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Abstract

Background: Many authors have claimed that snakebite risk is associated with human population density, human activities,
and snake behavior. Here we analyzed whether environmental suitability of vipers can be used as an indicator of snakebite
risk. We tested several hypotheses to explain snakebite incidence, through the construction of models incorporating both
environmental suitability and socioeconomic variables in Veracruz, Mexico.

Methodology/Principal Findings: Ecological niche modeling (ENM) was used to estimate potential geographic and
ecological distributions of nine viper species’ in Veracruz. We calculated the distance to the species’ niche centroid (DNC);
this distance may be associated with a prediction of abundance. We found significant inverse relationships between
snakebites and DNCs of common vipers (Crotalus simus and Bothrops asper), explaining respectively 15% and almost 35% of
variation in snakebite incidence. Additionally, DNCs for these two vipers, in combination with marginalization of human
populations, accounted for 76% of variation in incidence.

Conclusions/Significance: Our results suggest that niche modeling and niche-centroid distance approaches can be used to
mapping distributions of environmental suitability for venomous snakes; combining this ecological information with
socioeconomic factors may help with inferring potential risk areas for snakebites, since hospital data are often biased
(especially when incidences are low).
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Introduction

Only a small percentage (10–15%) of ca. 3000 known species’ of

snakes is venomous, and thus potentially dangerous to humans [1].

However, in the tropics, snakebites are a significant cause of

human mortality and morbidity, with important impacts on

human health, as well as to economy through treatment-related

expenses and loss of productivity [2]. Recent estimates suggest that

at least 421,000 bites and 20,000 deaths occur worldwide from

snakebite annually, possibly ranging as high as 1,841,000 bites and

94,000 deaths [3]. The most affected regions in the world are sub-

Saharan Africa, Southeast Asia, and Latin America [3–5].

Despite the scale of effects on human populations, snakebites

has not received much attention from national and international

health authorities, and has now been categorized as a ‘‘neglected

tropical disease’’ [6]. Diverse authors have studied the problem

[3,7–10]; however, most of these studies involve hospital records,

and the representativeness of this information has been questioned

[7–10]. According to Chippaux [8], prospective enquiries in

randomly selected localities is preferable, but this procedure would

be long and expensive. Hansson et al. [9] developed an index of

potential underreported cases of snakebites using environmental,

socioeconomics and health-care related variables, a valuable

contribution towards a better understanding of snakebite inci-

dence, but other aspects of the phenomenon may enrich the view,

such as the specific identity, geographic distribution and abun-

dance of venomous snakes involved in the incidents.

Ecological niche modeling (ENM) has been used widely in

recent years to map potential geographic distribution of species’,

with reliable results [11]. Nevertheless, capacity of these models to

inform about the distribution patterns of abundance is, in the best

case, limited [12,13]. Recently, however, a new method based on

the distance to niche centroid (DNC) was proposed, that may offer

a better understanding of how abundance is structured within the

margins of species’ distributions [14]. This method seeks a

relationship between distance to the niche centroid and abun-

dance; therefore, it can used as a measure of environmental

suitability (ES), wherein conditions close to the niche centroid

represent higher suitability, and therefore potentially higher

abundance [14,15].
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The principal goal of this paper was to evaluate the utility of

ENM and DNC approaches in combination with socioeconomic

variables to infer potential risk areas of snakebites in the state of

Veracruz, Mexico. We first modeled the geographic and ecological

distribution of each venomous snake species’ occurring in the

region; then DNCs were calculated for each species based on the

ENMs. We analyzed relationships between reported incidences of

snakebite and DNC values. Finally, we built several models

relating DNC of snakes and socioeconomic variables to snakebite

incidence. We selected the state of Veracruz based on the next

criteria: (1) it has the second highest snakebite rate in Mexico, with

approximately 15% of the country’s total fatal accidents per year

[16]; (2) arguably the most dangerous snake in Latin America

(Bothrops asper) is widely distributed in the state [17,18]; and (3)

three authors of this paper have been working and living in this

region for many years, and hence know well the area and the

snakes occurring there.

Methods

Study area
The state of Veracruz is located on Mexico’s Gulf coastal fringe

extending 745 km north to south, covering 72,420 km2 (3.7% of

the total area of the country) (Figure 1). About 80% of the area has

been transformed by expansion of the agricultural frontier and

human settlements [19]. The state includes a long coastal plain

and a complex mountain system including parts of the Eje

Volcánico Transmexicano and the Sierra Madre Oriental [20];

elevations vary from sea level to more than 5000 m [21,22].

Study species
Twenty-one species’ of venomous snakes are present in

Veracruz: 16 vipers and 5 coral snakes [17]. However, we

discarded coral snakes for consideration since the potential danger

that they present is minimal [23]. We also eliminated rare species’

as the probability of encounter of these snakes with humans is low

[17], and because presence records for these species’ are scarce,

which affects performance of ENMs (i.e., [24–26]). Therefore, we

selected as study species’ only vipers with six or more presence

records in the state: Atropoides nummifer, Bothrops asper, Crotalus atrox,

C. intermedius, C. molossus, C. ravus, C. simus, C. totonacus, and C.

triseriatus.

Ecological Niche Modeling
Occurrence data for the entire geographic range of snake

species’ were gathered from three sources: 1. Unpublished

personal records (these were occasional observations obtained

from work activities in wildlife monitoring. No special permits

were required because we did not handle the snakes in any way), 2.

Specialized literature [17,27,28], and 3. Online available infor-

mation accessible through the Global Biodiversity Information

Facility (GBIF; http://www.gbif.org), the World Information

Network on Biodiversity (REMIB: www.conabio.gob.mx/remib/

doctos/remib_esp.html) and HerpNet (http://www.herpnet.org).

Occurrences lacking latitude-longitude coordinates were georefer-

enced with gazetteers and Google Earth (http://earth.google.es/).

Because presence-only data may present sampling bias and spatial

autocorrelation that negatively impact model performance [29],

we overlaid a 0.05u resolution reticule over the study region and

Figure 1. Climate, vegetation and topography of study area (Veracruz, Mexico). Black lines represent municipalities.
doi:10.1371/journal.pone.0100957.g001
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Figure 2. Occurrences and potential distributions of the vipers commonly distributed in Veracruz, Mexico.
doi:10.1371/journal.pone.0100957.g002

Table 1. Viper occurrence data (N) and Partial ROC analyses results (Mean Ratio = MR, standard deviation = SD, significance = P).

Partial ROC

Species N MR SD P

A. nummifer 14 1.977 0.008 ,0.001***

B. asper 273 1.406 0.029 ,0.001***

C. atrox 851 1.262 0.025 ,0.001***

C. intermedius 15 1.449 0.078 ,0.001***

C. molossus 336 1.146 0.018 ,0.001***

C. ravus 41 1.340 0.095 ,0.001***

C. simus 53 1.660 0.035 ,0.001***

C. totonacus 24 1.964 0.004 ,0.001***

C. triseratus 58 1.938 0.029 ,0.001***

Total 1665 - -

*** = ,0.001, ** = ,0.01, * = ,0.05.
doi:10.1371/journal.pone.0100957.t001
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randomly removed duplicates, leaving a single occurrence per grid

cell [30]. As well, we removed doubtful and ambiguous

occurrences.

Environmental layers regarding climate and topography were

used to generate the ENMs (Table S1); climate variables were

obtained from the WorldClim database (http://www.worldclim.

org) [31] and topographic information was derived from the

SRTM elevation model (http://srtm.csi.cgiar.org). All environ-

mental data were standardized to geographic coordinates (Datum

WGS-84) at a spatial resolution of 30’’. We screened for

collinearity by examining pairwise correlations between variables

for each species. When a pair had a Pearson product-moment

correlation coefficient .0.7, one of the two variables was removed

[32]. For each viper, the extent of the layers varied according to

the limits of biogeographic provinces [33] containing all its

occurrences [34].

Maps of potential distributions for each species were obtained

using desktop GARP [35], an evolutionary, computing algorithm

that has been tested extensively for predictions of the geographic

distributions of species’ [36–39]. We developed 100 replicate

models for each species based on bootstrapped subsamples of

available occurrence data. Following Anderson et al. [40] we

retained the 10 best models as these having the lowest omission

error and lowest departure from the median area predicted

suitable. For each species these models were summed in ArcGIS

10 to produce a consensus map [41]. Finally, consensus maps were

transformed to produce binary maps using the minimum presence

value (MPV) as a threshold criteria, namely the highest raw

suitability value at which all input occurrence points were included

in the presence area.

In all cases, 80% of presence records were used in model

calibration and the remaining 20% were used for model

evaluation. We evaluated model performance using a partial

ROC approach following Peterson et al. [42], a modification of

the area under the curve (AUC), and receiver operating

characteristic (ROC) approach [43]. This method avoids some

disadvantages of the traditional ROC method [44], and is

implemented in a stand-alone software [45].

To characterize ecological niches of vipers and calculate DNC

values, we followed Yañez-Arenas et al. [15] and Martı́nez-Meyer

et al. [14]. In brief, we extracted values of environmental variables

for all pixels where the species’ was predicted present according to

the binary potential distribution maps. We standardized each

dimension by subtracting the mean and dividing by the standard

Figure 3. Geographic representation of the distance to niche centroid of the vipers.
doi:10.1371/journal.pone.0100957.g003
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deviation, producing a standard normal variable (i.e., mean = 0,

variance = 1). In this way, the multidimensional niche centroid is

the point where values of all variables is 0, and calculations of

DNCs become simple decompositions of Euclidean distances.

Finally, using the ‘‘Zonal Statistics as Table’’ option in ArcGIS 10

[41], we obtained the mean distance to the niche centroid in each

municipality of Veracruz based in a data set of municipalities [46].

Distances were calculated for each municipality because snakebite

reports and the socioeconomic variables described in the next

section were developed at this level.

Snakebite incidence and socioeconomic variables
Snakebite reports for each municipality in the period 2003-2012

were obtained through the Sistema Único Automatizado para la

Vigilancia Epidemiológica (SUAVE; Secretarı́a de Salud del Estado de

Veracruz). In order to reduce variability caused by unequal

population size in municipalities, we estimated the smoothed

snakebite incidence (expressed per 100,000 inhabitants over this

ten year period) using the tool for automated spatial Bayesian

smoothing of incidence rates available in SIGEpi v 1.4 [47].

Smoothed incidence was linked to the dataset of municipalities.

Separately, we obtained socioeconomic information from INEGI

[46] including fields summarizing human population density, an

index of marginalization, and percentage of population without

health insurance, all of which have previously been considered as

associated with snakebites [48,49].

Generalized additive models (GAMs) with quasi-Poisson family

responses were used to evaluate relationships between smoothed

snakebite incidence and predictor variables [50]. We first built

univariate models and then tested all possible combinations

(multivariate models with interactions) of significant variables

(P,0.05). All estimated parameter effects for each hypothesis were

evaluated by comparing generalized cross-validation (GCV) scores

[51]. GAM analyses were performed via the mgcv library [52] in

R 2.8.1 [53].

Results

We first obtained 2,408 occurrences for viper species’ distrib-

uted in Veracruz. However, after depuration and filtering there

were 1,665 spatially unique localities (Figure 2, Dataset S1).

Records were not distributed equally among species’: almost 90%

belonged to three species (B. asper, C. atrox and C. molossus).

Whereas for A. nummifer and C. intermedius, we could only gather 14

and 15 presences (Table 1).

Models developed for each species corresponded generally well

with knowledge of species’ distributions (Figure 2) and their

environmental preferences (Figure 3) [16]. Partial ROC analysis

exhibited high average AUC ratios and low standard deviations

for all models; according to this test, all were significantly better

than random (Table 1).

A total of 3,765 snakebite cases were reported for Veracruz

during 2003–2012, corresponding to an average incidence of 4.93

Figure 4. Distribution per municipality of smoothed snakebite incidence (2003–2012), marginalization and distances to niche
centroid of Crotalus simus and Bothrops asper. White municipalities have no data.
doi:10.1371/journal.pone.0100957.g004
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(61.30) snakebites per 100,000 inhabitants per year. Municipal-

ities with the highest smoothed incidence corresponded to the

northern and southern regions of Veracruz, whereas the central-

east region presented the lowest incidence (Figure 4).

Univariate generalized additive models showed that DNC of

most vipers were negatively correlated with snakebite incidence (all

but C. totonacus and A. nummifer). However, these relationships were

significant only for B. asper and C. simus. The former explained

almost 35% of model deviance and the latter 15%. Marginaliza-

tion of human populations was positive correlated with snakebites,

and explained an additional 17% of deviance (Table 2, Figure 5).

In multivariate models, comparisons of candidate models

revealed that DNC for B. asper was a very important parameter

explaining snakebite incidence, being included in all of the top five

best models. The best-fit model explained 76% of deviance and is

based on the DNCs of B. asper and C. simus and marginalization

(Table 3).

Discussion

Recent developments in the field of ENM and broad availability

of rich global environmental data sets have augmented ability to

predict distributions of species’ related to transmission of diseases

[54–57]. However, until now, the problem of snakebite has never

been addressed. Our results demonstrate that this can be done by

mapping potential environmental suitability of vipers through the

DNC approach [14,15].

We found significant inverse relationships between snakebite

incidence and DNCs for B. asper and C. simus. These species’ are

the main cause of incidents in the region [58], and our results

suggest that, when sufficient occurrence information is available,

ENM and DNC approaches, offer an alternative approach to

understanding snakebite incidence risk. B. asper is probably the

most dangerous snake in Latin America, because of its broad

distribution, size, habits and aggressiveness; also, according to Sasa

and Vázquez [18], this viper is well adapted to environments

affected by small-scale agriculture, making snake-human encoun-

ters frequent during agricultural activities in fields and close to

rural dwellings. C. simus is not widely distributed in Latin America,

but it is quite common in Veracruz and is frequently found in

Figure 5. Relationships between snakebite incidence and
distances to niche centroid of Crotalus simus, Bothrops asper
and the marginalization index (INEGI 2010).
doi:10.1371/journal.pone.0100957.g005

Table 2. Univariate generalized additive models relating snakebite incidence and explanatory variables.

Variable p value R2 (adj) DE (%)

DNC of B. asper ,0.001*** 20.191 34.9

Index of marginalization ,0.001*** 0.101 17.5

DNC of C. simus 0.014* 20.074 15.1

DNC of C. atrox 0.063 20.057 14.3

DNC of C. intermedius 0.052 20.036 13.6

DNC of C. triseriatus 0.141 20.025 11.4

DNC of C. ravus 0.606 20.024 9.3

DNC of C. molossus 0.494 20.017 9.1

Population density (ind/km) 0.302 0.005 3.4

DNC of C. totonacus 0.330 0.009 2.7

Population without health insurance (%) 20.702 20.008 1.3

DNC of A. nummifer 0.677 0.007 0.1

R2 (adj) = adjusted coefficient of determination, DE (%) = percentage of deviance explained.
*** = ,0.001, ** = ,0.01, * = ,0.05.
doi:10.1371/journal.pone.0100957.t002
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areas of livestock and crops, increasing rates of encounter with

humans [17].

For the remaining species’, we found no significant relationships

between DNC and snakebite incidence. Habitat preferences could

be responsible for this lack of relationship, although certainly other

factors enter the picture as well (behavior, demography, distribu-

tion patterns, among others). Crotalus molossus, C. triseriatus, C. ravus

and C. intermedius inhabit diverse vegetation types, but principally

desert and pine-oak forest [17]; more open vegetation than tropical

forests, making it easier to detect the presence of the vipers. C.

totonacus and C. atrox also occur in tropical deciduous forest, but the

former is a very uncommon snake and the latter prefers other

ecosystems (deserts, mesquite grasslands, scrublands and pine-oak

forest) [17]. The probability of encounters between humans and A.

nummifer is low, because this species inhabits mainly primary well-

preserved forests, where anthropogenic activities are scarce [17].

Examination of the shape of the relationships between DNC

and snakebite incidence suggest that DNC indicates the upper

limit of snakebite incidence rates, rather than the average

(Figure 5). An important observation is that several municipalities

presented high environmental suitability, but incidences that were

nil or very low. That is, according to the abundance-DNC

relationship hypothesis, when DNC is low, the species is expected

to be abundant; however, diverse factors may affect this

relationship, such as microclimate, biotic interactions and dispersal

limitations, which may depress abundance in otherwise suitable

areas [59]. On the other hand, hospital data may be biased, as has

been noted elsewhere in the world [60,61], especially when

incidences are low. Snakebite incidence is frequently underreport-

ed owing to lack of effective health infrastructure in marginalized

rural communities, and because many cases are not reported

because patients either prefer traditional medicine or die before

reaching hospitals [62–65]. The contrasts between hospital reports

and community data suggest that most snakebite victims turn first

to traditional healers and only go to hospitals when poisoning is

severe and traditional treatments inadequate [48]. Conversely, in

some areas adjacent to the big cities the experience and reputation

of urban health centers can attract some patients which does not

reflect actual local incidence rates. Our use of smoothed incidences

to attenuate variability caused by unequal population size in

municipalities should help in this regard, however there are many

drawbacks in case notification rates that encourage develop of

alternative approaches to inferring potential snakebite risk, such as

the DNC method; environmental suitability can complement

socioeconomic and health-related factors to complete the picture

of the phenomenon (see below).

Human population has been considered as inversely correlated

with snakebite incidence [48,66,67]. This inverse relationship may

be explained by both, reduction of snake populations in human

populated areas, and changes in human condition and occupation

[68,69]. Activities in rural areas such as agriculture, grazing and

fishing significantly increase risk of snake encounter [7,8]. In

Veracruz, we did not observe significant relationships between

human population density and snakebite incidence (Table 2). This

may be due to the scale of our analysis, the characteristics of

human populations, or the presence and abundance of the vipers.

For instance, some of the municipalities with lowest human

densities in the state are also arid areas, where B. asper and C. simus

are absent or uncommon. Another important social factor is

poverty: at global scales, Harrison et al. [49] demonstrated that

socioeconomic indicators of poverty correlate with snakebite-

induced mortality. We observed a positive correlation between

snakebite incidence and marginalization of municipalities in

Veracruz, would could reflect a frequent association between the

latter and increased manual agricultural activities (Figure 5,

Table 2). Regarding health related factors, we did not observe

relationships between snakebite incidence rates and percentage of

population without health insurance (Table 2). One possible

explanation for this result is because municipalities with 100% of

inhabitants without health insurance may also lack proper systems

of snakebite detection. As such, zero cases in a municipality could

be real, or may reflect failures in data collection.

Each of these factors interacts with others, as was demonstrated

in this study via the multivariate generalized additive models;

consequently, it is important to take all into account for a better

understanding of the epidemiological problem that snakebites

present. The ENM-DNC method approach, in combination with

socioeconomic variables, could help in this task by mapping

potential distributions and environmental suitability for dangerous

snakes, identifying areas of greater potential risk in which to focus

educational and medical remediation in the form of supplies and

facilities. These analyses should also be applied elsewhere in the

world to evaluate the generality of our findings. A further

corroboration of our models would be direct population density

estimates for key viper species in areas of differing DNC (although

this task is much complicated by the secretive nature of many of

the species), and detailed assessment of snakebite incidence

through household surveys.

Supporting Information

Table S1 Variables used in distribution models. Please note that

temperature data are in uC * 10, units used for the precipitation

data is mm (millimeters), altitude is expressed in masl (meters

above sea level) and slope in percentage (%).

(DOCX)

Table S2 Sources for occurrence data of vipers.

(DOCX)

Table 3. Multivariate generalized additive models relating snakebite incidence and explanatory variables.

Model R2(adj) DE (%) GCV

1. (csim, marg)+(basp, marg) 0.695 76.0% 24.893

2. csim+basp+marg 0.678 71.7% 25.335

3. csim+basp 0.265 46.1% 37.797

4. basp+marg 0.406 52.6% 41.97

5. (basp, marg) 0.388 53.0% 42.614

R2 (adj) = adjusted coefficient of determination, DE (%) = percentage of deviance explained, GCV = generalized cross validation score. Model parameter keys: basp = DNC
of Bothrops asper, csim = DNC of Crotalus simus, marg = marginalization.
doi:10.1371/journal.pone.0100957.t003

Modeling Snakebite Risk

PLOS ONE | www.plosone.org 7 June 2014 | Volume 9 | Issue 6 | e100957



Dataset S1 Databases with the occurrences for all species’

modeled. Codes for each database: Atropoides nummifer = r_a_num,

Bothrops asper = r_b_asper, Crotalus atrox = r_c_atr, C. interme-

dius = r_c_int, C. molossus = r_c_mol, C. ravus = r_c_rav, C. si-

mus = r_c_sim, C. totonacus = r_c_tot, C. triseriatus = r_c_tri.

(RAR)

Dataset S2 Cases of snakebites in Veracruz (2003–2012). Raw

information obtained through the Sistema Único Automatizado para la

Vigilancia Epidemiológica (SUAVE; Secretarı́a de Salud del Estado de

Veracruz).

(RAR)
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