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Abstract

We report a novel algorithm, iBLUP, to impute missing genotypes by simultaneously and comprehensively using identity by
descent and linkage disequilibrium information. The simulation studies showed that the algorithm exhibited drastically
tolerance to high missing rate, especially for rare variants than other common imputation methods, e.g. BEAGLE and
fastPHASE. At a missing rate of 70%, the accuracy of BEAGLE and fastPHASE dropped to 0.82 and 0.74 respectively while
iBLUP retained an accuracy of 0.95. For minor allele, the accuracy of BEAGLE and fastPHASE decreased to 20.1 and 0.03,
while iBLUP still had an accuracy of 0.61.We implemented the algorithm in a publicly available software package also named
iBLUP. The application of iBLUP for processing real sequencing data in an outbred pig population was demonstrated.
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Introduction

Benefited from the advances of sequencing technologies,

Genome-Wide Association Studies (GWAS) have revealed sub-

stantial genetic loci controlling human diseases and agriculturally

important traits [1–3]. However, the identified loci collectively

explain only a small proportion of total variation [4–7]. In

addition to the path of common diseases and common variants,

the new path of common disease and rare variants shed a new

hope to have a better understand of complex traits [8].

Multiplexing is one the advances that revolutionized the high

throughput Genotyping By Sequencing (GBS). Samples are

individually tagged and pooled into a single lane of flow cell. It

exponentially increases the number of samples analyzed in a single

run without dramatically increasing cost and time [9].

Recently, several GBS methods used for both inbred and

outbred population have been developed [10,11]. The challenge is

that the sequencing data contains a lot of missing genotypes.

Imputation of missing genotypes at high missing rate is hard and

imputation for rare variants are extreme hard, especially for

general outbred populations because of the high degree of

heterogeneity and phase ambiguity in the haplotype [12].

The information for imputation can be divided into two

categories. One is linkage disequilibrium (LD) among genetic loci;

the other is the relationship, termed identity by decent (IBD),

among individuals [13]. Imputation methods have been developed

to use either of them, or both with different degrees of complexity.

These methods include allele frequencies based methods(PLINK,

SNPMSTAT, UNPHASED, and TUNA), Hidden Markov Chain

based methods(IMPUT, MACH, fastPHASE), mixed model based

methods (S-MM,M-MM) and graphic theory based method(BEA-

GLE) [14–22]. A clear linkage phase, such as a haplotype, is the

most desirable situation for most of the algorithms to work with

[13]. However, phasing becomes extremely difficult with GBS at

low coverage with high missing rate, especially in outbred

population such as human, maize landrace, dog, cattle and pig

where heterogeneity is high [23]. As we known, none of the

existing methods can work well for the GBS data with low

coverage and high missing rate in outbred population and no

convenient software can impute the missing genotypes based on

this kind of data. The objective of this study was to make full usage

of LD and IBD simultaneously and develop a genotype imputation

algorithm and software with tolerance to high missing rate,

especially for rare variants.

Methods

Approval by the Institutional Animal Care and Use Committee

of Shanghai Jiao Tong University (contract no. 2011–0033) was

given for all experimental procedures involving pigs in the present

study. All the 72 sequenced pigs were housed in Shanghai

Xiangxin Livestock Ltd. Co., Shanghai, China, and were raised

according to the standard practice for housing and care of

Xiangxin Livestock Ltd. Co.(http://www.shxxgx.com/sygl.htm).

Additional information of the sequenced pigs was shown in Table
S1.
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1 iBLUP method
The chromosomes were divided into a large number of blocks

on the basis of the extent of LD, and the LD of any two markers in

a block is necessarily greater than some criteria. The marker that is

less than some criteria will be removed from the block and will be

imputed by a single variable BLUP model. All the markers in one

block were analyzed by modeling using multivariate BLUP, and

missing genotypes were predicted simultaneously. The imputation

model for each marker in the block was:

yi~XibizFiaizei ð1Þ

Where yi is an observed genotype vector for the number of copies

of the minor allele (0, 1 or 2) for the marker, The length of the

vector equals the number of individuals, bi is the fixed effect and Xi

is the design matrix for bi, ai is the effect underlying the observed

genotype, Zi is the design matrix for ai and ei is the residual. The

vector bi and ai have the same length as yi.

Assumed that there are m markers in one block, i from 1 to m,

we set
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âa

" #
~

X0R{1Y

Z0R{1Y

" #
ð2Þ

where R is the residual variance–covariance matrix. Following

Gengler et al. (2007), we set
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where rij is the correlation between markers i and j. When the

value of rij was .0.95 (or ,20.95), rij was set to 0.95 (or 20.95) to

avoid the singularities matrix [22].

K~
1

m

Xm

k~1

ZkZT
k

is a marker-based kinship matrix [24] and we develop an iterative

kinship algorithm to construct the matrix considering the missing

data described in a later section. The symbol 6 represents the

Kronecker product.

2 Iterative kinship algorithm
In the model, K was calculated using the iterative algorithm

because of the high missing rate of the genomic genotype data.

The initial K was calculated using only the genotype data from

genotyped individuals, and homogenized after dividing by the

number of common typed loci. The following K was calculated

using the imputed genotype based on BLUP. When the difference

between the correlation coefficients of two continuous K values is

,0.001, the iterative process is finished. To ensure that K

converged, we forced the imputed genotype of multivariate BLUP

to be 0 (or 2), if it is ,0 (or .2). To improve the computation

speed, the Equation (2) was solved with an LU-factored method

based on subroutines from the IntelR Math Kernel Library using

parallel execution on Linux workstations.

3 iBLUP pipeline
The iBLUP pipeline can deal with both SNP array and

sequencing data. The analysis steps are dependent on the kind of

input data. If SNP array data is the input data, only step 5 need be

performed. If user wants to impute sequencing data directly, all the

5 steps can be run automatically. We introduce the analysis steps

briefly as follow, and the details can be found in the online manual

(http://klab.sjtu.edu.cn/iBLUP/).

Step 1. To assign raw sequencing reads to individuals.

Step 2. To filter reads on quality.

Step 3. To map qualified reads to reference genome. The

qualified reads are clustered by aligning reads with the reference

genome using BWA [25] by the following steps. We first mapped

all filtered reads to the reference panel and then attempted to

divide remaining single reads into two or three shorter reads

according to the sequences of enzyme cutting sites to align them

individually with the reference genome because of uncertain

ligation, such as adapter-DNA-DNA-adapter. We then used the

sliding window method to query the remaining reads to ensure

that we can make use of the incomplete reference panel. The rule

of the sliding window is that the selected 25 uninterrupted bases

from the first base at the 59 end of a read was aligned with the

reference genome and a single base was added at each alignment

until the maximum aligned sequence was reached. If the first

25 bp at the 59 end were not aligned successfully, the next 25 bp,

Figure 1.The mechanism and performance of iBLUP. The figure
illustrates how observed genotype with missing value is imputed by
Best Linear Unbiased Prediction (BLUP). The imputation uses both
relationship among markers represented by Linkage Disequilibrium
(LD), and relationship among individuals represented as Identity By
Decent (IBD).G and K are the genetic variance–covariance matrix and
marker-based kinship matrix respectively, and the symbol 6 represents
the Kronecker product.
doi:10.1371/journal.pone.0101025.g001
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i.e. base pairs 2–26, were aligned with the reference genome and

so on.

Step 4. To call genotype for each marker and individual. Reads

that aligned with the reference panel were stored as ‘‘sam’’ files.

Our iBLUP applied SAMtools to discover SNPs [26].

Step 5. To impute missing genotypes by iBLUP.

4 Simulation data
There were 3220 individuals genotyped on 9990 markers in the

15th QTL-MAS workshop [27]. The 9,990 SNP markers were

evenly distributed on 5 chromosomes. Each chromosome had a

size of 1 Morgan and carried 1998 SNPs equally distributed (1

SNP every 0.05 cM). The 3220 individuals were from two

generations, of which 220 individuals (200 females and 20 males)

are parents, and the remaining 3000 individuals are offspring to be

divided into 200 full-sib families consisting of 15 progeny per dam,

which were generated by regular cross-hybridization of male and

female parents (See Figure S1a). All the genotype of 9,990 SNPs

on the 3220 individuals are known. Subset of individuals were

sampled from the workshop data under two sampling schema: 1)

Half sib schema. The sampled data included all the parents (20

males and 200 females) and two progeny selected randomly from

each full-sib family. This schema sampled more families with

smaller family size (See Figure S1b). 2) Full sib schema. The

sample data included 5 males, the corresponding mates and eleven

progeny from each full sib family. This schema sampled fewer

families with larger family size (See Figure S1c). A subset of

markers were sample from the entire genetic markers (9,990) to

investigate the effect of marker density. One of marker was

selected for every five adjacent five markers. The sampled marker

data set contained 1998 markers. The known genotype data were

randomly masked as missing data at specific proportions. The

proportions were ranged from 10% to 80%. Accuracy was

calculated as Pearson correlation coefficient between known

genotype and imputed.

5 Real sequencing data
The data were generated from an Illumina High-seq 2000

sequencer. A flow-cell lane was used to sequence 72 pigs (36

Landrace pigs and 36 Large White pigs) by using a DNA

barcoding and genome reducing protocol (http://klab.sjtu.edu.

cn/GGRS/). There were 380,971,530 raw reads. The number of

reads per individual ranged from 1,570,923 to 10,077,526 and the

average was 5,022,387.

Results

We were motivated to develop a non-phasing algorithm [28] in

5a multivariate mixed model (M-MM) [22]. To take full advantage

of a M-MM to fully incorporate both LD and IBD simultaneously,

we made two major changes to enhance the representations of

marker IBD information on the relationship matrix (K) among

individuals, and marker LD information on the covariance matrix

(G) of underlying variables (See Figure 1). First, we replaced

overall IBD derived from the pedigree by the IBD derived from

the markers. We developed an iterative algorithm to derive a

robust IBD to situations with missing genotypes. Second, instead

of using an arbitrary fixed size of LD block (e.g. two mega base

pair), we implemented an optimization process to determine the

LD threshold that to determine a variable size of LD block. The

value of LD was represented as the squared correlation coefficient

(r2) calculated for the markers on the LD block. Our improved

method of imputation by Best Linear Unbiased Prediction

(iBLUP) had markedly higher accuracy than the conventional
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M-MM method, even higher than the sophisticated graphic

phasing method (BEAGLE), especially for situations with high

missing rate.

The performance of iBLUP was compared to three other types

of commonly used methods, M-MM, BEAGLE and fastPHASE

on a data set from 15thQTLMAS. The iBLUP method

outperformed over M-MM at all range of missing rates. When

missing genotypes were below 40%, iBLUP had similar accuracy

to BEAGLE and fastPHASE. With higher missing rates, iBLUP

markedly outperformed BEAGLE and fastPHASE. At a missing

rate of 50%, the accuracy of fastPHASE dropped to 0.79 while

iBLUP retained an accuracy of 0.98. At a missing rate of 70%, the

accuracy of BEAGLE fell to 0.82 while iBLUP held an accuracy of

0.95 (Table 1).

It is critical to dissect overall accuracy across all genotypes into

major and minor allele genotypes. The major genotypes can be

accurately imputed for rare variants if the accuracy of minor allele

is ignored. The iBLUP method is superior to BEAGLE and

fastPHASE not only on overall accuracy, but also for minor allele

genotypes. When missing rate was 60%, the accuracy of

fastPHASE dropped to 20.01, iBLUP kept an accuracy of 0.72

for minor allele genotypes. At missing rate of 70%, the accuracy of

BEAGLE dropped to 20.1, while iBLUP still retained an

accuracy of 0.61 for minor allele genotypes (Table 2).

We expanded our examination over a variety of circumstances.

First we examined the responses of imputation accuracy to the

level of kinship among individuals. Two subsets of the data from

the QTLMAS 15th dataset were used for the examination. The

two datasets contained all the available markers with the average

LD value of 0.137, but varied on family structure. The first dataset

consisted of a family structure of two full-sib individuals sampled

from each family and the second dataset consisted of a family

structure of parents and their eleven progeny. The average kinship

coefficients were 0.0073 and 0.048 for the first and second family

structures, respectively. In both cases, iBLUP had better imputa-

tion accuracy than BEAGLE and fastPHASE at missing rates

ranged from 60% to 80% (Table 3).

Second, we examined the effect of markers density on

imputation accuracy. The half sib family structure described

above was used with two set of markers. One set contained all the

available markers (9990 SNPs) with average LD of 0.137 and the

other contained one fifth markers (1998 SNPs) with average LD of

0.092.Compared to BEAGLE and fastPHASE, iBLUP performed

higher imputation accuracy at missing rate ranged from 60% to

80% in both cases (Table 3).

We implemented the iBLUP algorithm in a publicly available

pipeline also named iBLUP. The imputation step can be used

independently for any genotype data, including the ones from

DNA chips. The imputation step can also be used for raw

sequencing data after four prior steps in iBLUP pipeline

(Figure 2).

The iBLUP pipeline provides users the option to optimize the

LD threshold to determine the extent of the LD block. We

examined the imputation accuracy with LD thresholds of 0.05, 0.1

and 0.2 on the QTLMAS 15th dataset at missing rate of 30%

(Figure S2). The analysis showed that an LD threshold of 0.1

would achieve the highest imputation accuracy. Interestingly, this

threshold was also observed as the optimum value of LD threshold

Figure 2. Diagram of iBLUP pipeline. (1) Blended raw data were generated from the same flow cell lane. (2) Raw data were assigned to
individuals according to the barcode. (3) Assigned reads were filtered for high quality reads according to several rules, including trimming the
barcode and the last low quality base etc. (4) Filtered reads were aligned with the reference sequence. (5) SNP calling and genotyping were done
according to the mapping results. (6) Missing genotypes were imputed by the iBLUP algorithm.
doi:10.1371/journal.pone.0101025.g002

Table 4. Imputation accuracy of real pig sequencing data.

Method 36% 50% 60% 70% 80%

iBLIUP 0.97 0.97 0.96 0.96 0.95

BEAGLE 0.92 0.92 0.91 0.91 0.91

doi:10.1371/journal.pone.0101025.t004
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for the pig sequencing data. This observation might help narrow

the optimization range for LD to reduce computing cost in other

experiments.

We applied the iBLUP pipeline to sequencing data from a pig

outbreed population for high-density SNP discovery and geno-

typing. The sequences were collected in one lane of a single flow-

cell at 72-plex by a genome reducing and sequencing protocol

(http://klab.sjtu.edu.cn/GGRS/). There were 36% of missing

data among 403,928 SNPs called. The accuracy of imputation is

97% for iBLUP and 92% for BEAGLE. In order to make a

comparison of imputation accuracy between iBLUP and BEA-

GLE, known genotypes were masked as missing at four other

different rates: 50%, 60%, 70% and 80%. The imputation

accuracy decreased with the increase of missing rates for both

methods. The iBLUP method outperformed over BEAGLE at all

range of missing rates for the real sequencing data (Table 4).

Discussion

Missing genotype imputation is a critical process between

sequencing and utilization for GWAS and genomic prediction

[29–31]. Imputation accuracy relies on how well LD and IBD

information are incorporated. IBD information is widely used in

population and quantitative genetics. It is traditionally calculated

from pedigree [32]. An alternative way to estimating IBD

coefficients is from genetic markers [33]. This marker-based IBD

more accurately specifies the actual difference between individuals

and is superior to the pedigree kinship for genome-wide

association studies [34]. The similar advantage was brought to

genotype imputation in this study.

The accuracy improvement of iBLUP also relate to the

optimization to determine the LD block. We demonstrate that it

was critical to have an appropriate LD block for imputation. Too

broad or too narrow LD blocks would lead to the information

dilution (Figure S2). The best LD block size can be determined

by the optimization process in iBLUP. The suggested LD

threshold of 0.1 can be used to save computing time or a starting

value of optimization.

The tolerance of iBLUP to high missing rate makes it possible to

gain markers at high density. Take the pig data for example,

haplotype blocks are about 10 kb within pig breed [35]. We need

to identify markers that cover around 300,000 genomic locations

at least for the GWAS or GS studies (one SNP per haplotype

block). However, the commonly used pig DNA chip (Porci-

neSNP60) only contains 60,000 SNPs [36]. In the present pig

sequencing experiment, we only use one lane of flow cell for 72-

plex. After imputation of 36% of missing genotypes, we gained

more than 403,928 SNPs, which has much better coverage than

the commonly used chip.

One of the limitations of our proposed iBLUP is the computing

speed for large sample size. When the sample size is medium (,

300), the computing speed of iBLUP can compare with BEAGLE.

Take the real 72 pig sequencing data (403,928 SNPs) for example,

it takes about 20 minutes to perform imputation for both iBLUP

and BEAGLE; 18 hours for fastPHASE. When the sample size is

large, iBLUP will take more time than BEAGLE. To improve the

computation speed, our iBLUP software can be run in parallel.

Recently, factored spectrally transformed linear mixed models has

been developed to improve the computing speed of genome-wide

association studies [37,38]. The idea can be applied in the iBLUP

algorithm to improve the computing speed in the future.

A comprehensive package is provided at iBLUP website,

including executable programs on multiple computing platforms

(Linux and Windows) and demonstration data. The usage of

iBLUP would boost imputation accuracy, especially for high

missing genotypes and rare variants. Consequently it would lead to

a better understanding the genetic architecture of complex traits in

multiple organisms.

Supporting Information

Figure S1 The scheme of sampling Individuals. The top panel

(a) is the complete pedigree of the 15thQTLMAS workshop data

[27]with 20 sires. Each Sire (S) mated with 10 Dams (D). Each

dam produced 15 Progeny (P). All individuals are named

randomly with sequential number. The first subscript indicates

sire, the second indicates dam the third indicates progeny. The

total numbers of individuals within each category are labeled on

the fight column. The middle panel (b) keeps all the sires and

dams. The difference (highlighted in red) is that each sire-dam

family keeps only the first two progeny. This scheme has more

families (all) and less progeny within family. As half sib is the major

relationship among individuals, this scheme is named half sib

scheme. The bottom panel (c) keeps the first 5 sires and their mates

from panel a. Each sire-dam family keeps eleven progeny. This

scheme has fewer families but more progeny within family. As full

sib is the major relationship among individuals, this scheme is

named full sib scheme.

(TIF)

Figure S2 Impact of linkage disequilibrium threshold. The

Linkage Disequilibrium (LD) was calculated as the squared

correlation coefficient. The adjacent markers with LD above the

threshold were considered as a LD block to perform imputation.

The evaluation was performed on subset of the 15th QTLMAS

common dataset by using the half-sib sampling scheme described

in Figure S1. A total of 100 replications were conducted and the

imputation accuracy is the average of 100 replications.

(TIF)

Table S1 Additional information of the 72 pigs that were

sequenced.

(DOCX)
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