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Abdominal aortic aneurysm (AAA) is a common degenerative car-
diovascular disease whose pathobiology is not clearly understood.
The cellular heterogeneity and cell-type-specific gene regulation
of vascular cells in human AAA have not been well-characterized.
Here, we performed analysis of whole-genome sequencing data in
AAA patients versus controls with the aim of detecting disease-
associated variants that may affect gene regulation in human aor-
tic smooth muscle cells (AoSMC) and human aortic endothelial cells
(HAEC), two cell types of high relevance to AAA disease. To sup-
port this analysis, we generated H3K27ac HiChIP data for these cell
types and inferred cell-type-specific gene regulatory networks. We
observed that AAA-associated variants were most enriched in reg-
ulatory regions in AoSMC, compared with HAEC and CD4+ cells.
The cell-type-specific regulation defined by this HiChIP data sup-
ported the importance of ERG and the KLF family of transcription
factors in AAA disease. The analysis of regulatory elements that
contain noncoding variants and also are differentially open
between AAA patients and controls revealed the significance of
the interleukin-6-mediated signaling pathway. This finding was
further validated by including information from the deleterious-
ness effect of nonsynonymous single-nucleotide variants in AAA
patients and additional control data from the Medical Genome
Reference Bank dataset. These results shed important insights into
AAA pathogenesis and provide a model for cell-type-specific anal-
ysis of disease-associated variants.
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Abdominal aortic aneurysm (AAA) is a prevalent cardiovas-
cular disease and the tenth leading cause of death in West-

ern countries (1). It is defined as an irreversible dilation of the
infrarenal aorta to a diameter of 30 mm or more, increasing
more than 50% compared with its normal caliber (2). AAA is a
complex and severe disease affected by a combination of
genetic (3), environmental (4), and lifestyle factors (5). The
genetic factor in AAA is critical and the heritability has been
estimated to be over 70% (6, 7). Therefore, understanding the
genetic pathology of AAA will guide clinical decisions for ther-
apeutic intervention and provide mechanistic insights into the
genetic architecture and individual susceptibility to AAA.

Although several associations between AAA and single-
nucleotide polymorphisms (SNPs) have been reported, stan-
dard genome-wide association studies (GWAS) face challenges
to identify reliable and replicable risk loci due to the evident
mutational heterogeneity in AAA (8). Most recently, a genome-
wide association study in the Million Veteran Program (MVP)
tested over 18 million variants in Veterans of European ancestry
and identified 14 novel risk loci, bringing the total number of
known significant AAA loci to 24 (9). However, current knowl-
edge of its underlying genetics only explains a small fraction of

AAA heritability and remains insufficient to guide early detec-
tion and clinical management.

Integration of cell-type-specific regulatory information with
array-based GWAS data has shown that disease-associated var-
iants often pinpoint perturbed regulatory modules that are
highly specific to disease-relevant cell types or tissues (10). In
contrast to genotyping arrays which rely on linkage disequilib-
rium (LD) to provide coverage of the entire genome, WGS
data can efficiently capture rare variants and variants not in LD
with genotyped SNPs. Therefore, combining whole-genome
sequencing data with gene regulation data specific in AAA-
relevant cell types is a promising direction to improve the
understanding of AAA pathogenesis.

In order to infer gene regulatory networks in cell types rele-
vant to AAA, we performed H3K27ac HiChIP experiments in
aortic smooth muscle cells (AoSMC) and human aortic endo-
thelial cells (HAEC) and combined this new data with existing
gene expression and chromatin accessibility data. As a com-
parison, we also inferred CD4 T cell-specific gene regulatory
network using existing data. We subsequently applied the con-
structed networks to AAA GWAS and gene expression data to
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derive cell-type-specific inference. Dataset S1 provides a sum-
mary of the datasets used in this study. Our analysis revealed
high enrichment of AAA-associated variants in the regulatory
elements (REs) of the AoSMC network and the role of ERG
and the KLF family of transcription factors (TFs) in the differ-
ential expression of genes expressed in AAA. For the noncod-
ing variant analysis, we performed regional analysis to predict
the openness of REs based on the noncoding variants, from
which the REs with differential openness between AAA
patients and controls were detected and the target genes of
these REs were obtained through the HiChIP loops. The evi-
dence from noncoding variants is then combined with informa-
tion on gene mutation burden based on rare single-nucleotide
variants (SNVs) on coding regions (Fig. 1). A main finding of
this analysis implicates the interleukin (IL)-6 pathway as rele-
vant to AAA with strong statistical significance.

Results
Cell-Type-Specific Regulatory REs in HAEC and AoSMC. To charac-
terize the HiChIP-defined REs, we calculated the relationship
between the chromatin accessibility of REs and the expression
levels of their target genes. Based on the ATAC-seq (Assay for
Transposase Accessible Chromatin with high-throughput
sequencing) data from HAEC and AoSMC, we identified the
cell-type-specific REs in HAEC and AoSMC (see Materials and
Methods) and classified them into two categories: 1) open REs
which overlapped with at least one ATAC-seq peak (Open-
Loop) and 2) nonopen REs which did not overlap with any
ATAC-seq peaks (NonOpenLoop). Next, we evaluated the
expression of genes that had promoters linked to open REs,
nonopen Res, or not linked to REs (NoLoop) (Table 1). We
observed that the expression of genes whose promoters were
linked to open REs tended to be higher than those linked with

Fig. 1. Overall study design of AAA. First, we defined cell-type-specific REs from the HiChIP experiments. We initially focused on the noncoding variants
located in REs and performed region-based analysis, from which the REs with differential openness between AAA patients and controls were detected
and the target genes of these REs were obtained through the HiChIP loops. Next, we quantified the gene mutation burden based on rare SNVs in gene
coding regions. Additionally, we added MGRB data into the AAA analysis to increase statistical power. Through the above procedure, we successfully
identified that the IL-6 pathway is related to AAA with strong statistical significance.
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nonopen REs or not linked with REs. All P values of Wilcoxon
rank-sum one-sided test were less than 2e-16 in both HAEC
and AoSMC. We also noticed that the proportion of nonex-
pressed genes in the NonOpenLoop category was much higher
in AoSMC than in HAEC (76% vs. 54%) (Dataset S2). To
investigate this further, we collected 16,512 putative silencers in
human blood vessel from SilencerDB (11). We detected the
proportion of genes whose REs overlapped with silencers
(directly) or linked with silencers by HiChIP loops (indirectly)
(Dataset S2). Consistent with the fact that silencers are active
REs and many of them reside in the open chromatin regions
(12), we observed that the percentage of genes regulated by
silencers was higher in the OpenLoop category compared to
the NonOpenLoop category in both cell types. Moreover, the
proportion of genes in the NonOpenLoop category regulated
by silencers was much higher in AoSMC than in HAEC (34%
vs. 23%) with Fisher’s exact test P value = 6e-12, which may
explain in part the higher proportion of nonexpressed genes
in AoSMC.

AAA-Associated Variants Are the Most Enriched in Regulatory
Regions in AoSMC. To test whether the REs defined from
HiChIP data were enriched for genetic associations with AAA,
we performed RSS-NET network enrichment analysis (12)
based on the summary-level association data from the MVP
AAA discovery analysis which contained ∼18 million variants
from 7,642 AAA patients and 172,172 controls (9). RSS-NET is
a Bayesian framework that integrates GWAS summary statistics
with cell-type-specific regulatory networks to infer network
enrichment. RSS-NET summarizes the network enrichment
strength as a Bayes factor (BF). A large BF value indicates
strong enrichment of genetic associations in a given network.
We assessed enrichment of genetic associations with AAA in
five HiChIP-based RE-target gene (TG) networks and one
near-gene control network (see Materials and Methods). All five
HiChIP networks were more enriched for genetic associations
with AAA than the near-gene control network (Table 2), of
which AoSMC HiChIP was the most enriched network for
genetic associations with AAA (i.e., the largest BF value). The
top ranked genes defined by RSS-NET in each network are
shown in Dataset S3. The observed enrichment patterns were
consistent across three enrichment models (M11, M12, and
M1), validating the importance of cell-type-specific networks in
genetic analysis of AAA.

Implication of the KLF and ERG Regulators in the Down-Regulation
of Genes in AAA. We utilized data from Biros et al. (13), which
included 1,178 differentially expressed genes between AAA
patients and healthy controls, of which 941 were down-
regulated and 237 were up-regulated in AAA compared with
controls. From HiChIP H3K27ac loops in HAEC and AoSMC
we derived REs regulating differentially expressed genes and
then intersected these with ATAC-seq peaks to obtain open
REs of differentially expressed genes. We performed motif

enrichment based on these REs with Homer (v4.11) (14).
Motifs of the KLF family are enriched in open REs of
AAA down-regulated genes in HAEC (fold change [FC] = 1.7,
P = 1e-20, ranking = fifth among all motifs) and AoSMC
(FC = 1.4, P = 1e-16, ranking = 10th). Moreover, we derived
the target genes of the KLF family in CD4+ primary Tcells pre-
dicted by the PECA (15) model, which inferred gene regulatory
interactions using paired expression and accessibility data
across diverse cellular contexts. Based on the REs identified
this way in CD4+ Tcells, we found that target genes of the KLF
family were enriched in up-regulated genes in AAA with a
P value less than 2e-16. Our result is consistent with the previ-
ous findings that KLF family members are involved in AAA
formation (16–18) and further suggest that their roles may be
different in AoSMC and HAEC as compared to CD4+ Tcells.

In HAEC, the ERG motif is enriched in open REs of
down-regulated genes in AAA patients (FC = 2.5, P = 1e-96,
ranking = second). A known risk locus associated with AAA,
the SNP rs2836411, is located within an intron of gene ERG (3,
9). Expression of ERG and rs2836411 were shown to be associ-
ated in an independent expression quantitative trait loci dataset
derived from mammary artery tissue (19). The ERG gene enco-
des a transcriptional regulator protein which is normally pre-
sent in hematopoietic and endothelial cells. Moreover, ERG
plays a role in VEGF (vascular endothelial growth factor)-
mediated vascular development and endothelial cell activation
(20). Therefore, ERG may influence the development of AAA
as a key mediator of vascular angiogenesis and inflammation.
Our analysis not only corroborates these prior results but also
provides insight into the target genes of these important regula-
tors in a cell-type-specific manner. Interestingly, ERG had been
shown to interact physically with KLF factors to regulate the
VEGF receptor in vascular development in Xenopus (21).

Identification of the IL-6 Pathway by Comparison of REs with
Altered Openness between AAA and Controls. To analyze the
effect of noncoding rare variants between AAA patients and
controls we applied the method OpenCausal (22) to interpret
noncoding variants from whole-genome sequencing data in
AAA and controls. OpenCausal attempts to interpret noncod-
ing variants by using personal genomic sequences and reference
context-specific expression profiles, which may reflect the change
of chromatin accessibility caused by a variant. First, we used the
variants located in the REs as the input to OpenCausal. Here,
the variants were from whole-genome sequencing data of 268
AAA patients and 133 healthy controls (23), and the REs con-
sisted of 1) HiChIP H3K27ac REs of AoSMC, HAEC, and
CD4+ naıve T cells and 2) promoters which were defined as 2
kbp upstream of TSS.

For a given RE, we checked if the alteration of its openness
was enriched in AAA individuals using the following approach.
For 268 AAA patients and 133 healthy controls, we applied
PLINK 1.9 (24) to obtain the frequency for each allele. Using
the major allele for each variant, we constructed the genome of
a “baseline individual.” For each RE, we used OpenCausal to
obtain an openness score for each individual AAA patient and
control, as well as for the baseline individual. We counted the

Table 1. Quantile expression of genes whose promoters are linked
with open REs, nonopen Res, or not linked with HiChIP REs

Quantile expression (FPKM)

Cell type Openness
No. of
genes 5% 10% 25% 50% 75% 90% 95%

AoSMC OpenLoop 8,693 0 0 0.17 5.36 17.61 47.03 90.74
NonOpenLoop 1,280 0 0 0 0 0 10.95 26.05
NoLoop 16,040 0 0 0 0.01 2.75 14.43 28.37

HAEC OpenLoop 7,577 0 0 0.24 7.47 22.44 54.08 96.98
NonOpenLoop 1,679 0 0 0 0 9.54 29.87 57.91
NoLoop 16,617 0 0 0 0 3.09 17.02 30.28

Table 2. RSS-NET network enrichment

Networks BF(M11:M0) BF(M12:M0) BF(M1:M0)

AoSMC_HiChIP_open 734.58 628.33 632.17
HAEC_HiChIP_open 214.81 188.39 187.84
AoSMC_HiChIP 1,704.83 1420.74 1,443.30
HAEC_HiChIP 53.38 47.23 46.97
CD4+ T_HiChIP 4.63 4.46 4.34
Near-gene 1.87 1.78 1.76
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number of individuals whose openness score for the RE was
different from that of the baseline individual (nonbaseline
openness) and applied Fisher’s exact test to measure if the indi-
viduals with nonbaseline openness for this RE were signifi-
cantly more enriched in AAA patients than in controls. For a
given RE, we also compared the openness score between 1)
AAA patients with nonbaseline openness and 2) healthy con-
trols with nonbaseline openness. We performed a Wilcoxon
rank-sum test to detect if the openness score follows the same
distribution in these two groups. We then used Fisher’s method
to combine these two P values and to measure the statistical
significance for altered accessibility of this RE in AAA patients.
We repeated the above procedure for each RE. We linked
these REs with target genes based on the information on
RE–promoter interaction provided by the HiChIP data. As the
alteration of one gene does not necessarily require all of its
REs to be differentially open, we collected the top five REs
with highest differential open scores for those genes regulated
by multiple REs and then combined the effect of these REs
using Fisher’s method. Cell-type-specific analysis was per-
formed separately in AoSMC, HAEC, and CD4+ Tcells, result-
ing in 232, 230, and 505 genes, respectively, with false discovery
rate (FDR) <0.01 (control of FDR is based on the Benjamini–
Hochberg [BH] procedure).

We performed Gene Ontology (GO) enrichment on these
target genes of differential open REs using the ToppGene Suite
(25). In AoSMC, the negative regulation of IL-6-mediated sig-
naling pathway, regulation of IL-6-mediated signaling pathway,
and IL-6-mediated signaling pathway were ranked among the
top pathways (Table 3). In the IL-6-mediated signaling path-
way, five genes (IL6ST, SOCS3, MIR99A, MIRLET7C, and
MIR125B2) were the targets of nonbaseline open REs (i.e., RE
with nonbaseline openness). SOCS3 was detected to be signifi-
cantly up-regulated in AAA patients in bulk RNA-sequencing
(RNA-seq) data (13) and also up-regulated in the smooth mus-
cle cell cluster from single-cell RNA-seq in AAA patients com-
pared with control samples (26). In the negative regulation of
IL-6-mediated signaling pathway, three microRNAs (miRNAs)
(MIRLET7C, MIR99A, and MIR125B2) were the targets of
nonbaseline open REs. Araujo et al. identified differentially
expressed miRNAs by PCR array (27) and observed that all of
MIRLET7C, MIR99A, and MIR125B2 were significantly down-
regulated in AAA patients compared to controls (P = 2e-3,
5e-3, and 3e-2 for MIRLET7C, MIR125B2, and MIR99A,
respectively). Wanhainen et al. analyzed the expression of the

172 most commonly expressed miRNAs in plasma by real-time
PCR from 169 AAA patients and 48 age-matched controls (28)
and found MIR99A was significantly down-regulated in AAA
patients (FDR q-value = 8e-6). Aortic expression of MIR-
LET7C was significantly down-regulated (P < 0.05) in a murine
model of AAA (29). These observations are consistent with our
finding that these miRNAs are linked more often to nonbase-
line open REs in AAA patients. The GO enrichment results on
target genes of differential open REs in HAEC and CD4+ T
cells are shown in Dataset S4.

In addition to IL-6 related pathways, we found that IL1B
was linked more often to nonbaseline open REs in AAA
patients compared with healthy controls in AoSMC (adjusted
P = 2e-4). IL1B has previously been found to be up-regulated
in AAA patients by RNA-seq (adjusted P = 2e-3) (13) and
quantitative PCR (P < 0.05) (26). These findings contribute
to understanding the regulatory mechanisms of IL1B in AAA
pathogenesis.

Significance of the IL-6 Pathway Is Retained after Inclusion of Cod-
ing Variants. After analyzing the effect of noncoding variants on
AAA disease, we quantified the gene mutation burden based
on the rare SNVs in protein-coding regions. To predict the
deleteriousness of each nonsynonymous SNV, we applied a
strategy similar to that in Li et al. (23), which was based on the
average performance of three algorithms, VEST3 (30, 31),
MetaLR (32), and M-CAP (33). We averaged the prediction
scores to assess the deleteriousness of each nonsynonymous
SNV for 17,443 protein-coding genes. For each of the 268
AAA patients and 133 controls, we repeated the above proce-
dure and then obtained the deleteriousness scores for genes
with a 17,443 × 401 matrix (see Materials and Methods).

For each gene, we performed a one-tailed t test to measure
if the deleteriousness scores for each gene were significantly
higher in AAA patients than in nonaneurysmal controls. We
counted the number of genes with t test P ≤ 0.05 and the num-
ber of protein-coding genes in a GO term and then calculated
the P value based on the Poisson distribution. For each GO
term, we obtained two P values, one from the noncoding var-
iants and the other from coding variants. We combined these
two P values with Fisher’s method and ranked the GO terms
based on the significance. In AoSMC, the IL-6-mediated sig-
naling pathway, regulation of IL-6-mediated signaling pathway,
and negative regulation of IL-6-mediated signaling pathway
were ranked among the top pathways (Table 4). We detected

Table 3. GO enrichment of the target genes of the REs with differential openness in AoSMC

GO ID GO term Fold enrichment P value q-value Bonferroni q-value FDR BH

GO:0010634 Positive regulation of epithelial cell migration 6.08 2.47E-08 8.77E-05 8.77E-05
GO:0045766 Positive regulation of angiogenesis 4.83 2.65E-07 9.40E-04 4.70E-04
GO:0045655 Regulation of monocyte differentiation 26.91 5.45E-07 1.93E-03 6.44E-04
GO:0070104 Negative regulation of IL-6-mediated signaling pathway 43.06 1.80E-06 6.39E-03 1.14E-03
GO:0048146 Positive regulation of fibroblast proliferation 9.13 1.83E-06 6.50E-03 1.14E-03
GO:0045638 Negative regulation of myeloid cell differentiation 7.10 1.93E-06 6.83E-03 1.14E-03
GO:0070103 Regulation of IL-6-mediated signaling pathway 34.45 3.60E-06 1.28E-02 1.53E-03
GO:0034763 Negative regulation of transmembrane transport 5.35 3.97E-06 1.41E-02 1.53E-03
GO:0070102 IL-6-mediated signaling pathway 16.56 4.27E-06 1.51E-02 1.53E-03
GO:0038034 Signal transduction in absence of ligand 7.83 4.74E-06 1.68E-02 1.53E-03
GO:0097192 Extrinsic apoptotic signaling pathway in absence of ligand 7.83 4.74E-06 1.68E-02 1.53E-03
GO:0002762 Negative regulation of myeloid leukocyte differentiation 10.34 5.34E-06 1.89E-02 1.58E-03
GO:0007219 Notch signaling pathway 4.33 6.85E-06 2.43E-02 1.84E-03
GO:0030857 Negative regulation of epithelial cell differentiation 9.75 7.27E-06 2.58E-02 1.84E-03
GO:1903707 Negative regulation of hemopoiesis 4.76 9.76E-06 3.46E-02 2.31E-03
GO:0010595 Positive regulation of endothelial cell migration 5.43 1.25E-05 4.44E-02 2.70E-03
GO:0030224 Monocyte differentiation 12.67 1.37E-05 4.87E-02 2.70E-03
GO:1903131 Mononuclear cell differentiation 12.67 1.37E-05 4.87E-02 2.70E-03
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STAT1, GFI1, and PTPN11 in the IL-6 pathway with P value
less than 0.05 from the coding region analysis. Moreover,
PTPN11 was significantly down-regulated in AAA patients
compared with healthy controls.

The Use of a Larger Sample of Control Individuals Led to a Further
Increase in the Significance of the IL-6 Pathway. The statistical
power was limited by the small sample size of our WGS data
for healthy controls. To alleviate this problem, we added data
from the Medical Genome Reference Bank (MGRB) into our
analysis. The MGRB is a large-scale comprehensive whole-
genome dataset of confirmed healthy elderly individuals (34).
Our AAA subjects were of European ancestry (> 90%) and the
MGRB cohorts were non-Finnish European (∼97%). Here, we
randomly selected 500 samples (Dataset S5) from the first
release of the MGRB healthy elderly cohort, which contained
2,572 samples. We maintained the sex ratio of these 500 sam-
ples with that of our 268 AAA patients. We removed variants
which appeared only in the MGRB samples but not in the
AAA dataset. We then performed OpenCausal analysis with
the 268 AAA patients, substituting the 500 MGRB samples for
our original 133 controls. Similar to the previous noncoding
region analysis, for each RE we obtained an openness score for
each AAA and control individual, as well as for the reference
genome. We counted the number of individuals whose open-
ness score for the RE was different from that of the reference
genome and then performed Fisher’s exact test and Wilcoxon
rank-sum test. We used Fisher’s method to combine these two
P values and to measure the statistical significance for altered
accessibility of an RE in AAA patients. We then linked these
REs with target genes based on the AoSMC HiChIP data. Sim-
ilarly, we collected five REs with the highest differential open
scores for those genes regulated by multiple REs and then
combined the effect of these REs using Fisher’s method,
obtaining 4,238 genes with FDR <0.01 in AoSMC. We over-
lapped these 4,238 genes with 232 genes identified by the origi-
nal AAA dataset (268 AAA patients and 133 controls) and
obtained 213 shared genes. Again, we performed GO enrich-
ment on the 213 genes (Table 5) and found that the negative
regulation of IL-6-mediated signaling pathway and regulation
of IL-6-mediated signaling pathway were ranked among the
top pathways with FDR <0.001. These results demonstrated
that the use of a larger number of control individuals from

MGRB could further increase the statistical significance of the
IL-6 pathway in AAA disease.

Discussion
Despite the high heritability estimated for AAA, GWAS studies
have identified only a few significant loci (P < 5e-8). In an
effort to further interpret the development and pathobiology of
AAA disease, we integrated functional analysis of a set of SNPs
in noncoding gene regulatory regions and gene coding regions
by implementing cell-type-specific REs from HiChIP experi-
ments with whole-genome sequence data. We first evaluated
the HiChIP REs by measuring the consistency between their
chromatin accessibility and the expression levels of their target
genes. Next, we investigated these cell-type-specific REs at the
network level based on the GWAS summary statistics, identify-
ing AoSMC as the most relevant cell type for AAA. Finally, we
showed that gene regulatory relations inferred from HiChIP
data can be leveraged to 1) compare noncoding variants
between AAA patients and healthy controls and 2) identify reg-
ulators relevant to differential gene expression between AAA
patients and controls. These analyses highlighted the IL-6 path-
way, ERG, and KLF as key regulators of AAA pathobiology.
Although these pathways have been previously suggested to be
relevant to AAA in experimental biology studies, they have not
been implicated statistically in genetic studies of a large number
of AAA patients and controls. Leveraging new data on the
gene regulatory networks in AoSMC and HAEC, we hereby
provide such statistical evidence based on the WGS data on
268 AAA individuals and various types of controls. Importantly,
our analysis provides useful information on how genetic var-
iants on cell-type-specific regulatory regions may impact the
genes involved in the IL-6 pathway, ERG, and KLF regulation.

In terms of methodology, our approach differs from previous
GWAS studies in its integration of reference data on cell-type-
specific gene regulatory information with predicted accessibility
changes due to sequence variants in personal genome data to
identify disease-relevant REs, genes, and pathways. Some of
the reference data in AAA-relevant cell types were generated
in this study. For a complex trait other than AAA or one with
limited prior knowledge, the reference high-resolution chroma-
tin interaction data for a broad range of candidate cell types is
needed to identify the most relevant cell type. With several
large-scale ongoing efforts to generate genome-wide chromatin

Table 4. The combined enrichment analysis of noncoding and coding variants in AoSMC

GO ID GO term Fold enrichment P value q-value FDR

GO:0010634 Positive regulation of epithelial cell migration 1.84 5.84E-08 1.52E-04
GO:0071706 Tumor necrosis factor superfamily cytokine production 1.78 1.29E-06 1.67E-03
GO:0045655 Regulation of monocyte differentiation 4.87 2.25E-06 1.95E-03
GO:0014009 Glial cell proliferation 3.10 3.62E-06 2.26E-03
GO:0070102 IL-6-mediated signaling pathway 4.06 4.87E-06 2.26E-03
GO:0048661 Positive regulation of smooth muscle cell proliferation 2.01 5.40E-06 2.26E-03
GO:0048146 Positive regulation of fibroblast proliferation 2.43 6.09E-06 2.26E-03
GO:0008361 Regulation of cell size 1.77 7.36E-06 2.35E-03
GO:0009612 Response to mechanical stimulus 1.85 8.18E-06 2.35E-03
GO:0042692 Muscle cell development 1.45 9.45E-06 2.35E-03
GO:0070103 Regulation of IL-6-mediated signaling pathway 5.41 9.96E-06 2.35E-03
GO:0034763 Negative regulation of transmembrane transport 1.63 1.21E-05 2.60E-03
GO:1901888 Regulation of cell junction assembly 1.70 1.30E-05 2.60E-03
GO:1903557 Positive regulation of tumor necrosis factor superfamily cytokine production 2.43 1.55E-05 2.87E-03
GO:0030857 Negative regulation of epithelial cell differentiation 2.23 1.81E-05 3.14E-03
GO:0045638 Negative regulation of myeloid cell differentiation 1.14 2.38E-05 3.51E-03
GO:0038034 Signal transduction in absence of ligand 1.83 2.46E-05 3.51E-03
GO:1902107 Positive regulation of leukocyte differentiation 1.51 2.53E-05 3.51E-03
GO:0070104 Negative regulation of IL-6-mediated signaling pathway 5.21 2.57E-05 3.51E-03
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interaction data [e.g., the ENCODE project (35) and the 4D
Nucleosome project (36)], we expect that the interaction data
based on Hi-C, HiChIP, ChIA-PET (37), and/or promoter cap-
ture Hi-C (38) for a wider range of cell types will become avail-
able in the near future. At that time our method can be
extended to handle these more complex traits.

One limitation of the current study is that there are only 268
AAA subjects with WGS data. We note the insufficient sample
size and make an effort to include a larger set of control sam-
ples. We expect that as more WGS data become available for
AAA our methodology will be able to generate a more compre-
hensive understanding of the role of regulatory variants in the
genetics of AAA and highlight potentially novel mechanisms of
AAA pathobiology. Moreover, it is challenging but worthwhile
to comprehensively incorporate the altered TF expression
caused by genetic variants into OpenCausal, which is a direc-
tion that we plan to pursue in the near future.

In summary, this study provides an avenue to decipher
underlying mechanisms of disease by combining WGS data
with gene regulatory relationships in relevant cell types. Our
results implicate the IL-6 pathway, ERG, and KLF in the regu-
lation of AAA biology with strong statistical significance, fur-
thering the understanding of AAA pathogenesis as well as
identifying potential therapeutic targets.

Materials and Methods
Cell Culture. HAEC (catalog no. CC-2535) and human AoSMC (catalog no. CC-
2571) were obtained from Lonza. The HAEC were grown in endothelial
growth medium (EGM medium), which is formulated by mixing the contents
of the EGM SingleQuots kit (Lonza catalog no. CC-4133 containing bovine
brain extract [BBE], ascorbic acid, hydrocortisone, epidermal growth factor
[hEGF], fetal bovine serum [FBS], and gentamicin/amphotericin-B [GA] with
EBM basal medium (Lonza catalog no. CC-3121). AoSMC were grown in
SmGM-2 BulletKit (Lonza catalog no. CC-3182). The following growth supple-
ments are added to a 500-mL bottle of smooth muscle cell basal medium:
hEGF, 0.5 mL; insulin, 0.5 mL; hFGF-B, 1 mL; FBS, 25 mL; GA-1000, 0.5 mL. Both
cell types were cultured at 37 °C in 5% CO2. For cell culture expansion, trypsin/
EDTA (ethylenediaminetetraacetic acid) was used for detachment of cells.
Cells between passage 5 and 7 were used for the following HiChIP
experiments.

HiChIP. We followed the HiChIP protocol published by Mumbach et al. (39,
40), using antibody to H3K27ac (Abcam, ab4729) with the following modifica-
tions. The cells were disassociated with 0.25% trypsin/EDTA and washed with
1× phosphate-buffered saline. Approximately 5 million HAEC or AoSMC were

cross-linked with freshly prepared 1% formaldehyde and quenched with a
final concentration of 125 mM glycine. For each cell line, we used ∼15 million
cells (three tubes) for HiChIP. The pellet was resuspended in 500 μL of ice-cold
Hi-C Lysis buffer. After digestion with 25 U (5 μL of 5U/μL) MboI restriction
enzyme (NEB, R0147) and ligation, the nuclear pellet was brought up to 880
μL of nuclear lysis buffer. Samples were sheared using a Covaris E220 using the
following parameters: fill level = 10, duty cycle = 5, PIP = 140, cycles/burst =
200, time = 4 min, then clarified by centrifugation for 15 min at 16,100 rcf at
4 °C. The samples were precleared with 30 μL of Dynabeads Protein A (Thermo
Fisher, 10001D) at 4 °C for 1 h. We then added 3.75 μg of H3K27ac antibody to
the samples and incubated overnight at 4 °C. Chromatin–antibody complexes
were subsequently captured with 30 μL of Dynabeads Protein A. Approxi-
mately 2 to 9 ng of ChIP DNA was obtained following Qubit quantification.
The amount of Tn5 used and number of PCR cycles performed were based on
the post-ChIP Qubit amounts, as described previously in the HiChIP protocol.
The library was sequenced on Illumina HiSEq. 4000 with 75-bp paired-end
reads. The H3K27ac HiChIP of naïve T primary cell (CD4+) was downloaded
from Gene Expression Omnibus (GEO) with accession no. GSE101498.

We processed the raw FASTQ files of HiChIP with HiC-Pro (41) using refer-
ence genome GRCh37/hg19. Then, hichipper (42) was employed to perform
bias-corrected peak calling (i.e., anchors) and library quality control. We fur-
ther applied FitHiChiP (43) to perform DNA loop calling (i.e., identification of
significant contacts), where we used the bias-corrected peaks defined from
hichipper as input, set the length of fixed-size genomic windows/bins as 5 kb,
and selected the stringent model for inferring the background model. Finally,
the loops with a q-value less than 0.01 were obtained for HiChIP analysis. For
the noncoding variant region-based analysis, we further split the REs into 1 kb
in length based on the OpenCausal setting.

RNA-seq and ATAC-seq. RNA-seq data of human aortic smooth muscle cells
was downloaded from GEO using accession no. GSE78528, of which the gene
FPKM (fragments per kilobase of exon model per million mapped reads)
expression was used for AoSMC analysis (35). Human thoracic aorta endothe-
lial cell RNA-seq data were from downloaded from GEO using accession no.
GSE78613, of which the gene FPKM expression was used for HAEC analysis
(35). The RNA-seq data of CD4+, alpha-beta T cell was from ENCODE with ID
ENCSR545MEZ, of which the gene FPKM expression was used for CD4+ T cell
analysis (44). If a gene was not represented in the RNA-seq data, it could be
due to the fact that it is not expressed, or it is expressed but is not detected
because of the limited sample size. For our analysis, we assumed its expression
to be zero (Table 1). The ATAC-seq data of human aortic endothelial cell was
downloaded from GEO using accession GSM3067767, of which the ATAC
peaks were used for HAEC analysis (45). The ATAC-seq data of human coro-
nary artery smooth muscle cells was downloaded from GEO using accession
no. GSM1876025, of which the ATAC peaks were used for AoSMC analy-
sis (46).

Whole-Genome Sequencing Data. High-coverage (average 50×) short-read
WGS data were obtained from 268 AAA patients and 133 controls from VA

Table 5. GO enrichment on overlapped genes in AoSMC

GO ID GO term Fold enrichment P value q-value Bonferroni q-value FDR

GO:0010634 Positive regulation of epithelial cell migration 6.04 4.42E-08 1.28E-04 1.28E-04
GO:0045655 Regulation of monocyte differentiation 29.34 2.43E-07 7.02E-04 3.51E-04
GO:0045638 Negative regulation of myeloid cell differentiation 7.74 5.64E-07 1.63E-03 4.44E-04
GO:0048146 Positive regulation of fibroblast proliferation 9.96 6.15E-07 1.78E-03 4.44E-04
GO:0070104 Negative regulation of IL-6-mediated signaling pathway 46.95 9.43E-07 2.72E-03 5.45E-04
GO:0070103 Regulation of IL-6-mediated signaling pathway 37.56 1.89E-06 5.45E-03 8.60E-04
GO:0002762 Negative regulation of myeloid leukocyte differentiation 11.27 2.08E-06 6.02E-03 8.60E-04
GO:1903707 Negative regulation of hemopoiesis 5.18 2.58E-06 7.47E-03 9.33E-04
GO:0002761 Regulation of myeloid leukocyte differentiation 5.73 4.70E-06 1.36E-02 1.51E-03
GO:1903131 Mononuclear cell differentiation 13.81 6.23E-06 1.80E-02 1.64E-03
GO:0030224 Monocyte differentiation 13.81 6.23E-06 1.80E-02 1.64E-03
GO:0070228 Regulation of lymphocyte apoptotic process 8.80 7.79E-06 2.25E-02 1.88E-03
GO:0048145 Regulation of fibroblast proliferation 6.20 1.17E-05 3.37E-02 2.50E-03
GO:1902106 Negative regulation of leukocyte differentiation 6.14 1.23E-05 3.57E-02 2.50E-03
GO:0002902 Regulation of B cell apoptotic process 20.87 1.32E-05 3.82E-02 2.50E-03
GO:0048144 Fibroblast proliferation 6.03 1.38E-05 4.00E-02 2.50E-03
GO:0045656 Negative regulation of monocyte differentiation 46.95 2.45E-05 7.09E-02 4.17E-03
GO:0070227 Lymphocyte apoptotic process 6.79 3.11E-05 8.98E-02 4.99E-03
GO:0003151 Outflow tract morphogenesis 6.71 3.31E-05 9.57E-02 5.04E-03
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Palo Alto Health Care System, Stanford University, and Kaiser Permanente as
previously described (23).

RSS-NET Network Enrichment. Given a HiChIP-based RE-TG network, wemodi-
fied our previously developed genetic effect size distribution (12, 47) as
follows:

bj ∼ pj Nð0, r2j Þ þ ð1� pjÞ d0,
pj ¼ h0 þ ajh,

r2j ¼ r20 þ ajr2,

where bj denotes the true genetic effect of SNP j, aj ¼ 1 if SNP j is within ±50
kb of any RE or TG in the given network and 0 otherwise. For the near-gene
control network, aj ¼ 1 if SNP j is within ±50 kb of any protein-coding gene.
Following our previous work (12), we placed grid-based priors on the hyper-
parameters θ0, θ, σ02, and σ2 and estimated them from data.

We combined the genetic effect size distribution above with a multiple
regression likelihood based on GWAS summary statistics (47). We fitted the
resulting Bayesian hierarchical model on the published European-ancestry
GWAS (9) summary statistics of 1,216,709 genome-wide autosomal SNPs
(minor allele frequency >1%), using an efficient variational inference algo-
rithm (48).

For each network (either the context-specific RE-TG or the near-gene con-
trol), we summarized the enrichment strength as BF comparing the estimated
marginal likelihood of an enrichment model against the estimated marginal
likelihood of a baseline model (M0 : h¼ 0 and r2 ¼ 0). In this study we consid-
ered three enrichment models (M1 : h > 0 or r2 > 0; M11 : h > 0 and r2 ¼ 0;
M12 : h > 0 and r2 > 0).

The software implementing this method is freely available at https://
github.com/SUwonglab/rss-net (12).

Quantification of Gene Mutation Burden. To predict the deleteriousness effect
of each nonsynonymous SNV, we applied a similar strategy to Li et al. (23),
which was based on the average performance of three algorithms [VEST3 (30,
31), MetaLR (32), andM-CAP (33)].We averaged the prediction scores to assess
the deleteriousness of each nonsynonymous SNV. Then, for each protein-
coding gene we calculated the cumulative effects of nonsynonymous SNVs for
each of 17,443 protein-coding genes. In detail, for gene i in sample m, we
defined its mutation burden g as

gim ¼ ∑
nim

j¼1
sijm,

where sijm is the average deleteriousness score for SNV j in samplem and nim is
the count of rare nonsynonymous SNVs on gene i in sample m. For 268 AAA
patients and 133 controls, we repeated the above procedure and then
obtained the deleteriousness scores for genes with a 17,443 × 401matrix.

Data Availability. All raw and processed HiChiP data of AoSMC and HAEC
from this study have been deposited in the NCBI Gene Expression Omnibus
(GEO; https://www.ncbi.nlm.nih.gov/geo/) with accession no. GSE178598.
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