A survey of particle swarm optimization appli-
cations in electric power systems. IEEE Transactions on Evolutionary Computa-
tion. 2009;13:913–8.

	 64.	 Karaboga D. An idea based on honey bee swarm for numerical optimization.
tech. rep. Engineering Faculty, Computer Engineering Department 2005.

	 65.	 Storn R, Price K. Differential evolution: A simple and efficient adaptive scheme for
global optimization over continuous spaces; ICSI Berkeley; 3;1995.

	 66.	 Kennedy J, Eberhart RC. Particle swarm optimization. In Proceedings of IEEE
International Conference on Neural Networks; IEEE 1995;4:1942–8.

	 67.	 Parsopoulos KE, Vrahatis MN. Particle swarm optimization and intelligence:
Advances and applications. IGI Global; 2010.

	 68.	 Frieß TT, Harrison R. The Kernel-Adatron with bias unit: Analysis of the algo-
rithm. 1998.

	 69.	 Bacardit J, Krasnogor N. The ICOS PSP benchmarks repository. 2008. (http://
icos.cs.nott.ac.uk/datasets/psp benchmark.html).

	 70.	 Stout M, Bacardit J, Hirst JD, Krasnogor N. Prediction of recursive convex hull
class assignments for protein residues. Bioinformatics. 2008;24:916–23.

	 71.	 Ramanna S, Jain LC, Howlett RJ. Emerging paradigms in machine learning. Smart
Innovation, Systems and Technologies Springer Berlin Heidelberg 2012.

	 72.	 Liu H, Hussain F, Tan C L, Dash M. Discretization: An enabling technique.
Data mining and knowledge discovery. 2002;6:393–423.

	 73.	 Kinjo AR, Horimoto K, Nishikawa K. Predicting absolute contact numbers of
native protein structure from amino acid sequence. Proteins: Structure, Function,
and Bioinformatics. 2005;58:158–65.

	 74.	 Joachims T. Training linear SVMs in linear time. In Proceedings of the Conference
on Knowledge Discovery and Data Mining 2006.

	 75.	 Sanderson C. Armadillo: An open source C++ linear algebra library for fast pro-
totyping and computationally intensive experiments. tech. rep. 2010.

	 76.	 Joachims T. Making large scale SVM learning practical. In Advances in Kernel
Methods – Support Vector Learning MIT Press 1999.

	 77.	 Platt J. Sequential Minimal Optimization: A Fast Algorithm for Training Sup-
port Vector Machines. 1998.

	 78.	 Friedman M. The use of ranks to avoid the assumption of normality implicit
in the analysis of variance. Journal of the american statistical association.
1937;32:675–701.

	 79.	 Tukey JW. Comparing individual means in the analysis of variance. Biometrics.
1949:99–114.

http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17

