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Object recognition is challenging because the same object can
produce vastly different images, mixing signals related to its
identity with signals due to its image attributes, such as size,
position, rotation, etc. Previous studies have shown that both
signals are present in high-level visual areas, but precisely how
they are combined has remained unclear. One possibility is that
neurons might encode identity and attribute signals multiplica-
tively so that each can be efficiently decoded without interference
from the other. Here, we show that, in high-level visual cortex,
responses of single neurons can be explained better as a product
rather than a sum of tuning for object identity and tuning for
image attributes. This subtle effect in single neurons produced
substantially better population decoding of object identity and
image attributes in the neural population as a whole. This
property was absent both in low-level vision models and in deep
neural networks. It was also unique to invariances: when tested
with two-part objects, neural responses were explained better as a
sum than as a product of part tuning. Taken together, our results
indicate that signals requiring separate decoding, such as object
identity and image attributes, are combined multiplicatively in IT
neurons, whereas signals that require integration (such as parts in
an object) are combined additively.
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Despite tremendous advances in computing, object recogni-
tion remains an extremely challenging problem (1–3). This

is, in part, because the same object can produce images that vary
in size, position, orientation, and depth depending on its location
relative to the observer. As a result, the image impinging on the
retina contains signals unique to the identity of an object mixed
with signals related to its specific image attributes (i.e., its image
size, image position, viewpoint, etc.). How does the brain repre-
sent object identity and image attributes so as to enable efficient
recognition?
Efforts in understanding this question have focused on the

inferior temporal (IT) cortex in the monkey, an area critical for
object recognition (4–6). Early proposals focused on the exis-
tence of highly invariant (grandmother) cells that encode object
identity while discarding all image attributes (7). This idea has
largely been discredited, because most IT neurons are modu-
lated by both object identity and attributes, such as position and
size (8–10). This has recently been reconfirmed by the fact that
neural activity in IT can be used to decode object identity across
changes in attributes (11–13) as well as the image attributes
themselves (13, 14). Recent studies have shown that the same
cells are strongly modulated by both object identity and image
attributes (15, 16) and that they also maintain their object pref-
erence across size, position, and orientation (16). These findings
show that both object identity and image attribute signals are
encoded independently by IT neurons but do not specify how they
might be combined or what would be an efficient way to do so.
We compared two distinct mechanisms by which these signals

might be combined: additively or multiplicatively. Although the
sum and product are closely related, we reasoned that this subtle
difference can have large functional consequences for how the
underlying signals can be decoded. For instance, when two sig-

nals are added, a small signal might modulate the sum much less
than a large signal, making the smaller signal difficult to decode.
In contrast, when signals are multiplied, a small signal can
modulate the product as effectively as a large signal, allowing
both signals to be easily decoded.
We tested these possibilities by recording from IT neurons

using natural objects sampled across a variety of viewing condi-
tions. In all cases, neural responses were accurately explained as
a product rather than sum of tuning for object identity and
tuning for image attributes such as size, position, and viewpoint.
By comparing the information available with additively and
multiplicatively mixed responses, we found that multiplicative
mixing yielded better decoding of both object identity and at-
tributes. This multiplicative mixing was absent both in low-level
vision models as well as in deep convolutional neural networks, but
it tended to increase across successive layers of these networks.
This property was unique to invariances: when tested with objects
created by combining parts, neural responses were better explained
as a sum (not product) of part tuning.

Results
We compared two specific ways according to which neurons
might combine object identity and image attribute signals: add-
ing or multiplying them. To illustrate these possibilities, consider
two simulated neurons with identical tuning for objects and im-
age attributes (say size). In the first neuron, the response to a
particular object (o1) presented at a particular size (s2) would be
rðo1, s2Þ= xoðo1Þxaðs2Þ, where xo and xa represent object and size
tuning, respectively. Thus, its responses combine object and size
tuning multiplicatively (Fig. 1A). In the second neuron, its re-
sponse is given by rðo1, s2Þ= xoðo1Þ+ xaðs2Þ; in other words, its
responses combine object and size tuning additively (Fig. 1B). It
can be seen that multiplying these signals results in more selec-
tive responses than when adding them and therefore, leads to
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better decoding of both signals. To quantify this, we trained a
linear classifier on the response of each simulated neuron to
decode object identity or attribute (Methods). Across many
randomly chosen tuning functions, we obtained consistently
better decoding from neurons with multiplicative mixing com-
pared with additive mixing (Fig. 1C). When the underlying object
and size tuning are unknown, these can be estimated by re-
cording the neural response to many objects across many sizes.
This allows us to ask whether the complex response properties of
IT neurons can be explained by additive or multiplicative mixing.
We hypothesized that IT neurons might combine signals

multiplicatively when they require independent decoding but ad-
ditively when they require signal integration. We tested this hy-
pothesis across five experiments, which are summarized in Fig. 1D.
In experiments 1–4, we tested IT neurons on images of objects
varying in size, position, in-plane rotation, and in-depth rotations.
In experiment 1, we investigated neural responses to images of
objects varying along a number of identity-preserving attributes:
size, position, in-plane rotation, and in-depth rotations about the y
axis. In experiments 2–4, we investigated in-depth rotations in
greater detail for objects (experiment 2), cardinal axis rotations
(experiment 3), and faces (experiment 4). Across all experiments,
neural responses were explained better as a product (not sum) of
tuning for object identity and attributes. In experiment 5, we tested
IT neurons using two-part objects. Here, we predicted that part
signals will require integration and therefore, combine additively.

Object Tuning Across Multiple Image Attributes (Experiment 1).Here,
we recorded the responses of 127 neurons to objects with bal-
anced changes in size, position, orientation (i.e., in-plane rota-
tion), and viewpoint (i.e., rotations in depth). The response of a
representative IT neuron is depicted in Fig. 2A for all objects
across all image attributes. In the resulting color map, strong
responses along a column indicate that the neuron prefers a
particular object across all attributes, and strong responses along
a row indicate preference for a particular attribute (size/position/
rotation/view) across all objects. These patterns, in turn, indicate
separable tuning for objects and their image attributes. To quantify

how combined tuning for object identity and image attribute can be
predicted by individual tuning for identity and tuning for attributes,
we fit a multiplicative model to the observed responses (Fig. 2B).
To avoid overfitting, we used one-half of all trials to estimate
separate tuning for object identity and attribute signals (Methods),
generated a predicted response for objects across attributes, and
compared it with the observed response on the other one-half of
the trials. For this neuron, we obtained an excellent correlation
between observed and predicted responses (r = 0.86, P <
0.00005) (Fig. 2C) that was as good as the consistency of its
firing across two halves of trials (mean ± SD across many split
halves: r = 0.80 ± 0.03). Other examples of observed responses
and multiplicative model fits are shown in Fig. 2D.
This pattern was true across the entire population as well:

multiplicative model predictions were correlated with observed
responses (average correlation: r = 0.55 ± 0.19 across 112 neu-
rons with a significant split-half correlation) across a majority of
cells (108 of 112 cells showed a significant correlation, P < 0.05).
This relatively low model correlation could stem from noisy
neural firing or from systematic variations in the response that
cannot be explained by the model. To assess this possibility, we
reasoned that the upper bound for any model derived from odd
trials to predict the firing rate on even trials would simply be the
degree to which odd trials themselves predict even trials.
Therefore, we calculated a normalized correlation for each
neuron, wherein we divided the model correlation by the split-
half correlation. The normalized correlation for the multiplica-
tive model was close to 1, indicating that it explains all of the
explainable variance in the response (Fig. 2E) (normalized cor-
relation, mean ± SD: 1.10 ± 0.26 across 112 neurons with a
significant split-half correlation; values larger than 1 typically
came from neurons with low split-half correlation). This high
degree of fit persisted even on assessing each attribute separately
(normalized correlation, mean ± SD: 1.07 ± 0.18, 1.05 ± 0.25,
1.02 ± 0.19, and 1.02 ± 0.23 for size, position, rotation, and view,
respectively). This high degree of fit was present in both early
and late stages of the neural response (normalized correlation,
mean ± SD: 0.99 ± 0.44 for firing rates during 0–100 ms; 1.09 ± 0.22
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Fig. 1. Multiplicative vs. additive mixing. (A) Re-
sponse of a simulated neuron with identical tuning
for objects and attributes (10 levels each) that is
combined multiplicatively. It can be seen that multi-
plying the two signals results in sharply tuned re-
sponses. (B) Response of a simulated neuron with the
same tuning as in A but combined additively. It can
be seen that adding the signals produces broadly
tuned responses. (C) Average accuracy of object or
attribute decoding for simulated single neurons with
randomly initialized but identical tuning for both
object and attribute. It can be seen that multiplying
signals leads to more accurate decoding than adding
them. Error bars represent SEM across iterations. The
dashed line represents chance decoding (1 of 10 ob-
jects = 10%). Asterisks represent statistical significance.
****P < 0.00005, sign rank test on decoding accuracy
across 100 simulated neurons. (D) Schematic of five
experiments in this study. In experiments 1–4, we ma-
nipulated objects along several image attributes.
Experiment 1 comprised the same set of objects ma-
nipulated in size, position, in-plane rotation, or 3D
view. Experiment 2 consisted of objects manipulated
across several 3D views. Experiment 3 consisted of ob-
jects rotated along the cardinal axes. Experiment
4 consisted of faces rotated in depth. In experiment 5,
we tested part integration in objects by creating a
large number of objects by combining the same seven
parts on the left or right side.
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for firing rates during 100–200 ms), suggesting that multiplicative
separability remains stable over time. Thus, the multiplicative
model explained virtually all of the systematic variation in the
neural firing.
To be sure that the multiplicative model was indeed the best

model, we compared it with several alternative models. The
primary alternative was an additive model, in which object and
image attribute tuning add instead of multiply. We note that this
model is difficult to distinguish from the multiplicative model,
because the sum and product of two numbers always covary: for
instance, the sum and product of two sets of 100 numbers gen-
erated using a Poisson process with mean 10 spikes per 1 s are
strongly correlated (r = 0.98, P < 10−72). Nonetheless, the sum
and product of two numbers produce subtly but quantitatively
different predictions, using which they can be distinguished,
particularly when the numbers are disparate. Indeed, the nor-
malized correlation of the additive model was slightly but sig-
nificantly worse compared with the multiplicative model (Fig.
2E). Likewise, on calculating the residual error of the two
models, the multiplicative model produced smaller residual er-

rors for large/small observed firing rates (Fig. 2F). Finally, the
advantage of the multiplicative model over the additive model
was apparent at all levels of firing reliability (SI Text).
We also considered an object-only model, which considered

only object preferences and discarded all image attribute mod-
ulation. This model yielded considerably worse fits to the data,
indicating that very few neurons were perfectly invariant (Fig. 2
E and F). Finally, we considered an attribute-only model, which
considered only image attribute preferences and discarded all object
identity modulation. This model too yielded considerably worse fits
compared with the multiplicative model (Fig. 2 E and F).

Do Fully Invariant Cells Carry More Information? The above results
show that, on average, the response of IT neurons can be explained
using a product of identity and image attribute tuning. However,
there may be smaller subgroups of invariant cells that may be the
neural substrate for invariant object recognition. To evaluate this
possibility, we performed an ANOVA on the firing rate across trials
of each neuron with object identity and attribute as factors. A ma-
jority of all neurons (83 of 127 or 65%) were modulated by both
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identity and attribute, whereas only 18% of cells (23 of 127) were
modulated only by object identity but not by attribute (i.e., poten-
tially invariant). Are the invariant cells more selective (and there-
fore, more informative) for objects compared with the cells with
both identity and attribute effects? To assess this possibility, we
measured the sparseness of each neuron across objects (Methods)
and compared the two groups of cells. Cells modulated by both
identity and attribute were more sharply tuned for objects compared
with the cells modulated only by identity (average object sparseness:
0.06 for 23 object-only cells; 0.12 for 83 object and attribute cells,
P < 0.005, rank sum test on sparseness). Likewise, cells modulated
by both identity and attribute yielded more accurate decoding of
object identity than cells modulated only by identity (decoding ac-
curacy: 43% for cells with identity and attribute modulation, 22%
for object-only cells, P < 0.00005 using bootstrap sampling; chance
performance = 10%). Thus, cells with multiplicative modulation of
identity and attribute are the majority of cells in IT cortex and are
strongly selective for object identity.
The above results are based on testing neurons using object

images that varied along four attributes: size, position, orien-
tation, and viewpoint. In doing so, we equated objects to have
the same overall size, position, etc. before systematically
changing these attributes (we note that equating viewpoint is
nontrivial; see below). To confirm that equating attributes
across objects was indeed important, we shuffled the responses
of each object so that objects are no longer equated for their
attributes. Shuffled responses were fit equally well by the
object-only model as by the multiplicative model (normalized
correlation, mean ± SD: 0.96 ± 0.27 for multiplicative model,
0.98 ± 0.32 for the object-only model, P = 0.24, sign rank
test across 112 cells). Thus, equating object attributes was
critical to establish the multiplicative separability of identity
and attributes.

Does Multiplicative Separability Lead to More Invariant Population
Decoding? So far, we have found a relatively small but significant
advantage of the multiplicative model over the additive model in
single neurons. The simulation in Fig. 1 already shows that even
a subtle difference in a single neuron can be functionally relevant
by enabling better decoding. However, this simulation was based
on taking arbitrary tuning functions and combining them. We,
therefore, sought to confirm whether this decoding advantage for
multiplicative mixing would hold given the range of stimulus
selectivity observed in IT neurons.
To investigate this issue, we created two groups of simulated

neurons derived from the observed neural responses as depicted
in Fig. 3A. In the first group, we took the multiplicative model
prediction for each observed neuron and generated noisy firing
rates for eight trials (same as in the observed data), each using a
Poisson process. In the second group, we took the additive model
predictions for each neuron and then generated noisy firing rates
using a Poisson process. We then compared the ability of linear
classifiers to decode object identity from the additive and mul-
tiplicative neural populations. We found that the multiplicative
population had a decoding accuracy that was substantially higher
than the additive population (Fig. 3B) (average accuracy for
object decoding: 96 and 87% for the simulated multiplicative and
additive populations, respectively; additive accuracy was never
larger than multiplicative accuracy across 1,000 bootstrap sam-
ples obtained by repeatedly sampling 50 randomly chosen cells;
thus, P < 0.001). This was true for image attribute decoding
as well (average accuracy: 65 and 52% for multiplicative and
additive populations, respectively; additive accuracy exceeded
multiplicative accuracy in 6 of 1,000 bootstrap samples; thus, P =
0.006). Thus, multiplicative separability at the single-neuron
level leads to improved decoding of both object identity and
image attribute at the level of the entire population.

Do Results Generalize to Other Objects and Image Attributes
(Experiments 2–4)? The results of experiment 1 were based on
testing objects across image attributes, such as size, position, ori-

entation, and viewpoint. Of these, size, position, and orientation are
straightforward image transformations, since they leave image fea-
tures fundamentally unchanged. As a result, it was simple to equate
objects for their size, position, or orientation. However, viewpoint
changes are qualitatively different: when an object is rotated in
depth, its features can appear, disappear, compress, or expand. This
makes it nontrivial to equate objects across changes in viewpoint.
This, in turn, raises the possibility that the multiplicative separability
observed in experiment 1 was driven largely by changes in size,
position, and orientation and not by changes in viewpoint. We
therefore systematically investigated this issue in experiments 2–4.
In experiment 2, we tested 113 IT neurons on objects across

rotations about the y axis. We chose y-axis rotations as a starting
point, because they are the most frequently encountered in
natural vision (for other axis rotations, see below). To equate
objects across viewpoint, we designed objects to all have a single
impoverished view and sampled viewpoints on either side (Fig.
4). The responses of an example IT neuron are illustrated in Fig.
4A. This neuron responded strongly to the sideways profile view
of all objects and least of all to the impoverished view, which may
be expected, since very few image features are visible at the
impoverished view. Importantly, its response was predicted ex-
tremely well by the multiplicative model (Fig. 4B) with a strong
correlation (r = 0.90, P < 0.0005) (Fig. 4C). This model fit was
close to the split-half reliability of its response (mean ± SD of
split-half correlation: 0.85 ± 0.04).
The observed responses and the multiplicative model predic-

tions for two other IT neurons are shown in Fig. 4D. It can
be seen that the multiplicative model produces excellent fits to
the neural responses. This was true in general across neurons
(Fig. 4E) (normalized correlation, mean ± SD: 0.97 ± 0.25 across
83 cells with a significant split-half correlation). Thus, the mul-
tiplicative model explained nearly all of the systematic variation
in neural firing. As before, we compared the performance of the
multiplicative model across neurons with the performance of an
additive model, an object-only model, and a view-only model.
The performance of the multiplicative model was significantly
better than the other models both in terms of normalized cor-
relation (Fig. 4E) as well as using residual error calculated on
large/small firing rates (Fig. 4F).
Next, we compared the invariant cells (i.e., only object identity

effects) with cells that showed both identity and view effects. As
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before, cells with both effects were the greatest in number (52 of
113; i.e., 46%) and were more selective for objects compared
with the invariant cells (average sparseness: 0.16 across 52 cells
with object and view effects, 0.07 across 32 cells with object-only
effects; P < 0.0005, rank sum test on sparseness values across
cells). Likewise, object identity could be decoded better from
cells with object and attribute modulation compared with cells
with object-only effects (decoding accuracy: 54% for cells with
both effects, 49% for object-only cells, chance = 12.5%, P =
0.01 using bootstrap sampling). Thus, cells modulated by both
identity and image attribute convey more information about
object identity than the invariant cells with object-only effects.

Can Objects Really Be Equated Across Viewpoints?Our results so far
show that, for objects rotated about a single impoverished view,
IT neurons show multiplicative separability for identity and

viewpoint. However, can objects be equated for viewpoint at all?
To investigate the effect of object structure further, we recorded
the responses of the same neurons to objects with two impov-
erished views instead of only one. These objects had qualitatively
different viewpoint relations as measured using population
neural dissimilarity (SI Text). This, in turn, implies that including
these objects will lead to a breakdown of multiplicative separa-
bility. Indeed, as predicted, neural responses were multiplica-
tively separable for objects with consistent viewpoint relations
but not for objects with inconsistent viewpoint relations (SI Text).
In experiments 1 and 2, we investigated objects across rota-

tions about the y axis. In experiment 3, we investigated objects
across rotations about all three cardinal axes (x, y, and z). Once
again, neural responses were multiplicatively separable (SI Text).
In experiment 4, we tested IT neurons for faces across many
views. We selected faces as a special case, where equating objects
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across views is straightforward. Here too, the multiplicative
model yielded better fits to the data (SI Text).

Model Performance Across Experiments 1–4. To summarize, we
have tested IT neurons on four diverse object sets: objects varying
along multiple attributes (experiment 1), objects across y-axis ro-
tations (experiment 2), objects across all cardinal axis rotations
(experiment 3), and faces across viewpoint changes (experiment
4). We combined the model performance for the multiplicative
model, additive model, object-only model, and attribute-only
model across all experiments to obtain a global summary of our
findings and compare with computational models. The multipli-
cative model yielded consistently outperformed all models both in
terms of normalized correlation (Fig. 5A) as well as in terms of
residual error (Fig. 5B). We conclude that object identity and image
attributes are multiplicatively separable at the level of IT neurons.

Heterogeneity of Signal Mixing in Single Neurons. So far, we have
compared the aggregate behavior of the multiplicative and ad-
ditive models, but there could be considerable variability across
single neurons. We investigated this possibility in several ways.
First, we sought to compare the multiplicative and additive
models for each neuron to ascertain the numbers of neurons that
favored each model. To do so, we compared the residual error
across stimuli for each neuron. The residual error of the two
models was significantly different (P < 0.05, sign rank test) in
only 46 of 307 cells across experiments 1–4. This relatively small
number of cells detected is not surprising given the tight corre-
lation between sums and products in general as well as the
limited numbers of trials per stimulus. However, 82% (38 of 46)
of these cells had a smaller residual error for the multiplicative
model, and this fraction was significantly different from the
50:50 split expected by chance (P < 0.00005, χ2 test). Thus, while
there are individual cells that favor additive mixing, such cells are
relatively few in number and are outnumbered by cells that favor
multiplicative mixing.

Second, we considered the possibility that individual neurons
might implement a broad continuum of signal integration rang-
ing from additive to multiplicative mixing of identity and at-
tribute signals. To investigate this possibility, we fit a mixed
model, in which the response R is given by R = a*Ra + m*Rm,
where Ra and Rm are the additive and multiplicative predictions
and a and m are scalars representing their contributions. A
purely multiplicative response would have a = 0, whereas a
purely additive response would have m = 0. On fitting this
model, the multiplicative term was significantly larger than the
additive one in experiments 1–4 (SI Text). Furthermore, the
mixed model yielded fits that were better than the additive
model but no better than the multiplicative model. Thus, while
there is variation across cells in the extent of additive vs. multi-
plicative signal mixing, the aggregate tendency in the IT pop-
ulation favors multiplicative mixing of object identity and image
attribute signals.

Multiplicative Separability in Computational Models. The above
findings show multiplicative separability of object identity and
attributes in IT neurons for identity-preserving attributes but not
identity-altering transformations. However, this could be trivially
inherited from low-level visual areas, or alternatively, it could be
an emergent property in high-level visual cortex. To address this
issue, we tested two computational models on the images used in
experiments 1–4. The first model was a V1 model (13, 17). If
V1 model units show multiplicative separability, then it is likely
to be inherited by downstream visual areas. The second model
was a deep convolutional neural network optimized for object
classification (18). Such deep networks have been extremely
successful in predicting response properties of neurons along the
ventral stream (19–21). Of particular interest to us was whether
deep neural network units would show an increasing multiplicative
separability, which would indicate that this is a computational re-
quirement for invariant object recognition.
We present the combined performance of all models here for

simplicity (individual experiments are in SI Text). Without fitting
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Fig. 5. Separability in IT neurons and computational
models (experiments 1–4). (A) Normalized model
correlation for the multiplicative (red), additive
(black), object-only (blue), and attribute-only (green)
models across all recorded neurons across all experi-
ments. Error bars indicate the SEM across neurons.
Asterisks indicate statistical significance as before
based on a Wilcoxon sign rank test comparing per-
formance across neurons for each pair of models. (B)
Residual error between model predictions and ob-
served firing for stimuli that elicited large/small firing
rates (identified by z scoring individual cell responses
and selecting stimuli with jzj > 2), where additive and
multiplicative models are expected to differ the most
in their predictions. Asterisks represent statistical
significance as before based on a sign rank test on
comparing average error across neurons. (C) Same as
B but for the V1 model units. (D) Same as B but for
deep neural network units. (E) Magnitude of multi-
plicative separability measured using the separability
index for the V1 model, the deep neural network
model, and IT neurons. Error bars indicate the SEM
across all units. Asterisks indicate statistical signifi-
cance based on a Wilcoxon rank sum test comparing
separability indices across models. ***P < 0.0005;
****P < 0.00005.
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these models to the IT data, we analyzed individual units in these
models exactly as we did with the IT data. As before, we fit
multiplicative, additive, object-only, and attribute-only models to
the responses of each model unit and concatenated model per-
formance on stimulus sets across all four experiments. With IT
neurons, we had responses across many trials for each image, and
therefore, we were able to use the more robust split-half cross-
validation procedure. However, since model activations do not
vary across trials, we used leave-one-out cross-validation to
evaluate model performance. As a result, while model perfor-
mance in absolute terms cannot be directly compared with IT
neurons, it was possible to evaluate whether the response of each
unit can be explained best using additive, multiplicative, object-
only, or attribute-only models.
For the V1 model, we found that individual unit activations

were explained best using an additive model (Fig. 5C) and not a
multiplicative model. Thus, low-level visual representations show
additive rather than multiplicative separability. We found a
similar result with the deep neural network. Individual units
responses to objects across attributes were better explained using
an additive model rather than the multiplicative model (Fig. 5D).
However, both the additive and multiplicative models performed
increasingly better across layers (SI Text), suggesting that overall
separability (regardless of type) is an emergent property across
layers in the network.
How does the multiplicative separability observed in IT neu-

rons compare with that observed in computational models? To
assess this possibility, we calculated an index of multiplicative
separability on the full response of each neuron (Methods) that
represents the fraction of the overall variance in the response
that is accounted for by the multiplicative model. Across ex-
periments, multiplicative separability was largest for IT neurons
followed by deep network units and smallest for V1 model units
(Fig. 5E). Thus, IT neurons have the most efficient representa-
tion in terms of multiplicative separability. Interestingly, the
deep neural network had greater multiplicative separability
compared with the V1 representation, but it was still smaller
than the separability in IT. We propose that separability in
general and multiplicative separability in particular are desirable
properties for an invariant object representation.

Do Parts in an Object Also Combine Multiplicatively (Experiment 5)?
In experiments 1–4, we have shown that neural responses to
objects across varying attributes can be explained using a product
but not sum of tuning for objects and attributes. In experiment 5,
we asked whether such multiplicative separability would occur
for objects with discrete parts. Our motivation was that part
signals are more likely to be integrated rather than being con-
strained for independent decoding, like in the case of objects and
attributes. We therefore surmised that part signals might com-
bine additively rather than multiplicatively.
To investigate these issues, we recorded the responses of 180

IT neurons to objects created by combining two parts on either
end of a stem in a combinatorial manner (Methods). The re-
sponses of an example IT neuron (using firing rates in a 50- to
250-ms window) to the full set of objects are shown in Fig. 6A. It
can be seen that the neuron responds strongly to all objects
sharing a particular part. The predictions of the additive model
(Fig. 6B) were as strongly correlated with the observed response
(r = 0.6) (Fig. 6C) as the reliability of firing itself (split-half
correlation, mean ± SD; r = 0.57 ± 0.06). Thus, the additive
model captured nearly all of the systematic variation in neural
firing. The observed and predicted responses of two other ex-
ample IT neurons are shown in Fig. 6D.
This pattern was true across the neural population: the addi-

tive model explained nearly all of the systematic variation in
firing as evidenced by a highly normalized correlation (Fig. 6E).
Interestingly, the additive model outperformed all other models
both in terms of overall match to the data (Fig. 6E) as well as in
terms of residual error for large/small firing rates (Fig. 6F). Thus,

neural responses to objects with discrete parts are explained as a
sum—not product—of part signals.

Discussion
Here, we have shown that object identity and attribute signals
combine multiplicatively in IT neurons across diverse objects
varying along many attributes. This multiplicative separability
was efficient in that it led to better object decoding than additive
separability. It was nontrivial in that low-level and deep neural
network representations show additive rather than multiplicative
separability. It may be an emergent property for invariant rec-
ognition, since separability increases across layers of deep neural
networks optimized for object recognition. Finally, multiplicative
separability did not always occur: part signals within an object
combine additively in IT neurons rather than multiplicatively.
Together, these findings suggest that signals that require sepa-
rate decoding might combine multiplicatively in IT neurons and
that signals that require integration combine additively. Below,
we review our findings in the context of the existing literature.
Our finding that identity and attribute signals combine mul-

tiplicatively is consistent with frequent observation that IT neu-
rons maintain their object preference across size and position (8,
9, 22) and across viewpoint (13, 22). Our finding that part signals
combine additively in IT neurons is consistent with similar ob-
servations made for discrete parts (23) and shape/color (24). It is
also consistent with the fact that IT neurons preserve their shape
tuning across textures (25, 26). It does not agree, however, with
the finding that face features combine multiplicatively in face
cells (27)—whether this is specific to faces or face cells remains
an interesting open question. Except for this last study, most
others have not explicitly compared multiplicative and additive
mixing as we have done. Distinguishing these two possibilities is
nontrivial, because the sum and product of two numbers are
always strongly correlated and can be distinguished primarily
when the two numbers are disparate. Even in our study, multi-
plicative and additive models were only slightly but significantly
different in their predictions. However, we have additionally
shown that these subtle differences at the single-neuron level
lead to substantial differences in decoding object identity or at-
tribute for the neural population as a whole (Fig. 3).
Our observation of multiplicative separability depended critically

on equating attributes across objects. This was straightforward for
size, position, and orientation but nontrivial for in-depth rotations.
For viewpoint, we found multiplicative separability only when ob-
jects have consistent viewpoint relations, such as when they are
aligned to an impoverished view, but not when they have in-
consistent viewpoint relations (SI Text). This is concordant with the
idea that objects may undergo viewpoint transitions as they are
rotated in depth (28). However, we have explicitly evaluated
viewpoint relations using neural dissimilarity rather than using
abstract shape features. We propose that evaluating neural or
perceptual dissimilarity between views can be a powerful approach
to studying viewpoint relations between and across objects.
Our finding that object/attribute signals combine multiplica-

tively but part/part signals combine additively raises several in-
teresting questions. First, why might this occur? We have shown
that multiplying signals allows for efficient decoding of either
signals. This might be useful for decoding object identity and
attribute separately. However, additive mixing might be more
useful when object parts have to be integrated to represent whole
objects (24). Alternatively, it could be that object attributes,
being irrelevant variations, are combined multiplicatively,
whereas parts, being relevant variations, are combined addi-
tively. Distinguishing between these possibilities will require
training animals on categorizing stimuli with relevant and irrel-
evant features. Second, why is there heterogeneity at the single-
cell level? While we have observed that the average tendency
across neurons favors multiplicative mixing, there was consider-
able heterogeneity in signal mixing (SI Text). It is possible that
there are neurons that perform additive mixing or even more
complex tuning functions with activity that becomes relevant in
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specialized tasks. Testing this will require evaluating neural re-
sponses across different task contexts. Third, what are the un-
derlying mechanisms? Both additive and multiplicative mixing
can be accomplished using the neural mechanism of divisive
normalization that is prevalent throughout visual cortex (29–31).
Specifically, it has been shown in the context of attentional mod-
ulation that divisive normalization can result in a broad range of
response modulations from additive to multiplicative (31).
Multiplicative separability is a common motif in many brain

regions. It is best known in gain fields in parietal cortex (32), but
it has been observed in auditory cortex (33) as well as in multiple
visual areas for disparate features, such as motion/disparity (34)
and orientation/disparity (35). While it is well-established that IT
neurons are invariant to size, position, and viewpoint, the fact that
object identity and attributes combine multiplicatively represents a
unique finding. We have also shown that multiplicative separability is
nontrivial in that it is absent in low-level visual representations and
increases along successive layers of deep neural networks optimized
for object classification. These findings show that multiplicative
separability is an emergent property of neural networks optimized
for object recognition. More generally, we propose that multiplica-
tive separability emerges in the brain whenever multiple signals need
to be combined while allowing for efficient decoding of either.

Methods
All animal experiments were performed according to a protocol approved by
the Institutional Animal Ethics Committee of the Indian Institute of Science,
Bangalore and the Committee for the Purpose of Control and Supervision of
Experiments of Animals, Government of India. Most experimental procedures
are similar to those reported in previous studies from our laboratory (36) and
are, therefore, only briefly summarized below.

Neurophysiology.We recorded from the left IT cortex of twomacaquemonkeys
(Macacca radiata; Ka and Sa, age 7 y old) using standard neurophysiological
procedures detailed previously (36). Recording sites were verified using MRI to

be in the anterior ventral portion of the IT cortex. Extracellular wideband
signals were recorded at 40 KHz using 24-channel laminar electrodes (Uprobe;
100-μm intercontact spacing; Plexon Inc.) linked to a neural data acquisition
system (Plexon Inc.). These signals were manually sorted offline into distinct
clusters using spike sorting software (OfflineSorter; Plexon Inc.). Only well-
isolated visually responsive units were selected for further analyses. The
numbers of recorded neurons in each experiment are reported below.

Behavioral Task. Each animal was trained to fixate a series of stimuli presented
at the center of gaze. Each trial began after the animal fixated on a small red
fixation dot (0.2°), after which eight stimuli were presented for 200 ms each
with an interstimulus duration of 200 ms. Images within a trial were pre-
sented in random order with the constraint that no two images of an object
occurred one after the other to avoid response adaptation. Error trials were
repeated after a random number of other trials. Each stimulus was repeated
about 8–11 times across trials. Monkeys received a juice reward at the end of
each trial for successfully maintaining fixation throughout the trial.

Experiment 1: Objects Across Multiple Attributes. The stimuli in this experi-
ment comprised 10 objects (5 animate, 5 inanimate) with images that were
systematically varied in size, position, orientation, and viewpoint. Objects
were equated across attributes by scaling, shifting, and rotating a reference
image to have the same size, position, and orientation. All objects were
chosen such that they had an impoverished view, at which most of their
features were obscured, and a most elongated view, in which most of their
features were visible. Each attribute had three levels, including the reference
image. Thus, there were a total of nine unique images corresponding to each
object, bringing the total number of stimuli to 90. This dataset has been
reported in a recent study (37), but the analyses reported here are unique to
this study. In all, we recorded the responses of 127 visually responsive neurons
across two monkeys (83 from Ka, 44 from Sa), but for the analyses reported
here, we selected a subset of 111 neurons with reliable firing (P < 0.05 for the
correlation between firing rates estimated from even and odd trials).

Experiment 2: Objects Across y-Axis Rotations. The stimuli consisted of
10 objects (4 animate, 4 inanimate, 2 view-inconsistent objects), each presented
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in seven views. Of these, eight objects had an impoverished view, at which
they were the least elongated in the horizontal direction and at which most
of their features were obscured. We selected seven viewpoints for each
object corresponding to rotations of ±60°, ±30°, ±15°, and 0° about the y
axis relative to the impoverished view. The remaining two objects had two
impoverished views that were at ±30° relative to the other objects. All
stimuli were rendered using a 3D modeling software (Autodesk 3DS Max).
We recorded from a total of 113 visual neurons in this experiment (49 from
Ka, 64 from Sa), but for the analyses reported here, we selected a subset of
83 neurons with reliable firing (P < 0.05 for the correlation between firing
rates estimated from even and odd trials).

Experiment 3: Objects Across Cardinal Axis Rotations. The stimuli comprised four
objects rotated by several levels about each of the three cardinal axes. All objects
were equated to have roughly the same 3D volume (and consequently, view
relations). From the reference left profile view of each object, we rendered 60°,
120°, 180°, 240°, and 300° rotations about the x, y, and z axes using a 3D
modeling software (Autodesk 3Ds Max). We recorded from a total of 50 IT
neurons in this experiment (42 fromKa, 8 from Sa), but for the analyses reported
here, we selected a subset of 34 neurons with reliable firing (P < 0.05 for the
correlation between firing rates estimated from even and odd trials).

Experiment 4: Faces Across Rotations in Depth. There were 160 stimuli in this
experiment. The first 80 stimuli consisted of the face–object–body subset,
which included 10 human faces, 10 animal faces, 20 objects, 10 human
bodies, 10 animal bodies, 10 human body parts, and 10 monkey body parts.
These stimuli were used to determine neural selectivity for faces, objects,
and body parts (related analyses are in SI Text). The remaining 80 stimuli
consisted of 16 human faces (6 females) photographed in five views corre-
sponding to rotations of ±90°, ±45°, and 0° about the front-facing view. We
recorded from 117 neurons in this experiment (97 from Ka, 20 from Sa), but
for the analyses reported here, we selected a subset of 78 neurons with
reliable firing (P < 0.05 for the correlation between firing rates estimated
from even and odd trials).

Experiment 5: Objects Created by Combining Parts. There were 49 stimuli in
this experiment. Each stimulus was an object created by adding two distinct
parts on either side of a horizontal stem. The full stimulus set was created by
combining seven possible parts on the left and right sides in all possible ways.
We recorded from 180 neurons in this experiment (93 from Ka, 87 from Sa),
but for the analyses reported here, we selected a subset of 144 neurons with
more reliable firing (P < 0.5 for the correlation between firing rates esti-
mated from even and odd trials). This dataset has been reported previously
(38), but the analyses reported here are unique to this study.

Data Analysis.
Single-neuron analysis of decoding (Fig. 1C). To compare multiplicative and ad-
ditive mixing in terms of their ability to decode either property, we took
single neurons with random (but identical) tuning functions for object
identity and image attribute as shown in Fig. 1A and created neural re-
sponses that were either multiplicative (Fig. 1A) or additive (Fig. 1B). We
then trained a linear classifier to decode object identity or attribute in a
leave-one-out fashion. The accuracy of this classifier represents the degree
to which object identity (or attribute) could be decoded given the response
of a single noiseless neuron.
Model fitting. For each neuron, we calculated its firing rate during the image
presentation period (0–200 ms) in odd-numbered trials and created a re-
sponse matrix R with entries rij representing the response to the jth object at
the ith attribute. For example, in experiment 1 (with 10 objects and 9 attrib-
utes), the response matrix R has 10 columns and 9 rows (as shown in Fig. 2A).
We then fit this response matrix to five possible models as detailed below.

i) Additive model. According to the additive model, the neural response
can be written as rij = ai +oj, where ai is the unknown activation due to
attribute i and oj is the unknown activation due to object j. For example,
in experiment 1, this would imply 10 unknown activations for objects
and 9 unknowns for attributes, resulting in a total of 19 unknowns. To
estimate these activations, we averaged the response matrix along the
rows to obtain the attribute activations [a1,a2, . . . am] and along the
columns to obtain the object activations [o1,o2, . . .on]. We then calcu-
lated model predictions using the equation rij = k1ai + k2oj, where k1
and k2 are constants estimated using linear regression. Note that both
attribute and object activations need not be organized along any con-
tinuous dimensions as long as attributes are equated across objects.

ii) Multiplicative model. According to the multiplicative model, the neural
response can be written as rij = aioj, where ai is the unknown activation
due to attribute i and oj is the unknown activation due to object j. Thus,
the multiplicative model has the same number of free parameters as the
additive model. To estimate these unknown activations, we note that
the response matrix R can be written as an outer product of two vectors
R= xaxT

o, where xa is the vector [a1, a2, . . . am] containing the attribute
activations and xo is the vector [o1,o2, . . .on] containing object activa-
tions. Following previous studies (33, 34), we estimated these two acti-
vation vectors using singular value decomposition (SVD). This method
factorizes the response matrix R as R=UΣVT , where U and V are matri-
ces containing the left and right singular vectors, respectively, and Σ is a
diagonal matrix containing the singular values. The multiplicative model
output is calculated as the product of the first singular value with the
outer product of the first left and right singular vectors. In other words,
the multiplicative model prediction is given by R=u1s1vT

1, where u1 and
v1 are the first column vectors of the U and V matrices, respectively, and
s1 is the first entry of the diagonal matrix Σ. To be absolutely sure that
the superior fits of the multiplicative model over the additive model
were not due to the SVD method, we calculated the multiplicative
model predictions by multiplying the row and column averages of the
response matrix R. Here too, the product yielded significantly better fits
to the data compared with the sum (normalized correlation, mean ±
SEM: 1.10 ± 0.27 for the product, 1.08 ± 0.27 for the sum, P <
0.00005, sign rank test across 111 neurons in experiment 1). We
obtained qualitatively similar results for other experiments.

iii) Object-only model. According to the object-only model, the neural re-
sponse is driven solely by object identity, with no modulation from
attributes, and is, therefore, perfectly invariant. The predictions of this
model were obtained from the response matrix R by averaging along
the attribute dimension.

iv) Attribute-only model. According to this model, the neural response is
driven solely by image attribute, with no modulation from object iden-
tity. The predictions of this model were obtained from the response
matrix R by averaging along the object dimension.

v) Mixed model. According to this model, the neural response is driven by
a mix of additive and multiplicative signals. Specifically, for each stimu-
lus, the response R = a*Ra + m*Rm, where Ra and Rm are the additive
and multiplicative predictions for that stimulus, respectively, and a and
m are scalars representing their contributions. We obtained the best-
fitting values of a and m through linear regression.

Model validation.Having obtainedmodel predictions from neural responses on
odd-numbered trials, we obtained a cross-validated measure of performance
by calculating the Pearson’s correlation between these predictions with the
firing rate on even-numbered trials. To estimate an upper bound on model
performance, we calculated the “split-half” correlation between the firing
rates estimated from odd and even trials. We then obtained a normalized
measure of model performance by dividing model correlation by the split-
half correlation. A normalized correlation close to one indicates that the
model explains nearly all of the explainable variance in the response.
Model fitting for computational models. The above approach of training on odd
trials and testing on even trials could not be used for computational models,
because they produce identical responses with no trial variability. Therefore,
we used a leave-one-out cross-validation procedure: we set aside the re-
sponse to one stimulus each time and calculated the predicted response from
all four models for this left-out response. In this manner, we compiled the
response to all stimuli and then compared it with the observed response by
calculating the correlation coefficient. We fit each model as before, but for
the multiplicative model, it was not possible to perform SVD, since the re-
sponsematrix was no longer complete.We, therefore, multiplied the row and
column averages to obtain the multiplicative model predictions.
Multiplicative separability index. To compare multiplicative separability in
computationalmodelswith that observed in IT neurons, we took the full neural
response to objects across attributes and performed an SVD. The ratio of the
first singular value to the sumofall singular values represents the fractionof the
total variance explained by the first multiplicative outer product, and we took
this to indicate the degree of multiplicative separability of the neural response.
Specifically, the multiplicative separability index (SI) is given as

SI=
s1

Pn
i=1si

,

where s1, s2, . . . sn are the singular values from the SVD of the response
matrix R. This index has a maximum value of one, which indicates complete
separability.
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Sparseness. To calculate a measure of object selectivity for each neuron, we
used a standard measure of sparseness (15, 16). For a neuron with responses

r1, r2, . . . rn to n stimuli, the sparseness is given by S= ð1− ðP ri=nÞ2=
ðP r2i =nÞÞ=ð1− 1=nÞ, where the summation is across all responses. For an
extremely sparse neuron that responds to only one stimulus in a set, the
sparseness is one. For a broadly tuned neuron that responds equally to all
stimuli, the sparseness is zero. Thus, a large value of sparseness indicates a
more selective response. We calculated object selectivity for each neuron by
taking its average response to objects (across attributes) and calculating
sparseness. We obtained similar results using other measures of tuning.
Population decoding. To characterize the nature of information available in the
neural population, we performed a population decoding analysis on single-
trial neural responses.We took the firing rate of each neuron evoked during a
50- to 200-ms window after image onset as the value along each dimension of
a multidimensional vector space. We trained a linear classifier on these re-
sponse vectors corresponding to individual trials of each stimulus, with the

class labels being either object or attribute. Note that this approach assumes
that responses were recorded simultaneously, but this provides an upper
bound on the information available to the entire population if recorded
simultaneously. To measure the information conveyed about invariant object
identity, we trained a classifier on responses to objects at one size and tested
it on the responses at another size. This was done for all pairs of attributes to
obtain an average decoding estimate.
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