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Summary

 

The premature human aging Werner syndrome (WS) is
caused by mutation of the RecQ-family WRN helicase,
which is unique in possessing also 3′′′′

 

–5′′′′

 

 exonuclease activity.
WS patients show significant genomic instability with
elevated cancer incidence. WRN is implicated in restraining
illegitimate recombination, especially during DNA repli-
cation. Here we identify a 

 

Drosophila

 

 ortholog of the
WRN exonuclease encoded by the 

 

CG7670

 

 locus. The
predicted DmWRNexo protein shows conservation of
structural motifs and key catalytic residues with human
WRN exonuclease, but entirely lacks a helicase domain.
Insertion of a piggyBac element into the 5′′′′

 

 UTR of 

 

CG7670

 

severely reduces gene expression. DmWRNexo mutant
flies homozygous for this insertional allele of 

 

CG7670

 

 are
thus severely hypomorphic; although adults show no
gross morphological abnormalities, females are sterile.
Like human WS cells, we show that the DmWRNexo
mutant flies are hypersensitive to the topoisomerase I
inhibitor camptothecin. Furthermore, these mutant flies
show highly elevated rates of mitotic DNA recombination
resulting from excessive reciprocal exchange. This study
identifies a novel WRN ortholog in flies and demonstrates
an important role for WRN exonuclease in maintaining
genome stability.
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Introduction

 

Werner syndrome (WS) provides a very useful model system for

the study of human aging at the molecular level, with patients

manifesting many signs of normal aging in an accelerated

manner (reviewed in Martin, 1985; Goto, 2001; Cox & Faragher,

2007; Kudlow 

 

et

 

 

 

al

 

., 2007). The syndrome is caused by mutation

of WRN (Yu 

 

et

 

 

 

al

 

., 1996), a member of the RecQ DNA helicase

family. WS patient-derived cells undergo highly premature

replicative senescence, with cellular defects including aberrant

DNA replication (Pichierri 

 

et

 

 

 

al

 

., 2001; Rodriguez-Lopez 

 

et

 

 

 

al

 

.,

2002) and hyper-recombination (Salk 

 

et

 

 

 

al

 

., 1981; Scappaticci

 

et

 

 

 

al

 

., 1982; Fukuchi 

 

et

 

 

 

al

 

., 1985). Hypersensitivity to the DNA-

damaging agent 4-nitroquinoline oxide, and the topoisomerase

I inhibitor camptothecin (CPT) is characteristic of WS cells (Poot

 

et

 

 

 

al

 

., 1999; Prince 

 

et

 

 

 

al

 

., 1999; Pichierri 

 

et

 

 

 

al

 

., 2000b). These

agents lead to replication fork arrest or collapse, suggesting a

function for WRN in DNA replication, which is further supported

by its presence at replication foci coincident with RP-A and

PCNA (Constantinou 

 

et

 

 

 

al

 

., 2000; Rodriguez-Lopez 

 

et

 

 

 

al

 

., 2003)

and aberrant replication fork progression in WS fibroblasts

(Rodriguez-Lopez 

 

et

 

 

 

al

 

., 2002). The hyper-recombinant pheno-

type of human WS cells, suppression of illegitimate recombination

in yeast 

 

Sgs1

 

 mutants by human WRN (Yamagata 

 

et

 

 

 

al

 

., 1998),

interaction with MRN  on replication fork stalling (Franchitto &

Pichierri, 2004), the recovery of proliferative capacity after

ectopic expression of a Holliday junction resolvase in WS cells

(Rodriguez-Lopez 

 

et

 

 

 

al

 

., 2002), and excessive chromosome

breakage at fragile sites in the absence of WRN (Pirzio 

 

et

 

 

 

al

 

.,

2008) all suggest an important role for WRN in homologous

recombination after replication fork arrest, either in preventing

the formation of homologous recombination intermediates or

in their rapid resolution (Dhillon 

 

et

 

 

 

al

 

., 2007; Rodriguez-Lopez

 

et

 

 

 

al

 

., 2007). The importance of WRN in regulating genome

stability is highlighted by the high cancer incidence in WS

patients, while epigenetic inactivation of WRN is also associated

with human cancer (Agrelo 

 

et

 

 

 

al

 

., 2006).

Identification of the action of WRN in homologous recombi-

nation is complicated by the presence of two enzymatic activities

within the same protein: the 3

 

′

 

–5

 

′

 

 helicase characteristic of all

RecQ family members (reviewed in Bachrati & Hickson, 2003),

and a 3

 

′

 

–5

 

′

 

 exonuclease activity (Huang 

 

et

 

 

 

al

 

., 1998) unique

within this family, but which is closely related structurally to

the DnaQ exonuclease superfamily (Perry 

 

et

 

 

 

al

 

., 2006). X-ray

crystallographic analysis of the exonuclease domain of human

WRN suggests a role in DNA end processing (Perry 

 

et

 

 

 

al

 

., 2006),
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possibly at the stage of strand resection after double-strand

breaks, such breaks that as occur at collapsed replication forks.

This would be consistent with the importance of WRN in DNA

recombination. However, the closely related BLM helicase can,

at least 

 

in vitro

 

, promote dissolution of double Holliday junctions

without intrinsic nuclease activity (Wu & Hickson, 2003); deter-

mining the relative contributions to homologous recombination

of the helicase and exonuclease activities of WRN is therefore

important. Moreover, there appears to be a complex interplay

between the helicase and exonuclease activities of WRN

(Opresko 

 

et

 

 

 

al

 

., 2001); for example, it is possible that helicase

activity may be required to generate a template suitable for

cleavage by the nuclease. The distinct roles are difficult to dis-

sect in vertebrate cells since ablation of one activity may affect

the other; indeed, point mutation of the helicase is suggested

to act in a dominant negative manner (Crabbe 

 

et

 

 

 

al

 

., 2004).

RNAi depletion of WRN, although highly effective in recapitu-

lating some WS-like phenotypes (Dhillon 

 

et

 

 

 

al

 

., 2007), eliminates

both helicase and exonuclease activities.

To study WRN’s role in recombination at the organismal level,

we sought to develop a model in which WRN activity may be

evaluated at different developmental stages. Although murine

models have been described which show some WS-like features

on mutation of the WRN helicase alone or with co-mutation of

either telomerase or PARP (Lebel, 2002; Lebel 

 

et

 

 

 

al

 

., 2003;

Chang 

 

et

 

 

 

al

 

., 2004; Massip 

 

et

 

 

 

al

 

., 2006), the relatively long

lifespan and complexity of genetic intervention pose severe

limitations on their exploitation. In order to develop a model

system more amenable to genetic and biochemical analysis of

WRN exonuclease function 

 

in vivo

 

, we set out to identify and

characterise WRN exonuclease from

 

 Drosophila melanogaster

 

.

 

Results

 

Identification of 

 

Drosophila

 

 WRNexo

 

We conducted a BLASTP search (Altschul 

 

et

 

 

 

al

 

., 1997) of the

 

Drosophila melanogaster

 

 genome sequence (Release 4.0), using

as a probe the sequence of human WRN protein. The 

 

Drosophila

 

candidate gene encoding a WRN-like exonuclease is 

 

CG7670

 

,

with an E-value of 1 

 

× 

 

10

 

–25

 

 (Cox 

 

et

 

 

 

al

 

., 2007, as also noted by

Sekelsky 

 

et

 

 

 

al

 

., 2000). Upon cloning from mRNA and sequen-

cing multiple 

 

CG7670

 

 cDNA clones, we found two alleles of

CG7670 differing solely by the presence or absence of an AAG

codon (lysine) at nucleotide 235, amino acid 79 (GenBank accession

numbers EF680279 and EF680280, respectively). Variant 2

(EF680280) lacking lysine 79 was the more commonly occurring

clone, encoding a predicted protein of 352 amino acids.

The predicted protein product of the 

 

CG7670

 

 locus, which

we call DmWRNexo, shares 35% identical and 59% similar

amino acids with the exonuclease domain of human WRN over

a region of 192 residues (Fig. 1A). Previous crystallographic

studies of the human WRN exonuclease domain demonstrated

that residues aspartate (D82) and glutamate (E84) within the

Fig. 1 Homology of DmWRNexo to human WRN. 
(A) Alignment of WRN protein sequences from 
human, mouse, Xenopus laevis and Arabidopsis 
thaliana (AtWEX) with full-length DmWRNexo 
(predicted from both our cloned CG7670 cDNA 
and genomic sequence (Flybase)). Black depicts 
residues identical in three or more species, with 
grey showing similarity. Note the highly conserved 
blocks of sequence flanking the catalytic core 
residues. D82 and E84 metal-ion co-coordinating 
residues (residues numbered for the human WRN 
protein) are marked with an asterisk. (B) SWISS-
MODEL was used to predict the possible tertiary 
structure of DmWRNexo from residues 118–312, 
according to the known structure of human WRN 
exonuclease (2fbyA, Perry et al., 2006). Left panel 
shows the human WRN exonuclease domain while 
the right panel shows the predicted structure of 
Drosophila melanogaster DmWRNexo.
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nuclease catalytic site are essential for metal ion coordination

(Perry 

 

et

 

 

 

al

 

., 2006). Importantly, these residues are conserved

in DmWRNexo (Fig. 1A, asterisks). We have conducted SWISS-

MODEL structural predictions (Peitsch, 1996; Schwede 

 

et

 

 

 

al

 

.,

2003) of DmWRNexo from residues 118–312, which suggest

that the protein might adopt a very similar configuration to

human WRN exonuclease (Perry 

 

et

 

 

 

al

 

., 2006, PDB accession

number 2fbyA, predicted similarity e-value 8.86 

 

×

 

 10–26), with

conservation of key alpha helices and beta sheets comprising

the nuclease active site (Fig. 1B).

Hypomorphic allele of CG7670

To assess the impact of DmWRNexo mutation on flies, we

obtained an insertional mutant allele of CG7670, CG7670e04496,

which contains a piggyBac{RB} element (Thibault et al., 2004)

inserted within the 5′ UTR (Fig. 2A). Reverse transcription–

polymerase chain reaction (RT-PCR) analysis shows that the

CG7670e04496 allele is transcribed at an extremely low level in

the homozygous mutant compared with CG7670 expression

in heterozygous and wild-type flies (Fig. 2B); no band was

detectable in negative controls (data not shown). Interestingly,

CG7670e04496 homozygotes show no gross morphological

abnormality, and while the females are sterile (eggs do not hatch),

males are fertile. The location of CG7670 on chromosome

3R:14189966.14191859 (Flybase) and its identity with the gene

encoding DmWRNexo is consistent with our mitotic recombination

deficiency mapping studies (mwh1 CG7670e04496/Df(3R)Exel6178

flies display multiple wing hair clones; data not shown).

DmWRNexo mutant flies are hypersensitive to CPT

Werner syndrome cell lines are sensitive to the topoisomerase

I poison CPT (Poot et al., 1999; Pichierri et al., 2000a) which

causes replication fork collapse at the bound topoisomerase

(Shao et al., 1999); such sensitivity can be partially comple-

mented by expression of a bacterial Holliday junction nuclease

(Rodriguez-Lopez et al., 2007), suggesting that WRN acts either

to prevent accumulation of Holliday junctions at collapsed forks

or to ensure rapid Holliday junction resolution. To test whether

Drosophila mutant for DmWRNexo are similarly sensitive to CPT,

larvae derived from crosses of CG7670e04496 heterozygotes were

propagated on medium supplemented with varying concentra-

tions of CPT, or vehicle-only control (0 μM CPT). Emerging flies

were scored for heterozygosity or homozygosity of the

CG7670e04496 allele. While the heterozygous flies appear to be

fully viable at all concentrations of CPT used (Fig. 3), a significant

loss of viability of flies homozygous for the CG7670e04496 allele

(i.e. those with very low levels of expression of DmWRNexo) was

observed even at 0.1 μM CPT, with almost total lethality from

0.2 μM (Fig. 3). Surviving homozygotes displayed roughened

eyes, an indicator of cell death, and many died as pharate adults

(data not shown), a typical lethal phase for flies exhibiting high

levels of cell death. This is consistent with the high levels of

apoptosis detected in human Werner syndrome cells exposed

to CPT (Poot et al., 1999). Thus, loss of DmWRNexo results in

hypersensitivity to CPT.

Genome instability in DmWRNexo mutant flies

Since hyper-recombination is a key phenotype of WS patient-

derived cell lines (Salk et al., 1981; Scappaticci et al., 1982;

Fukuchi et al., 1985), rates of chromosome breakage and/or

mitotic recombination in DmWRNexo homozygous mutant flies

were evaluated using the recessive multiple wing hairs marker

(mwh, recombination map position 3-0.7); wing blade cells

hemizygous or homozygous for mwh1 develop tufts of wing

hairs instead of single hairs. Note that the adult wing consists

of postmitotic cells arising from proliferating cells of the wing

imaginal disc, so any recombination giving rise to clones of

cells with the mwh phenotype must have occurred during cell

proliferation in development.

Wing blades were dissected from flies that were homozygous

mutant for DmWRNexo but heterozygous for mwh (i.e. w1118;

Fig. 2 CG7670e04496 mutant is severely 
hypomorphic. (A) The predicted structure of the 
CG7670 transcript. The location of the piggyBac 
insertion e04496 is indicated. (B) Reverse 
transcription–polymerase chain reaction (RT-PCR) 
indicates that CG7670 is expressed at very low 
levels compared with heterozygotes or wild-type 
controls. cDNA was generated by one-step RT-PCR 
using primers specific to correctly spliced CG7670 
(upper panel) or actin 5C (lower panel), yielding 
products of 854 bp (CG7670) and 652 bp (actin). 
Lanes 1, 2 CG7670e04496 homozygotes; lanes 3, 4 
CG7670e04496 heterozygotes; lanes 5, 6 wild type. 
Lanes 1, 3, 5 = male; lanes 2, 4, 6 = female.
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mwh1 CG7670e04496/CG7670e04496) and analysed microscopically

(Fig. 4A–C). The frequency and size of clones showing multiple

wing hairs was determined (Fig. 4D), demonstrating that mwh
clones occur at a very high frequency in the DmWRNexo
homozygous mutant flies, with an average of over 100 clones

per fly. This is in sharp contrast to flies heterozygous for

DmWRNexo which show a mean of 0.2 mwh clones per fly (data

not shown). Furthermore, some mwh clones in DmWRNexo
homozygous mutant wing blades were very large (> 500 cells)

(Fig. 4D), while the rare clones observed in heterozygous flies

were all single cells (data not shown). In addition to the very

high rates of recombination detected in DmWRNexo mutant

flies, these data also demonstrate that the CG7670e04496 allele

is recessive, as reported for patient-derived human WRN muta-

tions (Yu et al., 1996; Moser et al., 1999).

Cells in the wing blade showing the recessive multiple wing

hairs phenotype could genetically be either homozygous or

hemizygous for the mwh1 allele. Homozygous mwh1 cells would

result from mitotic recombination via a reciprocal exchange

event (Fig. 5A); daughter cells should be euploid without any

loss of proliferative fitness. By contrast, chromosome loss or

single chromosome/chromatid breakage events (Fig. 5B) would

give rise to segmentally aneuploid hemizygous mwh cells, which

would be predicted to proliferate more slowly than euploid cells.

To distinguish between these possibilities, we have measured

the size of each clone in terms of the number of cell cycles since

its generation, and plotted the proportion of clones in each size

class (on a logarithmic scale) against clone size (Fig. 5C). This

type of analysis informs on the nature of the event leading to

clone formation as the gradient of the plot reflects the growth

rate of the clones (Baker et al., 1978). If clones proliferate at

the same rate as surrounding normal cells, the gradient will

closely parallel the expectation (that clones of size class n will

be twice as numerous as clones of size class n + 1). Clones that

proliferate more slowly, as would be expected for segmental

aneuploids, would fit a line of steeper gradient. Our results

(‘Observed’, Fig. 5C) indicate that cells comprising wing blade

clones in DmWRNexo mutant flies proliferate essentially as

Fig. 3 DmWRNexo mutant flies are sensitive to 
camptothecin (CPT). Flies heterozygous for the 
CG7670e04496 allele were crossed and progeny 
reared on medium supplemented with various 
concentrations of CPT. The proportion of all 
emerging adult flies that were homozygous for 
CG7670e04496 was plotted against CPT 
concentration; heterozygous flies were fully viable 
at all CPT concentrations tested. The lower 
frequency of homozygous flies observed at 
increasing drug doses demonstrates 
hypersensitivity to CPT. n represents the ratio 
of CG7670e04496 homozygous: heterozygous flies. 
p-values refer to the Fisher exact test for the 
probability that the proportion of homozygotes 
was less than that of the control value (0 μM CPT). 
The error bars show binomial 95% confidence 
intervals.

Fig. 4 Hyper-recombination in DmWRNexo mutant flies. (A–C): Wing blades 
of flies homozygous for the hypomorphic allele of DmWRNexo (w; mwh1 
CG7670e04496/CG7670e04496) were analysed microscopically; mwh clones are 
outlined with a broken line. (A) single-cell clone, (B) 10-cell clone, and (C) 
moderate-sized clone of mwh cells. (D) Frequency of mwh clones in wing 
blades of DmWRNexo homozygous mutant flies (w; mwh1 CG7670e04496/
CG7670e04496) plotted against clone size, i.e. number of cells comprising the 
clone (number of clones counted: males n = 1278, females n = 1584). mwh 
clones were infrequent (0.2 per fly) in heterozygous controls, and all were 
single-cell clones (not shown).
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expected for euploid cells. However, the gradient is slightly

shallower than expected for two reasons. First, adjacent smaller

clones may have been scored as a single larger clone, and second,

the recombination events happening earlier in the lineage

of the clone (yielding large clones) depletes the pool of cells

from which later events (smaller clones) can occur. The actual

frequency of recombination events occurring may also be higher

than that observed, since sister chromatid exchange is not scored

in this assay. We therefore propose that mitotic recombination

is the predominant cause of mwh clones in these flies. Based

on mathematical simulations (data not shown), we estimate the

recombination frequency on chromosome arm 3L to be at least

0.01 event per cell division. Assuming a similar frequency

throughout the genome, this corresponds to an overall fre-

quency of at least 0.05 recombination events per cell division.

To further distinguish between chromosome breakage and

homologous recombination as the principal mechanism for the

elevated frequency of wing blade clones in CG7670e04496

homozygotes, we used a second cuticular marker, flare (flr,

recombination map position 3–38.8), which causes wing blade

hairs to be malformed. Wing blades of flies mutant for DmWRN-

exo and trans-heterozygous for mwh1 and flr3 (w1118; mwh1

CG7670e04496/flr3 CG7670e04496) were examined for mwh clones

(arising as a consequence of recombination in the chromosomal

interval between mwh and flr) and neighbouring mwh and flr
clones (twin spots), resulting from recombination proximal to

flr (Fig. 6). If the primary mechanism of genome instability in

DmWRNexo mutants is chromosome breakage, mwh flr twin

spots should be rare, while if mitotic recombination is the prin-

cipal cause of wing blade clones, twin spots will be frequent. The

observation of mwh flr twin spots at high frequency (Fig. 6E,F)

strongly suggests that wing blade clones in the DmWRNexo
mutants arise predominantly through mitotic recombination.

Because of the high frequency of recombination in CG7670e04496

homozygotes, numerical analysis of the twin-spot frequency is

difficult and further compounded by sequential repeated

recombination events in clone lineages, as inferred from the

observation of putative mwh flr double mutant cells (Fig. 6E,F).

Fig. 5 Reciprocal exchange is the major 
mechanism of mwh clone origin. (A, B) 
Recombinational origin of mwh clones. Flies are 
initially heterozygous for mwh1 and homozygous 
for CG7670e04496. The parental chromosomes 
(shown as two sister chromatids linked at the 
centromere) are depicted in grey (mwh+) and black 
(mwh1); the mwh locus is indicated by a tick mark. 
(A) Homologous recombination between mwh 
and the centromere gives rise to euploid mwh+/
mwh+ and mwh1/mwh1 daughter cells. (B) 
Chromosome breakage between mwh+ and the 
centromere gives rise to one euploid mwh1/mwh+ 
daughter cell of wild-type phenotype (and so not 
scored) and one aneuploid daughter cell that is 
hemizygous for the mutant mwh1 allele, and 
which therefore shows the mwh phenotype. 
(C) The proliferation rate of mwh clones supports 
mitotic exchange as the principal cause of clone 
formation. Logarithmic plot of the frequency of 
clones of each clone size class against clone size, 
where clone size is expressed in numbers of cell 
cycles completed. If recombination results in 
euploid cells which proliferate at a normal rate, the 
expectation is that clones of size n cell cycles 
should be twice as frequent as clones of cell cycle 
n + 1. This results in a line indicated as ‘Expected’ 
(broken line) in the graph. Should the causative 
mechanism result in slowly growing cells (for 
example, if the marked clones are derived 
from aneuploid cells), the distribution of clone 
frequencies would tend towards a line of steeper 
gradient. The gradient of the observed distribution 
(diamonds) corresponds well to the gradient 
expected (broken line) for euploid cells (see text 
for further details).
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Nonetheless, it is clear that a significant proportion of wing

blade clones are derived from homologous exchange. This is in

marked contrast to the high rates of chromosomal breakage

and loss observed in flies mutant for the RecQ homolog DmBLM

(mus309) (Kusano et al., 2001). Additionally CG7670e04496

homozygote males are fully fertile, inconsistent with chromo-

somal breakage.

Discussion

We have identified the locus CG7670 as the Drosophila ortholog

of human WRN exonuclease. The encoded DmWRNexo protein

shows significant structural and sequence similarities to human

WRN exonuclease domain, and moreover, a severe hypomorphic

mutation of the locus results in both hyper-recombination

and CPT hypersensitivity in flies, features characteristic of human

WS cells.

Our data demonstrate that loss of DmWRNexo function leads

to very high levels of recombination in the developing Dro-
sophila wing (and presumably also in other dividing tissues),

consistent with hyper-recombination reported in cells from WS

patients (Salk et al., 1981; Scappaticci et al., 1982; Fukuchi

et al., 1985). The high frequency of twin spots in wing blade

clones seen here strongly supports the assertion that the

majority of marked clones in the mutant flies arise as a result of

homologous recombination rather than chromosomal break-

age. We cannot at this stage rule out the possibility that non-

homologous end joining is also aberrant, as is the case in human

cells lacking functional WRN (Chen et al., 2003; Otsuki et al.,
2007), since such end joining is unlikely to yield scoreable clones

in the assays used here.

Mechanistically, it has been difficult to differentiate between

the impact of the exonuclease and helicase activities of WRN

in vivo since RNAi ablates all activities, while point mutants may

act as dominant negatives (Crabbe et al., 2004). By studying a

model organism in which the WRN exonuclease activity is

encoded on a genomic locus distinct from any putative partner

helicase, we can readily ablate the exonuclease activity without

the possibility of creating dominant negative complexes. Our

data presented here clearly demonstrate the importance of

WRN exonuclease in restraining mitotic recombination. Further-

more, it is likely that at least some of the recombination

detected in the DmWRNexo mutants occurs as a result of defi-

ciencies in resolving aberrant DNA structures arising during DNA

replication. The observed hypersensitivity of CG7670e04496

homozygotes to CPT is indicative of a role for DmWRNexo at

collapsed replication forks, as predicted from human studies

(Pichierri et al., 2001; Rodriguez-Lopez et al., 2002, 2007; Pirzio

et al., 2008). Human WRN can regress replication forks in vitro
(Machwe et al., 2006); how it supports re-establishment of

collapsed forks in vivo is less clear, but our data suggest that

the exonuclease activity of WRN may be important in preventing

hyper-recombination at this stage. We speculate that DmWRN-

exo, like human WRN (Saintigny et al., 2002; Dhillon et al., 2007;

Rodriguez-Lopez et al., 2007), may act to prevent Holliday junc-

tion accumulation at stalled or collapsed replication forks, and

that DNA end processing activity of the exonuclease (Perry et al.,
2006) may be critical to direct fork re-establishment. Such end

processing could result in removal of DNA strands that would

otherwise be used in the strand invasion step in homologous

recombination. Thus, in cells lacking DmWRNexo, collapsed

replication forks (such as at CPT-induced breaks) would persist,

and promote Holliday junction formation and homologous

recombination.

This study demonstrates the strength of using a genetically

amenable model system for analysis of genes associated with

genomic instability and human aging, even though the adult is

largely postmitotic; absence of DmWRNexo function through

fly development manifests as a hyper-recombinant phenotype

in the mature adult. This raises the exciting possibility of using

the short-lived fruit fly as model system for analysis and experi-

mental modulation of WRN function in vivo.

Fig. 6 Twin-spot analysis confirms that hyper-recombination occurs through 
reciprocal exchange. (A) Position of mwh1 and flr3 markers relative to the 
centromere and CG7670 locus on chromosome 3 (not to scale). (B–F) Wing 
blade twin-spot mwh flr clones were analysed microscopically. mwh clones 
are outlined with red broken lines and flr clones by blue broken lines. 
(B, C) mwh-flr twin spots resulting from recombination proximal to flr 
(within interval (b) in diagram). (D–F) complex clones indicating sequential 
recombination events. Arrows in (E), (F) and the inset in (E) indicate a possible 
mwh flr double mutant cell.



Drosophila WRN exonuclease maintains genome integrity, R. D. C. Saunders et al.

© 2008 The Authors
Journal compilation © Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland 2008

424

Experimental procedures

Bioinformatics

BLAST searches (Altschul et al., 1997) were conducted against

Release 4.0 of the Drosophila melanogaster genome sequence,

and reciprocally against the human protein RefSeq database.

BioEdit was used to generate the alignments following process-

ing with Clustal W. Structural predictions were carried out using

SWISS-MODEL (Peitsch, 1996; Schwede et al., 2003) based on

the structure of human WRN exonuclease domain (Perry et al.,
2006).

DNA and RNA analysis

Total RNA was extracted from flies using RNeasy spin columns

(Qiagen, Crawley, West Sussex, UK) and quantitated using a Qubit

fluorometer (Invitrogen, Paisley, UK). For analysis of transcript

levels, one-step RT-PCR (Qiagen) was carried out with gene-specific

primers (CG7670 Exon1–2 F: 5′-ATGAAGTTCCCAAGGAAGAGG-

3′; CG7670 Exon1–2 R: 5′-GATGGCGGCGTACATTAGTT-3′; actin

5C F: 5′-CACCGGTATCGTTCTGGACT-3′, actin 5C R: 5′-GGACT-

CGTCGTACTCCTGCT-3′) using 0.5 μg total RNA. Products were

analysed on 0.9% agarose gels stained with ethidium bromide,

against a 100-bp ladder (Roche, Burgess Hill, West Sussex, UK).

To clone CG7670, cDNA was prepared from freshly isolated

RNA from female flies (TM6B/TM3, wild type for CG7670) using

Omniscript reverse transcriptase (Qiagen) and random hexamer

primers (Operon, Cologne, Germany) or oligo-dt(16) primers

(Applied Biosystems, Warrington, UK). The cDNA was PCR-

amplified using pfx50 proofreading DNA polymerase (Invitro-

gen) and primers Forward F1A (CGGGTTATGGAAAAATATT-

TAACAAAAATGCCC) and Reverse R-2 A

(AGCTTACAGAGTCACCTCGTTGATCTTGG), to yield a blunt-

end PCR product which was cloned into TOPO vector (Zero

Blunt®TOPO® PCR Cloning Kit, Invitrogen). DNA sequencing was

performed in-house by Geneservice on an ABI 3730xl DNA Analyser.

Fly stocks

Fly stocks were obtained from the Bloomington Drosophila
Stock Center (http://flystocks.bio.indiana.edu/), and were main-

tained on a standard oatmeal, yeast, molasses and agar

medium. Wing blades were dissected from flies stored in 70%

ethanol, mounted in Gary’s Magic Mountant (Lawrence et al.,
1986) and analysed by brightfield microscopy.

Camptothecin sensitivity studies

Fly medium containing 60 g L–1 each of dextrose and yeast, 3%

w/v nipagin and 3% v/v propionic acid was supplemented with

CPT in a 5% ethanol/5% Tween-20 solution to achieve final CPT

concentrations of 0–0.8 μM in vials containing 10 mL fly food

(Cunhe et al., 2002). Heterozygous CG7670e04496/TM6B flies

were crossed and eggs were seeded into 4–5 vials per dose at

~200 eggs/vial, according to Clancy & Kennington (2001) and

allowed to develop at 18 °C. Surviving heterozygous and

homozygous adult flies were scored.
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