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ABSTRACT

WebProAnalyst is a web-accessible analysis tool
(http://wwwmgs.bionet.nsc.ru/mgs/programs/panalyst/)
designed for scanning quantitative structure–activ-
ity relationships in protein families. The tool allows
users to search correlations between protein activ-
ity and physicochemical characteristics (i.e. hydro-
phobicity or alpha-helical amphipathicity) in queried
sequences. WebProAnalyst uses aligned amino acid
sequences and data on protein activity (pK, Km,
ED50, among others). WebProAnalyst implements
methods of the known ProAnalyst package, includ-
ing the multiple linear regression analysis and the
sequence–activity correlation coefficient. In addition,
WebProAnalyst incorporates a method based on
neural networks. The WebProAnalyst reports a list
of sites in protein family, the regression analysis
parameters (including correlation values) for the rela-
tionships between the amino acid physicochemical
characteristics in the site and the protein activity
values. WebProAnalyst is useful in search of the
amino acid residues that are important for protein
function/activity. Furthermore, WebProAnalyst may
be helpful in designing the protein-engineering
experiments.

INTRODUCTION

When doing studies in functional genomics, there looms the
problem of how the molecular structure of a protein relates to
its biological effects (1). In fact, the presence of a small num-
ber of functionally important residues is the hallmark feature
of the biological activity of a protein. The physicochemical,
evolutionary and/or structural characteristics of the residues

may suffice to describe the variations in the activities of
proteins in homologous groups.

One way to predict functionally important residues is the
identification of conserved residues in protein groups and their
related functional specificity and/or evolutionary trace (2,3).
The idea is to identify the columns in the multiple alignment in
which the amino acid distribution is closely associated with the
grouping by protein specificity. The SDPpred program has
proved to be useful in this respect by ensuring the identifica-
tion of residues that account for protein specificity (4).

Another way to rank protein/peptide residues by functional
importance relies on the quantitative analysis of the structure/
sequence–activity relationships. For this purpose, the statistical
models (multiple linear regression analysis, neural networks,
projections to latent structures) are advantageous because they
relate protein activity to variables that describe protein site
properties, e.g. alpha-helicity, hydrophobicity/hydrophilicity,
charge, among others (5–7).

The ProAnalyst methods have been elaborated for the
analysis of quantitative data on protein activities (8–10).
The ProAnalyst program provides automated generation and
verification of the hypotheses on quantitative relationships
between the physicochemical characteristics in the regions
of aligned protein sequences and their activities. ProAnalyst
is multipurpose: it queries for a region, whose substitutions
are correlated with variations in the activities of a set of
homologous proteins, the so-called activity-modulating sites;
it searches for the key physicochemical characteristics that
affect the changes in the activities; and it enables the building
of multiple linear regression models that relate these charac-
teristics to protein activities. ProAnalyst is provided with a
DOS/Windows interface. WebProAnalyst incorporates the
major ProAnalyst methods and ensures their access through
a web interface. Users can also have recourse to the neural
networks method. An advantage of WebProAnalyst is that it
enables users to interpret the differences in protein activities
in the broad terms of physicochemical properties of the
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activity-modulating centres, to predict protein activities and
also to redesign proteins with addressed modified activities.

We queried an exemplary protein family and a set of
mutant peptides to demonstrate how WebProAnalyst works.
The issue of how the genotype (the structure of M2 proteins)
and the phenotype (drug resistance and susceptibility) of a
virus may be related was considered for influenza A viruses.
A linear dependence between antimicrobial activity and
peptide amphipathicity was established for a set of mutant
histatin analogues.

MATERIALS AND METHODS

Sequence–activity correlation coefficient

Wedeveloped the sequence–activity correlation/determination
coefficient (SACC/SADC) as a guide in our search for the
functionally important positions in a multiple alignment of
homologous proteins. The method has been described in detail
preivously (8). Briefly, the SADC may be defined as the pro-
portion of the variation in the protein activities explicable by
amino acid substitutions at positions of a multiple alignment.
The SACC is calculated as the square root of the SADC and
expresses the strongest multiple correlation between the physi-
cochemical characteristics of a site in a multiple alignment and
the protein activities. We proceeded on the statistical proced-
ure of regression analysis applied to the data of repeated
experiments in which independent variables have the same
value, while the dependent may assume different values.
We set out by applying the max R2, the coefficient introduced
by Draper and Smith (11) for calculating the maximally attain-
able correlation for the repeated experiments. In our case,
proteins having matching values of characteristics at a site
(the independent variables) are treated as repeated experi-
ments for measuring the protein activities (the dependent vari-
able). Let us now turn to repeated experiments in terms of
alphabetical analysis of the amino acid sequences. Let the site
be given by an amino acid sequence perceived as a ‘word’ in
an alphabet. The grouping of proteins in such a way that the
words in each group are the same yields a set of repeated
experiments. All the proteins referred to a group will become
the repeated experiments performed for measuring protein
activities. Let the proteins be assigned to m groups by the
matches between amino acids at a site in a multiple alignment.
Thus, the maximum attainable correlation between the pro-
tein activities and a set of all the possible combinations of
amino acid characteristics of a given site is derived from the
max R2 (8)
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where ni is the number of proteins of the i-th group, Yij is the
protein activity value of the j-th protein of the i-th group, �YYi
stands for the mean value of the protein activity of the i-th
group and �YY for the total mean value of the activity for the
whole protein set. In fact, if the sites of two proteins have the
same amino acid sequences, all the physicochemical charac-
teristics would assume the same values. This means that the
variation in activity within a group resulting from protein

grouping by site matching cannot be reduced further by
additionally involving any set of physicochemical properties
of the amino acids at these sites. Thus, the SACC is the upper
estimate for the multiple correlation coefficients between
the physicochemical characteristic(s) and the protein activity
of a site. The SACC/SADC coefficient makes possible the
calculation of the value of the possibly highest correlation
achievable for the quantitative relationship between the physi-
cochemical properties of the sites and the protein activities.
The SACC/SADC is a convenient means for an arrangement
of positions by their functional significance. However, the
SACC correlation gives neither information nor clue, as to
whether the properties are correlated and as to how they
may be related to the protein activity. For a detailed annota-
tion of the quantitative structure–activity relationships, Web-
ProAnalyst implements multiple linear regression and neural
networks analyses.

Multiple regression and neural networks analyses

The methods of multiple linear regression analysis we apply
in WebProAnalyst have been described previously (8–10).
WebProAnalyst is now expanded by back-propagation neural
networks (12). The current version of this method is imple-
mented as a two-layered network without a hidden layer, one
layer as an input and the other as an output. The input data are
transformed into the weighted sum that is used as an argument
of transfer function giving the ultimate output. The continuous
sigmoid transformation function is applied as described pre-
viously (12). The input data are the numerical values for the
physicochemical characteristics of a site given by a sliding
window. The numerical values lie in the 0–1 interval as a result
of the standard input transformation. The minimum value of
the variable is subtracted from the variable, and the resulting
value is divided by the difference between the maximum and
the minimum values. The output data are the predicted activity
values. The activity values in the course of training of the
neural network are also transformed into values that accom-
modate into the 0–1 range. When testing the neural network,
the reported value on the output layer neuron is translated into
the activity value by reverse transformation. WebProAnalyst
then treats a single activity for a single protein. It should
be noted that the accurate predictions require representative
training samples.

SOFTWARE ACCESS

TheWebProAnalyst web page is available at http://wwwmgs2.
bionet.nsc.ru/mgs/programs/panalyst/ (Figure 1). The input
WebProAnalyst consists of a multiple sequence alignment,
protein activity values, slide window length and physicochem-
ical properties. It is advisable that the length of the sliding
window would be of 1–20 residues (start analysis with the
sliding window length = 1 and increase). When treating alpha
helix or beta structural periodicity, it is also advisable to have a
sliding window of length from 3 to 20 residues. This is because
alpha-helices and beta-strands are about this long. The user
can also specify the type of analysis: SACC/SADC, multiple
regression or neural networks analysis. The learning set
includes all the proteins whose activities in the input data are
represented as numbers. The proteins, whose activities in the
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input data have a question mark, are omitted from learning.
The program provides automated calculation of the activities
of the marked protein using the built models. Thus, a question
mark is needed to warn that the activities of proteins of
unknown function have to be predicted. The output contains
the values for the predicted and measured activities, sequences
and physicochemical characteristics of the analysed sites for
every protein. For multiple linear regression and neural net-
works analysis, the values for the correlation between the
predicted and the measured activities are given. Regression
analysis also includes the regression equation and estimates of
the significance of the parameters.

THE M2 PROTEIN OF INFLUENZA A VIRUSES

The M2 protein family of influenza A viruses was analysed
to illustrate how the WebProAnalyst is applied in search of
the physicochemical factors affecting the acquirement of
viral resistance to amantadine. The M2 protein of influenza
A viruses forms a proton channel involved in modifying the
virion and the trans-Golgi pH during infection (13). The M2
protein ion channel activity is specifically blocked by the
anti-influenza drug amantadine. The resistance of influenza
A viruses to amantadine is caused by mutations in the trans-
membrane domain of the M2 protein (14). The M2 protein

Figure 1.WebProAnalyst web page. The input data are themultiple alignment and protein activities. The output data are themodels that relate the structure to protein
activities. Depending on the parameters assigned by the user, building of themodels is based either on multiple linear regression analysis, neural networks or SADC/
SACC. The parameters include analysis type, site physicochemical properties, queried fragment boundaries and sliding window length.
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sequences of influenza A virus derived from the amantadine
resistant (21 proteins) and susceptible (30 proteins) strains
were kindly provided by O. I. Kiselev (The Influenza Institute,
St Petersburg, Russia). The M2 protein activity values for the
amantadine resistant strain were assigned the value of 1 and
the susceptible of 0.

Scanning with a seven residues long sliding window demon-
strated a correlation between the influenza A viral drug res-
istance and the amino acid substitutions in the 25–31 region
(the SADC being 100%, see Figure 2). Using neural networks
and multiple linear regression analysis, we established that
viral drug resistance correlates with the helix hydrophobic
moment in this particular region (R = 0.99). Thus, substitutions
that increase the values for the hydrophobic moment occur
most frequently among the resistant strains of the virus. This
means that the amphipathicity of the alpha-helix in the region
is stronger in the drug resistant than the susceptible strains.
There is abundant evidence indicating that the region we iden-
tified is important for the inhibition of viral infection with
amantadine. Earlier, we have examined the role of the sec-
ondary structure of this region in the formation of viral
resistance to rimantadine and deitiforin (15). In the presence
of lipids, amantadine penetrates into the lipid membrane and
interacts with M2 at specific sites, as neutron diffraction
experiments have demonstrated previously (16). Amantadine
is found near the centre of the bilayer, thereby suggesting the
existence of an interaction site with Val-27 and Ser-31. Com-
putationally, a minimum in the energy profile along the pore
axis was revealed for amantadine in this region (17).

Another lower peak in the vicinity of residue 52 is distin-
guishable in the correlation profile (Figure 2). According to the
secondary structure prediction, residues 46–62 form a strongly
amphipathic helix that is possibly associated with the hydro-
phobic/hydrophilic interfacial region of the membrane (18).
The correlations we established support the presumed import-
ant contribution of the region in the neighbourhood of residue
52 to the formation of the resistance of influenza A virus to
amantadine. Here, we are not considering other peaks, e.g.
around residues 80 and 15, that are significantly lower than
the major peak. However, the appearance of these peaks in the
SADC profile is suggestive, raising the question of whether the
residues located in their regions may possibly be of importance

in the formation of viral resistance; these particular residues
may perhaps have an allosteric effect on the amantadine bind-
ing site. The residues in the region surrounding position 15 are
along the border of the external and the transmembrane
domains (13), and they may be involved in the early contacts
between amantadine and M2 protein.

ANTIMICROBIAL PEPTIDES

Histatins have been described as histidine-rich cationic pep-
tides, 7–38 amino acid residues in length with a strong killing
effect in vitro on Candida albicans. Downstream of the
C-terminal fungicidal domain of histatin 5 (residues 11–24)
substitution analogues were synthesized and their antimicro-
bial activities were measured (19). We applied WebProAna-
lyst to study the effect of amphipathicity of the peptide on
candidacidal activity. Table 1 gives a compilation of the amino
acid sequences and their activities. The sequence scan using
a sliding window of four residues allowed the detection of the
most clear-cut correlations. The correlation between the hel-
ical hydrophobic moment in the region covering 3–6 residues
and the antimicrobial activity was�0.97 (Figure 3). The stron-
ger is the hydrophobic moment, the higher is the antimicrobial

Figure 2. A SADC correlation profile calculated for the M2 protein of influenza A viruses using a seven residue sliding window. In the 25–31 region, which is
involved in binding to amantadine, the correlation between amino acid substitutions and acquirement of virus resistance to amantadine is 100%.

Table 1. Amino acid sequences and anti-Candida activity of histatin

analogues (19)

Peptide Activity Sequencea

IC50 (mM) ln (IC50)

dh-5 4.1 1.41 KRKFHEKHHSHRGY
dh13L 5.2 1.64 K..L...........
dh15K 2.1 0.74 ....K.........
dh17L 3.0 1.09 ......L.......
dh18L 3.0 1.09 .......L......
dh18K 2.6 0.95 .......K......
dh19K 2.5 0.91 ........K.....
dh21F 2.9 1.06 ..........F...
dh23K 2.9 1.06 ............K.
dhvar1 0.6 �0.51 ..L.K.LKF.L.K.
dhvar2 0.8 �0.22 ..L.K.LLF.L.K.
dCysSN 114 4.73 SSPGKPPRLVG.P

aThe matches between amino acids of peptides and peptide dh-5 are indicated
by dots.

W102 Nucleic Acids Research, 2005, Vol. 33, Web Server issue



activity of the peptide. We did not use the dCysSN peptide
for learning, consequently, its activity in the input data was
marked with ‘?’. The neural networks predicted ln(IC50) for
this peptide to be 1.9 and the multiple linear regression
analysis predicted a value of 5.8. These values are consistent
with those for the lowest antimicrobial activity. The peptide is,
indeed, devoid of activity and it has served as a negative
control (19).

FUTURE DEVELOPMENTS

The idea behind all is to make WebProAnalyst workable for
automated database search for sequences of such proteins
whose predicted activities meet specific requirements. This
would be reasonably achieved by integrating the WebPro-
Analyst and PSIBLAST programs. The other idea is to create
a new WebProAnalyst module for the prediction of muta-
tions that alter the protein activity in a targeted manner; the
module would also estimate the effect of mutations on the
structural integrity of a protein (whether they distort or
break down its spatial structure). We further intend to integrate
WebProAnalyst with PDBSiteScan, a program developed for
the recognition of the functional protein sites (20,21). This
would enable to make a more comprehensive annotation of
protein structure–activity information. This might hopefully
broaden the protein structure–activity realms of WebPro-
Analyst. The WebProAnalyst may be useful in a computa-
tional resolution of proteomics dilemmas, activity-based
protein profiling is one (22,23).

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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