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Abstract

Background: Proteins evolve at disparate rates, as a result of the action of different types and strengths of
evolutionary forces. An open question in evolutionary biology is what factors are responsible for this variability. In
general, proteins whose function has a great impact on organisms’ fitness are expected to evolve under stronger
selective pressures. In biosynthetic pathways, upstream genes usually evolve under higher levels of selective
constraint than those acting at the downstream part, as a result of their higher hierarchical position. Similar
observations have been made in transcriptional regulatory networks, whose upstream elements appear to be more
essential and subject to selection. Less well understood is, however, how selective pressures distribute along signal
transduction pathways.

Results: Here, I combine comparative genomics and directed protein interaction data to study the distribution of
evolutionary forces across the human signal transduction network. Surprisingly, no evidence was found for higher
levels of selective constraint at the upstream network genes (those occupying more hierarchical positions). On the
contrary, purifying selection was found to act more strongly on genes acting at the downstream part of the
network, which seems to be due to downstream genes being more highly and broadly expressed, performing
certain functions and, in particular, encoding proteins that are more highly connected in the protein–protein
interaction network. When the effect of these confounding factors is discounted, upstream and downstream genes
evolve at similar rates. The trends found in the overall signaling network are exemplified by analysis of the
distribution of purifying selection along the mammalian Ras signaling pathway, showing that upstream and
downstream genes evolve at similar rates.

Conclusions: These results indicate that the upstream/downstream position of proteins in the signal transduction
network has, in general, no direct effect on their rates of evolution, suggesting that upstream and downstream
genes are similarly important for the function of the network. This implies that natural selection differently
distributes across signal transduction networks and across biosynthetic and transcriptional regulatory networks,
which might reflect fundamental differences in their function and organization.
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Background
Proteins’ rates of evolution vary across orders of magni-
tude (e.g., refs. [1,2]). Understanding the factors under-
lying this enormous variability is a central problem in
evolutionary biology. The neutral theory of molecular
evolution predicts higher selective pressures (and hence,
slower rates of evolution) acting on genes encoding pro-
teins that perform the most important functions for
organisms’ biological fitness [3]; however, the relative
contributions of genes to fitness remain elusive. Over
the last decade, the availability of both genomic and
functional data has allowed us to identify some of the
factors that correlate with genes’ rates of evolution,
among which patterns and levels of gene expression
appear to be the most important (for review, see refs.
[4-6]). However, this gene-centered approach has been
able to explain only a relatively small fraction of the
variability of rates of evolution (e.g., ref. [7]).
Genes and proteins do not act in isolation, but usually

operate as components of complex networks of interact-
ing molecules. Therefore, taking into account the inter-
action networks in which a gene participates may provide
key insight into the evolutionary forces acting on it. Fur-
thermore, understanding the function and evolution of
molecular networks can aid applications such as metabolic
engineering and drug discovery and design (for review, see
refs. [8-10]). Molecular networks in general can be mod-
eled as undirected graphs, whose nodes and edges repre-
sent proteins and interactions, respectively. Over the last
years, the accumulation of interactomic data has allowed
us to cast a first glance at the impact of genes’ position
in the network on their patterns of molecular evolution
(reviewed in refs. [11-13]). For instance, genes encoding
the most connected proteins in metabolic and protein–
protein interaction networks are more selectively con-
strained than those acting at the network periphery
[14-19], and interacting genes tend to show correlated
evolutionary histories, e.g. evolving at similar rates
[14,16,20-24]. These observations indicate that the struc-
ture of molecular networks impose constraints on the
evolution of their components.
In addition to the centrality of proteins in functional

networks, their hierarchical position in molecular path-
ways has also been put forward as a determinant of their
rates of evolution. Remarkably, in a number of biosyn-
thetic pathways, the strength of purifying selection has
been found to correlate with the position of genes along
the upstream/downstream pathway axis, with upstream
genes being generally the most constrained [25-30]. This
distribution of the levels of selective constraint has been
attributed to upstream genes being involved in the bio-
synthesis of a broader range of biochemical compounds
than downstream genes, and hence being more pleio-
tropic [28], and/or to upstream genes exerting a higher
influence over the flux of metabolites along pathways
[31]. Consistent observations have been made in tran-
scriptional regulatory networks: upstream genes in these
networks are more likely to be essential [32], and simu-
lation analysis has shown that genes exerting a higher
degree of control over other genes, and/or those that are
less regulated by other genes, are more strongly affected
by selection [33].
Less well understood is how selective pressures distrib-

ute along signal transduction pathways. These pathways
play a key role in modulating cell function in response
to extracellular and intracellular stimuli. They are char-
acterized by the presence of a receptor that, in response
to signals, is able to trigger a cascade of events that ul-
timately modulate the final effectors, which are respon-
sible for mediating the biological responses of the
pathway. The signal is transmitted from the upstream to
the downstream part of the pathway by means of a series
of molecular interactions (e.g., phosphorylation and/or
dephosphorylation events). These interactions have a
directed nature, i.e., each interaction involves an up-
stream modulator (either activator or inhibitor) and a
downstream modulated element (activated or inhibited).
Therefore, signaling pathways and networks can be
represented as directed graphs, in which nodes and arcs
represent molecules and directed interactions, respect-
ively. Despite the availability of some directed inter-
action networks (e.g., refs. [34-36]), their directed nature
has often been overlooked in evolutionary analyses,
being often treated as undirected networks.
So far, the distribution of levels of selective constraint

across the upstream/downstream axis of signaling path-
ways has been studied in only a few pathways, with con-
trasting results. In the Drosophila Ras pathway,
upstream genes appear to be more selectively con-
strained than those acting at the downstream part [37].
This is to be expected under a model in which upstream
genes, owing to their higher hierarchical position, have a
higher impact on the function of the pathway. Indeed, a
single activated upstream protein has the potential to ac-
tivate several downstream target molecules (e.g., ref.
[38]); therefore, higher levels of selective constraint
might be expected at these genes. However, the opposite
pattern (i.e., stronger purifying selection acting on down-
stream genes) has been described in the Drosophila,
Caenorhabditis and vertebrate insulin/TOR pathway
[39-42], and in the yeast HOG pathway [43]. In both the
yeast HOG pathway and the Caenorhabditis insulin/
TOR pathway, the tendency appears to vanish when the
effect of confounding factors that correlate with both
network position and levels of selective constraint, such
as expression level or codon bias, are removed [42,43],
whereas in the Drosophila and vertebrate insulin/TOR
pathway the polarity in the levels of selective constraint
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is independent of these and other factors [39-41,44].
Therefore, the effect of upstream/downstream position
of genes in signal transduction pathways on their rates
of evolution, and the relative contribution of potential
confounding factors, remain elusive.
Here, I combine comparative genomics and manually-

curated directed protein interaction data to determine
whether purifying selection differentially acts on the up-
stream and downstream genes of the human signal
transduction network. For that purpose, new methods
that explicitly take into account the directed character of
the network are introduced. Surprisingly, no evidence
was found supporting that upstream genes (those occu-
pying higher hierarchical positions) are subject to
increased levels of selective constraint. On the contrary,
purifying selection was found to act more severely on
genes acting at the downstream part of the network,
which seems to be due to downstream genes being more
highly and broadly expressed, having certain functions
and, in particular, encoding proteins that are more
highly connected in the protein–protein interaction net-
work. When the effect of these confounding factors was
discounted, upstream and downstream genes were found
to evolve at similar rates. These results clearly indicate
that the hierarchical position of genes in the signal
transduction network has, in general, no direct effect on
their rates of evolution, suggesting that genes occupying
more hierarchical positions in the network are not more
relevant for the function of the network and the fitness
of the organism. The trend found in the overall signaling
network is exemplified by analysis of the distribution of
purifying selection along the mammalian Ras signaling
pathway, showing that, contrary to previously suggested
in Drosophila, upstream and downstream genes evolve
at similar rates. These observations imply that natural se-
lection differently distributes across signal transduction
networks and across biosynthetic and transcriptional
regulatory networks. This might reflect fundamental dif-
ferences in the function and organization of the signal
transduction network and metabolic and transcriptional
regulatory networks.

Results
Unexpectedly, genes acting at the upstream part of the
human signal transduction network exhibit higher rates
of evolution
The human signal transduction network gleaned by Cui
et al. [34] was used. In this network, directed edges
(links) between pairs of proteins represent regulatory
interactions (i.e., activating or inhibitory) — e.g., the
directed edge “A!B” denotes that protein “A” activates
or inhibits protein “B”. The dataset was assembled and
manually curated by Cui et al. by merging the interac-
tions compiled in different databases, followed by
validation of each interaction by accurate revision of the
literature. Undirected edges, which represent generic
(i.e., non-signaling) physical interactions, were not consid-
ered in the current analysis, since they contain no infor-
mation about the hierarchical (upstream/downstream)
position of genes in the network. After filtering the data-
set (see Methods), it comprised 1049 proteins connected
by 2436 non-redundant directed interactions (activating
or inhibitory). This dataset included 10 ligands, 102
receptors, 62 adapters, 187 kinases, 28 phosphatases,
123 transcription factors, 99 structural proteins, and 27
ion transmembrane transporters. Most edges represent
direct physical protein–protein interactions, with the only
exception of a small fraction of “transcription factor!
target gene” edges.
For each gene in the network, the 1:1 mouse ortholog

was identified and the impact of natural selection was
characterized from the nonsynonymous to synonymous
divergence ratio (ω= dN/dS). Values of ω equal to 1 are
expected for genes evolving neutrally, whereas ω < 1 is
indicative of the action of purifying selection preserving
the sequence of the encoded proteins, and ω > 1 in a
number of codons is indicative of the action of positive
selection (adaptive evolution) driving the fixation of
nonsynonymous substitutions. The estimated ω values
range from 0.0001 to 0.814 (with a median value of
0.065), indicating that purifying selection has played an
important role in the evolution of these genes.
I evaluated whether ω values depend on the hierarchical

position that genes occupy in the network. For that pur-
pose, three different approaches were adopted to compare
the evolutionary rates of upstream and downstream net-
work genes. First, the ω value of each gene was compared
with the central value of the ω values of all its direct
downstream targets (the median in the case of an odd
number, or one of the two central values in the case of an
even number of downstream proteins; see Methods). Out
of the 1049 genes in the network, 800 encode proteins
that have at least one direct downstream target in the net-
work (i.e., out-degree > 0). Of those, 446 genes exhibit a
higher ω value than their targets, whereas 352 show lower
ω values than their targets. This asymmetry is not compat-
ible with a random distribution of ω values across up-
stream and downstream genes (paired sign test, P=0.001;
Table 1). Therefore, surprisingly, upstream genes tend to
show higher ω values than the genes that they modulate.
In order to establish whether the evolution of nonsynon-
ymous or synonymous sites is responsible for this trend,
this analysis was conducted for dN and dS separately.
Clearly significant differences were observed for dN
(P=3.50× 10–4), but only marginally significant differ-
ences were observed for dS (P=0.040; Table 1), indicating
that the evolutionary patterns of nonsynonymous sites are
the main responsible for the trend observed in ω.



Table 1 Paired tests comparing upstream genes with their downstream targets

Parameter na Upstream > Downstreamb Upstream < Downstreamc P

ω 800 446 352 0.001***

dN 800 450 348 3.50×10–4***

dS 800 429 370 0.040*

Expression level 763 357 406 0.082

Expression breadth 763 261 337 0.002**

ENC 800 398 402 0.916

Connectivity 709 230 456 8.66×10–18***

Number of paralogs 800 369 373 0.912

*, P<0.05; **, P<0.01, ***, P<0.001.
aNumber of genes with at least one direct downstream target (out-degree>0). Only genes with available information for the parameter of interest were
considered.
bNumber of genes with a higher value than the central value of its downstream targets.
cNumber of genes with a lower value than the central value of its downstream targets.
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Next, evolutionary rates of genes encoding proteins
occupying extreme upstream and downstream positions
in the network were compared. A total of 333 genes
were classified as upstream [as they modulate other pro-
teins (out-degree > 0) but are not modulated by any
other protein in the network (in-degree = 0)] and 249
were classified as downstream [modulated by at least
one protein (in-degree > 0), but unable to modulate any
other protein (out-degree = 0)]. Again, upstream genes
were found to exhibit significantly higher ω values: up-
stream and downstream genes exhibit median ω values
of 0.076 and 0.064, respectively (Mann–Whitney test,
P= 0.037; Figure 1). Significant differences were also
observed in the dN (P= 0.049), but not in the dS
(P= 0.782; Table 2) values.
Finally, I evaluated whether ω values correlate with

parameters that reflect the hierarchical position of genes
in the network. Both in-degree (the number of upstream
modulators or upcoming edges) and out-degree (number
of downstream targets or outgoing edges) negatively cor-
relate with ω values, consistent with previous observa-
tions that highly connected genes are subject to stronger
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Figure 1 Comparison of genes encoding the upstream and downstre
purifying selection [14-16]. Remarkably, the correlation
is stronger for in-degree (Spearman’s rank correlation
coefficient, ρ=−0.116, P= 1.74 × 10–4) than for out-
degree (ρ=−0.070, P= 0.023), indicating that the ω value
of a gene is more influenced by the number of upstream
genes (i.e., by how regulated the encoded product is),
than by the number of downstream targets (i.e., by the
level of regulation that it exerts on the network). Similar
results were obtained for dN, whereas dS does not corre-
late with in-degree or out-degree (Table 3). Beyond con-
sidering the direct downstream targets of a gene, I
also considered the effect of the total number of genes
acting directly or indirectly downstream of a given
gene (termed H; see Methods) on its evolutionary rate.
This parameter positively correlates with ω (ρ= 0.067,
P= 0.031), again indicating that proteins potentially
affecting the activity of a higher number of other pro-
teins (i.e., those occupying higher hierarchical positions
in the network) are encoded by genes that exhibit
higher ω values. Again, significant results were
obtained for dN (ρ= 0.067, P= 0.030), but not for dS
(ρ= 0.016, P= 0.596; Table 3).
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Table 2 Comparison of genes occupying extreme upstream and downstream positions in the signaling network

Parameter Upstream Downstream P

n Median Average n Median Average

ω 333 0.076 0.112 249 0.064 0.098 0.037*

dN 333 0.045 0.070 249 0.037 0.060 0.049*

dS 333 0.561 0.630 249 0.567 0.626 0.782

Expression level 322 27.32 116.28 243 32.43 165.13 0.239

Expression breadth 322 21.00 15.41 243 23.00 15.84 0.621

ENC 333 50.43 49.36 249 50.36 49.39 0.712

Connectivity 293 6.00 11.86 225 8.00 13.41 0.114

Number of paralogs 333 22.00 36.73 249 28.00 37.63 0.714

P-values were obtained from the Mann–Whitney U test. *, P< 0.05.
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Taken together, these results show that evolutionary rates
exhibit a polarity across the human signaling network, with
downstream genes progressively exhibiting lower ω and dN
values. This observation is in sharp contrast with patterns
observed in metabolic and transcriptional regulatory
Table 3 Bivariate correlations between parameters of
interest and measures of hierarchical positions of genes
in the network

Variable 1 Variable 2 n ρ P

ω in-degree 1049 −0.116 1.74×10–4***

out-degree 1049 −0.070 0.023*

H 1049 0.067 0.031*

dN in-degree 1049 −0.117 1.44×10–4***

out-degree 1049 −0.072 0.019*

H 1049 0.067 0.030*

dS in-degree 1049 −0.035 0.259

out-degree 1049 −0.014 0.653

H 1049 0.016 0.596

Expression level in-degree 1016 0.019 0.553

out-degree 1016 −0.035 0.258

H 1016 −0.033 0.293

Expression breadth in-degree 1016 0.054 0.084

out-degree 1016 0.044 0.164

H 1016 −0.039 0.218

ENC in-degree 1049 0.012 0.705

out-degree 1049 −0.022 0.480

H 1049 −0.024 0.437

Connectivity in-degree 951 0.275 5.07×10–18***

out-degree 951 0.230 7.38×10–13***

H 951 −0.016 0.621

Number of paralogs in-degree 1049 0.023 0.466

out-degree 1049 0.047 0.131

H 1049 0.023 0.451

*, P< 0.05; ***, P< 0.001.
pathways, in which upstream genes are generally the ones
exhibiting lower rates of evolution [25-30,32,33]. I next
considered a number of potential factors that could account
for the observed polarity.

The higher rates of evolution of upstream genes are the
result of lower levels of purifying selection rather than a
higher incidence of positive selection
The lower ω and dN values observed in the downstream
network genes suggest a higher strength of purifying se-
lection acting on these genes. However, ω and dN values
are also affected by the action of positive selection, and
hence the observed trends could alternatively be the re-
sult of a putatively higher incidence of positive selection
on upstream genes. In order to discard this possibility,
analyses were repeated after eliminating genes with the
signature of positive selection.
When applied to pairs of human-mouse orthologs, the

M7 vs. M8 test [45] identified 58 network genes with po-
tential signatures of positive selection (i.e., a fraction of
codons with ω > 1). Excluding these genes yielded similar
results. First, after excluding these genes, 741 genes have
at least one direct downstream target in the network,
out of which 417 and 322 show higher and lower ω
values than their targets, respectively (paired test,
P= 0.001). Significant results were also obtained for dN
(P= 3.79 × 10–5). Second, the 315 genes classified as up-
stream that display no signals of positive selection ex-
hibit significantly higher ω (Mann–Whitney test,
P= 0.033), and dN values (P= 0.049) than the 230 down-
stream genes without the signature of positive selection.
Finally, ω and dN values positively correlate with H
(ρ= 0.065, P= 0.040 for ω; ρ= 0.064, P= 0.044 for dN),
and more strongly correlate with in-degree (ρ=−0.115,
P= 2.71 × 10–4 for ω; ρ=−0.115, P= 2.94 × 10–4 for dN)
than with out-degree (ρ=−0.070, P= 0.028 for ω;
ρ=−0.072, P= 0.023 for dN).
Because detection of positive selection is sensitive to

the number of sequences used [46], analyses were
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repeated using a total of 8 mammalian genomes (human,
chimpanzee, gorilla, orangutan, macaque, marmoset,
mouse and rat). A total of 808 network genes exhibit a
1:1 orthology across all genomes, out of which 115 ex-
hibit potential signals of positive selection. Again, ex-
cluding these genes did not alter the observations that
genes acting at the downstream part of the network ex-
hibit significantly lower ω (paired test, P= 1.05 × 10–5;
Mann–Whitney test, P= 0.033; correlation with H,
ρ= 0.065, P= 0.040) and dN values (paired test, P= 0.001;
Mann–Whitney test, P= 0.020; correlation with H,
ρ= 0.072, P= 0.028).
Therefore, the distribution of ω and dN values across

the network may be the result of a polarity in the
strength of purifying selection, with downstream genes
being subject to higher levels of selective constraint, and
not the result of a higher incidence of positive selection
in the upstream part of the network.

Subcellular location does not account for the higher rates
of evolution of upstream network proteins
Genes acting at the extracellular compartment have been
reported to exhibit high rates of evolution [20,47]. Con-
sistently, among genes in the used dataset, those acting
at the extracellular space exhibit higher ω and dN values
than the rest of the genes in the signal transduction net-
work (Mann–Whitney test, P= 1.56 × 10–16 for ω;
P= 2.23 × 10–19 for dN). This could potentially explain
the observed polarity in ω and dN values if proteins oc-
cupying highly hierarchical positions in the signaling
network preferentially located to the extracellular space.
However, I tested this possibility by comparing the pro-
portion of extracellular proteins among proteins acting
at the upstream (14.41%) and downstream (10.44%)
parts of the network, finding no significant differences
(Fisher’s exact test, P= 0.168). I.e., proteins occupying
extreme upstream positions in the network do not tend
to act at the extracellular space, thus making it unlikely
that the observed high ω values in genes encoding the
upstream part of the network would be linked to subcel-
lular location. In order to further discard this possibility,
analyses were repeated eliminating the 105 proteins tar-
geted to the extracellular space, with similar results.
First, genes are significantly less selectively constrained
than their downstream direct targets (paired test,
P= 0.001 for ω; P= 0.007 for dN). Second, the 285 non-
extracellular proteins classified as upstream exhibit
higher ω and dN values than the 223 non-extracellular
proteins acting at the downstream part of the network,
although the differences are not statistically significant
(median ω for upstream and downstream genes: 0.068
and 0.059, respecively; Mann–Whitney test, P= 0.110;
P= 0.151 for dN). Third, the ω and dN values correlate
better with in-degree (ρ=−0.092, P= 0.005 for ω;
ρ=−0.091, P= 0.005 for dN) than with out-degree
(ρ=−0.051, P= 0.114 for ω; ρ=−0.054, P= 0.100 for dN).
Although evolutionary rates do not significantly correl-
ate with H, the direction of the correlations is positive
and comparable in strength to that observed in the over-
all dataset (ρ= 0.052, P= 0.113 for ω; ρ= 0.053, P= 0.102
for dN). These results indicate that the polarity observed
in the levels of selective constraint is for the most part
independent of the high evolutionary rates of proteins
acting at the extracellular space.
Using an expanded dataset (which included also gen-

eric physical, undirected interactions), Cui, Purisima and
Wang [20] found that signaling genes acting at the cell
membrane, cytoplasm and nucleus exhibited different
rates of evolution. Again, these differences raise the pos-
sibility that the observed polarity in the ω values across
the network might be in part the result of the distribu-
tion of upstream and downstream proteins across the
different subcellular compartments. However, I found
that (1) genes acting at the different cell compartments
do not exhibit significantly different rates of evolution
for the subset of genes included in the current analysis
(which contained only genes involved in directed signal-
ing interactions) (median ω values of 0.052, 0.056 and
0.064, respectively; Kruskal-Wallis test, P= 0.804), and
that (2) the upstream and downstream parts of the net-
work do not contain different proportions of proteins lo-
cating to the cell membrane (Fisher’s exact test,
P= 0.738), cytoplasm (P= 0.773) or nucleus (P= 0.760),
making it unlikely that the polarity in the levels of select-
ive constraint described here would obey to proteins’
subcellular location. In order to further discard this pos-
sibility, analyses were conducted separately on subsets of
genes acting at the different cell locations, with consist-
ent results across all four compartments. First, genes
tend to evolve faster than their direct downstream tar-
gets acting at the same cell compartment, when the ana-
lyses are restricted to genes acting at the extracellular
space (15 and 10 proteins exhibit higher and lower ω
values, respectively, than their downstream targets acting
in the same compartment; paired test, P= 0.424), the cell
membrane (126 and 88 proteins; P= 0.011), the cyto-
plasm (186 vs. 177; P= 0.675), or the nucleus (142 vs.
138; P= 0.858). Second, ω values are higher for upstream
than for downstream genes when genes acting at the
extracellular space (median values of 0.164 and 0.158 for
upstream and downstream genes, respectively), the cell
membrane (0.075 vs. 0.063), the cytoplasm (0.065 vs.
0.056) or the nucleus (0.0653 vs. 0.0646) are analyzed
separately, although the differences are not statistically
significant (Mann–Whitney test, P > 0.05). Taken to-
gether, these results indicate that the polarity in the
levels of selective constraint observed across the network
is independent of the subcellular location of its



Table 4 Correlates of evolutionary rates

Variable 1 Variable 2 ρ P

ω Expression level −0.132 2.51×10–5***

Expression breadth −0.205 4.57×10–11***

ENC 0.163 1.19×10–7***

Connectivity −0.202 3.35×10–10***

Number of paralogs −0.116 1.64×10–4***

dN Expression level −0.141 6.51×10–6***

Expression breadth −0.228 1.76×10–13***

ENC 0.002 0.947

Connectivity −0.226 1.68×10–12***

Number of paralogs −0.089 0.004**

**, P<0.01, ***, P<0.001.
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components. The lack of significance in some tests prob-
ably owes to the reduced statistical power resulting from
partitioning the dataset.

Gene functions upstream and downstream of the signal
transduction network
Genes with different functions are known to evolve at
different rates (e.g., refs. [23] and [48]). Hence, in order
to gain further insight into the different selective pres-
sures acting at the upstream and downstream parts of
the human signaling network, it was tested whether the
333 genes acting at the upstream part performed differ-
ent functions to the 249 genes acting at the downstream
part. For that purpose, the frequencies of the GOslim
GOA terms of both groups was compared using the
FatiGO software [49]. Upstream genes exhibited a sig-
nificant enrichment in the term “kinase activity”
(q= 2.24 × 10–4), whereas downstream genes were
enriched in the category “ion transmembrane trans-
porter activity” (q= 2.65 × 10–5). Hence, the higher levels
of selective constraint observed in the downstream part of
the signaling network could potentially result from this un-
equal distribution of gene functions, if genes encoding
kinases evolved particularly fast, and/or those encoding ion
transmembrane transporters evolved particularly slow. Both
gene groups were found to evolve slower than the rest of
genes in the network (median ω values for ion transporters,
kinases, and the entire network: 0.039, 0.045, and 0.065,
respectively; Mann–Whitney tests, P=3.99×10–4 for ion
transporters, P= 2.39×10–8 for kinases), raising the possibil-
ity that the higher levels of selective constraint acting at the
downstream part of the network would be due to the en-
richment of this part of the network in ion transmembrane
transporters.
In order to discard this possibility, analyses were

repeated excluding the 27 network genes encoding ion
transmembrane transporters, with similar results, al-
though not statistically significant in all cases. First,
genes are significantly less selectively constrained than
their downstream direct targets (paired test, P= 0.003
for ω; P= 2.62 × 10–4 for dN). Second, the 332 non-ion
transporter proteins classified as upstream exhibit higher
ω and dN values than the 230 non-ion transporter pro-
teins acting at the downstream part of the network, al-
though the differences are not statistically significant
(median ω values for upstream and downstream genes:
0.068 and 0.076, respectively; Mann–Whitney test,
P= 0.181 for ω; P= 0.203 for dN). Third, the ω and dN
values correlate better with in-degree (ρ=−0.108,
P= 0.001 for ω; ρ=−0.109, P= 4.72 × 10–4 for dN), than
with out-degree (ρ=−0.092, P= 0.003 for ω; ρ=−0.092,
P= 0.003 for dN), and they exhibit a positive, although
non-significant, correlation with H (ρ= 0.048, P= 0.122
for ω; ρ= 0.051, P= 0.104 for dN). When genes encoding
kinases were also excluded from the analysis, the correl-
ation between H and rates of evolution reached signifi-
cance (ρ= 0.070, P= 0.046 for ω; ρ= 0.079, P= 0.023 for
dN). These results indicate that, although the different
functions of upstream and downstream genes may par-
tially contribute to the observed polarity in the levels of
selective constraint, this factor does not completely ac-
count for the trend.

Genes acting at the downstream part of the network
exhibit higher expression levels and breadths, and
encode more highly connected proteins
Levels of selective constraint acting on a gene are affected
by a number of factors, including gene expression level
(measured, for instance, as the number or concentration of
transcripts in the cell) and breadth (the number of tissues
in which a gene is expressed) [7,50-52], codon bias [51,53],
connectivity of the encoded proteins [14-16], and the num-
ber of paralogs [54,55]. Measures of these parameters were
obtained from different sources (see Methods). Because the
dataset generated by Cui et al. [34] focuses on signaling
molecules, proteins’ total connectivities were measured as
the total number of physical interactors in the whole
human protein–protein interaction network [56]. All these
factors significantly correlate with ω and dN in the dataset
used (Table 4). Therefore, a putative polarity in the distribu-
tion of these factors across the network could potentially
account for the observed polarity in the levels of selective
constraint. Remarkably, expression breadth and connectiv-
ity seem to be the best correlates of the rates of evolution,
with both variables exhibiting a similar degree of correlation
with ω and dN (Table 4). This result contrasts with previous
observations that connectivity is a relatively weak predictor
of rates of evolution (e.g., refs. [5,57]), suggesting that this
correlation is particularly strong for genes involved in signal
transduction. Furthermore, the correlation between con-
nectivity and rates of evolution remains significant when
expression level and breadth, codon bias, and number of
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paralogs are simultaneously controlled for (partial correl-
ation, ρ=−0.183, P=1.67×10–8 for ω; ρ=−0.197,
P=1.08×10–9 for dN). Although genome-level analyses
have revealed that the length of the encoded proteins also
correlates with ω and dN [7,52], these correlations are not
significant in the gene set used (ρ=0.036, P=0.240 for ω;
ρ=0.024, P=0.431 for dN), and hence this parameter was
not considered.
I evaluated whether factors correlating with ω and dN

differ between upstream and downstream genes. The
paired test shows that genes tend to exhibit a lower ex-
pression breadth (P=0.002), and to encode proteins with
a lower connectivity (measured as the number of inter-
actors in the entire human interactome; ref. [56])
(P=8.66× 10–18) than their direct downstream targets
(Table 1). The test is only marginally significant for ex-
pression level (P=0.082). As expected, both in-degree
and out-degree positively correlate with connectivity. The
correlation is stronger for in-degree (ρ=0.275, P=5.07×
10–18) than for out-degree (ρ=0.230, P=7.38 × 10–13;
Table 3), consistent with a higher connectivity in the down-
stream part of the network. Genes occupying extreme
downstream positions in the pathway exhibit higher levels
and breadths of expression, and encode more highly con-
nected proteins (Figure 1), than upstream genes, although
none of these differences is statistically significant (Table 2).
The lack of significance in the Mann–Whitney tests might
result from a reduced statistical power resulting from the
fact that only a fraction of the genes were used in this ana-
lysis (i.e., those occupying extreme upstream or down-
stream positions), whereas all genes were used in the
other two analyses (paired test and correlation analysis).
Although none of the studied factors significantly

depends on the upstream/downstream position of genes
in all three analyses, these results provide evidence that
expression breadth and connectivity, and perhaps ex-
pression level, exhibit a polarity across the human sig-
naling network, with downstream genes being more
highly and broadly expressed, and encoding more highly
connected proteins than upstream genes. Highly and
broadly expressed genes [7,50-52], and those encoding
highly connected proteins [14-16], tend to be highly
constrained. Combined, these trends raise the possibility
that the polarity observed in the levels of selective con-
straint could be the result of the distribution of these
factors across the network.

The lower evolutionary rates of downstream network
genes are a byproduct of the distribution of protein
connectivity and gene expression level and breadth
across the network
I considered whether the observed polarity in the levels
of selective constraint across the human signaling net-
work was the result of the distribution of factors
correlating with ω and dN. For that purpose, this polarity
was evaluated after discounting the putative effects of
these factors. Linear regression was used to model the
dependence of ω and dN from each factor separately,
and the residuals of the model for each gene (i.e., the
difference between the observed and expected values)
were used in the paired and the Mann–Whitney tests.
The paired tests show that genes exhibit significantly

higher ω and dN values than their downstream targets
even if the effect of expression level, expression breadth,
codon bias, or the number of paralogs is discounted, in-
dicating that the difference in the intensity of purifying
selection acting on upstream and downstream genes is
independent of these factors. However, when the effect
of connectivity is discounted, the test yields no signifi-
cant results (Additional file 1: Table S1).
Genes occupying extreme upstream positions in the

network are significantly less constrained than those act-
ing at the downstream part, even when the effect of ex-
pression breadth, codon bias, or the number of paralogs
is removed, but the difference is not significant when ex-
pression level or connectivity are included in the analysis
(Additional file 1: Table S2). Given that the relationship
between evolutionary rates and their correlates is not ne-
cessarily linear in all cases, a complementary nonpara-
metric analysis was performed to assess the differences
in ω and dN values between genes occupying extreme
upstream and downstream positions. Partial correlation
analysis was used to evaluate the association between
upstream/downstream position (encoded as a binary
variable; see refs. [58,59]) and rates of evolution while
controlling for each of the controlling variables. Similar
results were obtained: upstream and downstream genes
exhibit significantly higher ω and dN values when con-
trolling for codon bias or the number of paralogs, but
not when controlling for expression level, expression
breadth, or connectivity (Additional file 1: Table S3).
Finally, partial correlation analysis was used to evalu-

ate the association between H and ω and dN while con-
trolling separately for each factor. Both correlations are
significant when codon bias or the number of paralogs
are used as controlling variables, but not when expres-
sion level, expression breadth, or connectivity are
included in the analysis (Additional file 1: Table S4).
Therefore, the differences in the ω and dN values of

upstream and downstream network genes disappear
when the effect of expression level, expression breadth,
or connectivity, are removed. This indicates that these
factors account for the higher levels of selective con-
straint acting on the downstream genes of the human
signal transduction network. In particular, when connec-
tivities are controlled for, ω and dN values are not sig-
nificantly different for upstream and downstream genes,
regardless of the method used (Additional file 1: Tables
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S1–S4), indicating that this factor may be the main re-
sponsible for the polarity in the levels of selective con-
straint. When the effects of expression level or breadth
are accounted for, the differences in ω and dN between
upstream and downstream genes vanish for only one or
two of the three methods used, indicating that these fac-
tors may contribute to the selective constraint polarity
to a lesser extent.

A case study: Natural selection upstream and
downstream of the mammalian Ras signaling pathway
So far, the Drosophila Ras pathway is the only signal
transduction pathway for which higher levels of selective
constraint have been described in genes acting at the up-
stream part [37]. The Ras pathway is activated by diverse
extracellular stimuli, including growth factors, cytokines
and hormones. Activation of receptor tyrosine kinases
(RTKs, such as EGFR) triggers a cascade of signaling
events (including a cascade of protein phosphorylations)
that ultimately promote cell proliferation, differentiation,
migration and survival (for review, see ref. [60]). The
architecture of this pathway has been characterized in
detail in a number of organisms, including Drosophila
and mammals, revealing a highly conserved structure
and function across metazoans. Riley et al. [37] exam-
ined the patterns of molecular evolution of six of the
genes involved in the Drosophila Ras pathway. For that
purpose, they surveyed the levels and patterns of poly-
morphism in Drosophila melanogaster, and divergence
with respect to the sister species D. simulans. They
found that three proteins acting at the upstream part of
the pathway (Drk, Ras and Raf) were identical in both
species, and exhibited no or just a few rare replacement
polymorphisms within D. melanogaster. On the contrary,
the three downstream proteins included in their analysis
(Dsor1, Ksr and Corkscrew) displayed a number of fixed
differences between the two species, as well as some re-
placement polymorphisms in D. melanogaster. Consist-
ent results were obtained from the ω values (ranging
0.000–0.003 for the upstream genes, and 0.006–0.110
for the downstream ones), pointing out to higher levels
of purifying selection acting at the upstream part of the
pathway. A proposed explanation for this observation
was that, owing to their highly hierarchical position, pro-
teins acting at the upstream part of the pathway would
act as key control points, greatly influencing the activity
of downstream proteins, whereas downstream proteins
would act as modulators of the output signal [37].
The current wealth of genomic data provides an excellent

opportunity to study the patterns of molecular evolution of
all the core components of the Ras pathway in other taxo-
nomic groups. Hence, I considered whether levels of select-
ive constraint acting on the mammalian Ras pathway genes
exhibit a similar distribution across the pathway to that
observed in Drosophila. Most of the afore-mentioned
Drosophila pathway genes have multiple orthologs in mam-
malian genomes known to participate in the Ras pathway
(e.g., ref. [60]). For each such mammalian gene, the ω value
was estimated from comparison of the human-mouse pair
of orthologs (see Additional file 1: Table S5). Genes encod-
ing the mammalian proteins SOS1, SOS2, ERK1, ERK2,
and RSK1–3, which are also key components of the path-
way [60], were also included in the current analysis (see
Figure 2A for a diagram and description of the pathway).
Contrary to previously suggested in Drosophila [37],
genes acting at the upstream part of the mammalian Ras
pathway (those encoding the Grb2, SOS1, SOS2, H-Ras,
K-Ras, N-Ras, A-Raf, B-Raf, and C-Raf proteins) were
not found to exhibit lower rates of evolution than those
acting at the downstream part (the rest of genes listed in
Additional file 1: Table S5). If anything, the opposite
seemed to be the case (median ω for upstream and down-
stream genes: 0.023 and 0.018, respectively), although the
differences between both groups were not significant
(Mann–Whitney test, P=0.503). Consistently, ω values
were found to exhibit a negative, although non-significant,
correlation with the position of genes along the upstream/
downstream axis of the pathway (ρ=−0.195, P= 0.470;
Figure 2B). For this analysis, pathway position was defined
as the number of steps required to transduce the signal
from the most upstream element (Grb2, position 0), to
each of the pathway components (with proteins RSK1–3
sharing position 6, the most downstream position of the
core pathway; Figure 2A; Additional file 1: Table S5).
Neither expression levels, nor expression breadths or

connectivities significantly correlate with pathway position
(expression level: ρ=0.107, P=0.693; expression breadth:
ρ=0.116, P=0.670; connectivity: ρ=−0.134, P=0.620) or
with ω values (expression level: ρ=0.203, P= 0.450; ex-
pression breadth: ρ=0.123, P=0.649; connectivity:
ρ=−0.174, P=0.519). It should be noted, however, that
microarray-based gene expression data, such as the one
used here [61,62], is subject to high levels of measurement
noise. More accurate measures of expression are available
for some of the proteins involved in the Ras pathway, and
indeed it has been noticed that downstream proteins are
present in higher concentrations in the cell (e.g., see ref.
[38] and references therein), thus leaving open the possi-
bility that the slightly higher levels of selective constraint
observed in the downstream part of the pathway (Figure 2;
Additional file 1: Table S5) may result from these genes
being expressed at higher levels.
In any case, these results indicate that, contrary to pre-

viously suggested in Drosophila [37], genes acting at the
upstream part of the mammalian Ras pathway are not
subject to higher levels of selective constraint than those
acting at the downstream part. If anything, the opposite
might be the case, although the trend is not statistically
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Figure 2 Structure of the mammalian Ras pathway (A) and distribution of selective pressures across the upstream/downstream
pathway axis (B). (A) Upon binding to mitogenic ligands (e.g. EGF), receptor tyrosine kinases (RTKs, e.g. EGFR), are able to recruit Grb2 to the cell
membrane. Grb2 binds to SOS proteins, thus promoting their membrane location. Once in the membrane, SOS proteins act as guanine exchange
factors of Ras proteins, thereby promoting Ras’ activation. Activated forms of Ras promote the recruitment of Raf proteins to the membrane,
which in turn phosphorylate MEK proteins. Activated MEK proteins then phosphorylate ERK proteins. The required molecular interactions for these
phosphorylation events are facilitated by interaction with the scaffold proteins KSR. Finally, ERK proteins phosphorylate RSK proteins, which in
turn activate ribosomal protein S6 and a number of transcription factors, thus promoting cell proliferation, differentiation, migration and survival,
and modulating cellular metabolism. (B) Correlation between the position of genes in the pathway (defined as the number of steps required for
the signal transduction between RTKs to each of the genes in the pathway) and their rates of evolution. See Additional file 1: Table S5 for a full
list of the core pathway genes and their rates of evolution.
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significant. This observation is in agreement with the
general trend described here for the whole human signal
transduction network.
Discussion
In summary, results presented here demonstrate that
genes acting at the upstream part of the human signal
transduction network clearly do not evolve under stron-
ger selective pressures (Tables 1–3; Figure 1). This find-
ing seems striking, as these proteins, owing to their
higher hierarchical position, may be capable of regulat-
ing the activity of a higher number of downstream pro-
teins. Therefore, mutations in the genes encoding
upstream network proteins would be expected to have
more pleiotropic effects, and hence these genes would
be expected to evolve under stronger purifying selection.
In contrast with these expectations, a number of ana-
lyses that capture different aspects of the hierarchical
position of genes in the signaling network found no evi-
dence for upstream genes being subject to higher levels
of selective constraint. On the contrary, upstream net-
work genes are less selectively constrained than down-
stream genes, which appears to be explained by
downstream genes performing certain functions, being
more highly and broadly expressed and, in particular, en-
coding more highly connected proteins.
Protein connectivity, gene expression breadth and, to a

lesser extent, expression level, exhibit a polarity across
the human signaling network, with downstream genes
progressively encoding proteins that are more connected,
and being expressed in a higher number of tissues and at
higher levels (Tables 1–3; Figure 1). The higher levels of
expression of downstream genes might facilitate the amp-
lification of signals through their progression throughout
signaling cascades, which requires higher protein abun-
dances for the downstream elements of the pathway (e.g.,
ref. [38]). Additionally, the higher connectivity of down-
stream genes is consistent with previous observations that
hubs (i.e., highly connected proteins) tend to be tightly
regulated, exhibiting higher numbers of phosphorylation
sites and higher mRNA decay rates [57]. The distribution
of these factors across the network, combined with the
fact that highly and broadly expressed genes [7,50-52], and
those encoding highly connected proteins in the protein–
protein interaction network [14-16], tend to evolve under
stronger purifying selection, accounts for the higher levels
of selective constraint observed in genes acting at the
downstream part of the network. In particular, when the
effect of connectivity is factored out, the differences in ω
and dN values between upstream and downstream genes
are no longer significant, regardless of the method used
(Additional file 1: Tables S1–S4), pointing to this factor
as the main responsible for the higher levels of selective
constraint acting on the downstream network genes.
When the effects of expression level and breadth are
removed, the differences in the levels of selective con-
straint observed between upstream and downstream genes
also vanish for some of the tests (Additional file 1:
Tables S1–S4), suggesting that these factors also con-
tribute to the tendency. Likewise, protein functions may
also play a role, as the trend also vanishes for some
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tests when ion transmembrane transporters (which are
slow-evolving and are enriched in the downstream part
of the network) are removed from the analyses. In any
case, taken together these observations indicate that the
upstream/downstream position of proteins in the human
signal transduction network does not have a direct effect
on their rates of evolution.
The global trends observed in the entire human signal

transduction network (i.e., downstream genes being
more selectively constrained owing to their higher con-
nectivity, expression level and breath) mirror those pre-
viously observed in some particular pathways. In both
the Caenorhabditis insulin/TOR signaling pathway and
the yeast HOG signaling pathway, downstream genes
evolve under stronger levels of selective constraint,
probably as a result of their higher levels of expression
and codon bias (which is often used as a proxy for levels
of expression), respectively [42,43]. It should be noted,
however, that the general trends observed across the
whole network do not necessarily imply that each par-
ticular signaling pathway must exhibit the same trend.
For instance, in the Drosophila and vertebrate insulin/
TOR pathways, downstream genes evolve under stronger
purifying selection, even when the putative effect of sev-
eral factors that correlate with levels of selective con-
straint is discounted [39-41,44]. Another example that
does not seem to conform to the general trend described
here is the Drosophila Ras pathway [37], whose up-
stream genes appear to be the most constrained, despite
these genes being the ones expressed at lower levels [38]
(however, observations in the mammalian Ras pathway
do not point in the same direction; see below, Figure 2
and Additional file 1: Table S5). Therefore, despite the
overall trends described here, the particular structure
and function of each individual pathway may result in
different distributions of the impact of evolutionary
forces. For instance, pathways whose upstream genes,
for some reason, present higher connectivities, and/or
levels or breadths of expression, would probably be more
selective constrained in the upstream part. It should also
be noted that factors other than the ones considered
here may also affect the distribution of levels of selective
constraint across functional pathways and networks. In
particular, enzymes whose kinetic characteristics exert a
high degree of influence over the entire network (and
hence, on the phenotype) are expected to be more se-
lectively constrained than those exerting little influence
on the network dynamics [31,63-65]. The degree to
which a particular enzyme can influence the behavior of
the entire network is, however, difficult to determine
from currently available data.
So far, the Drosophila Ras pathway is, to the best of

the author’s knowledge, the only signal transduction
pathway whose upstream genes appear to be the ones
evolving under higher levels of purifying selection [37].
However, due to the limited availability of genomic data
at that time, this observation was based on the analysis
of a small set of genes and the comparison of two closely
related species (D. melanogaster and its sister species D.
simulans, which are thought to have diverged 2–6 mil-
lion years ago [66,67]). Results reported here for all core
components of the mammalian Ras pathway, and based
on human-mouse comparisons (which probably diverged
~75 million years ago; e.g., ref. [68]), do not point in the
same direction: upstream genes do not exhibit lower
rates of evolution than those acting at the downstream
part of the pathway. If anything, the opposite might be
the case (i.e., downstream genes exhibit slightly lower
rates of evolution, although no significant differences
are observed between upstream and downstream genes;
Figure 2; Additional file 1: Table S5). In any case, this
observation lends further support to the finding that
genes occupying highly hierarchical positions in the
human signal transduction network are not subject to
higher levels of selective constraint than those acting
at the downstream part.
The observation that genes acting at the upstream part

of the human signal transduction network are not sub-
ject to higher levels of selective constraint sharply con-
trasts with the trends generally observed in biosynthetic
pathways. These pathways consist of a series of enzymes
that share metabolites, with the product of a given en-
zyme being usually the substrate of the following en-
zyme (or enzymes) in the pathway. In such pathways,
metabolites can often take different alternative routes,
which end up in the biosynthesis of different end pro-
ducts. In a growing number of biosynthetic pathways,
including the plant anthocyanin [28,69,70], isoprene
[25], terpenoid [26], and carotenoid pathways [27,71],
the Bombyx melanin pathway [30], and the mammalian
dopamine pathway [29], levels of selective constraint
correlate with the position of genes along the upstream/
downstream pathway axis, with upstream genes being al-
ways the most constrained. Two plausible scenarios
might explain such a distribution of selective constraints
in biosynthetic pathways. First, as a result of their
branching topology, these pathways often exhibit a hier-
archical structure, with upstream genes being necessary
for the biosynthesis of a higher number of end products
than downstream genes; therefore, mutations in genes
acting at the upstream part may have higher pleiotropic
effects [28]. Second, upstream enzymes in biosynthetic
pathways probably often exert a higher control over the
flux of metabolites throughout the pathway [31]; thus,
the overall pathway function (and, hence, the associated
phenotypes) may more strongly depend on the function
of these enzymes. Both models predict a higher relevance
for pathway function of upstream genes, and hence a



Alvarez-Ponce BMC Evolutionary Biology 2012, 12:192 Page 12 of 15
http://www.biomedcentral.com/1471-2148/12/192
higher strength of natural selection acting on these
genes. Similar trends have been observed in transcrip-
tional regulatory networks. First, genes occupying higher
hierarchical positions in these networks are likely to be
essential, reflecting their key importance for organism’s
fitness [32]. Second, simulation analyses of transcrip-
tional regulatory networks have shown that genes exert-
ing a high degree of control over other genes, or those
that are less regulated by other genes, are expected to be
more strongly affected by selection [33].
Therefore, results presented here imply that the distribu-

tion of evolutionary forces across the upstream and down-
stream parts of the signal transduction network remarkably
differs from that observed in biosynthetic and transcriptional
regulatory pathways. In biosynthetic and transcriptional
regulatory pathways, upstream genes evolve under stronger
levels of selective constraint, whereas this is not the case for
the human signal transduction network. This suggests that
genes occupying higher hierarchical positions are not more
relevant for the function of the signaling network, or to the
organism’s fitness, than downstream genes. These different
patterns of evolution may reflect fundamental differences in
the function and organization of the different kinds of
pathways.
As signaling networks become better understood, it

becomes more apparent that signal transduction does not
take place in the context of independent linear pathways in
which each protein is exclusively controlled by the preceding
protein in the cascade. This classical model is being progres-
sively substituted by a much more integrative model of sig-
nal transduction, in which a considerable amount of cross-
talk takes place between pathways. As a result, pathways
would cooperate to integrate signals, and to make decisions
about the responses in a decentralized manner, thus confer-
ring robustness to the system [72,73]. This kind of
organization may allow the network to accommodate modi-
fications in its upstream genes. For instance, even if an up-
stream gene undergoes disruptive mutation, its downstream
targets might still be activated by alternative routes that do
not involve the disrupted element. The observation that
genes occupying more hierarchical positions in the signaling
network are not subject to stronger selective forces is con-
sistent with this emerging integrative model. Although
somewhat speculative, this observation would be compatible
with the organization of the signal transduction network
being less hierarchical than that of biosynthetic and tran-
scriptional regulatory networks. In the future, a deeper
understanding of the differences between the nature of bio-
synthetic, transcriptional regulatory, and signaling pathways
may shed more light on their different patterns of evolution.

Conclusions
Surprisingly, genes occupying the higher hierarchical
positions of the human signal transduction network are
not subject to stronger levels of purifying selection, sug-
gesting that they are not more important for the func-
tion of the network and the fitness of the organism than
genes occupying the lower hierarchical positions. This
observation sharply contrasts with the patterns observed
in metabolic and transcriptional regulatory pathways
and networks, in which upstream genes are generally the
most selectively constrained. These contrasting patterns
of evolution might reflect fundamental differences in the
function and organization of signaling and biosynthetic
and transcriptional regulatory networks. In any case,
results presented here broaden our knowledge on how
natural selection distributes across molecular networks.
Methods
Human signal transduction network
The human directed signaling network described in ref.
[34] was used. After eliminating metabolites, proteins
that could not be mapped to Ensembl IDs, proteins
encoded by genes without a 1:1 ortholog in the mouse
genome (see below), and undirected interactions (i.e.,
those for which the directionality of signal transduction
is not available), the dataset contained 2436 activating or
inhibitory interactions connecting 1049 human proteins.
For each human protein, a number of measures of its

hierarchical position in the network were computed: in-
degree and out-degree (number of upcoming and out-
going edges in the network, respectively), and the total
number of proteins that lay downstream of the protein
of interest (termed H). Proteins with high out-degrees
(i.e., modulating a high number of other proteins), low
in-degrees (i.e., modulated by a few or no other proteins),
and/or high H values (i.e., with a high number of proteins
acting downstream of it) can be considered to occupy
high hierarchical positions in the network. H was com-
puted as follows: first, a list of proteins containing all
downstream direct targets of the protein of interest was
generated; second, all direct downstream targets of these
proteins were incorporated to the list. The second step
was iterated until all proteins acting downstream of the
protein of interest were found (i.e., until the number of
elements in the list remained stable).
Impact of natural selection
All human and mouse protein and CDS sequences were
obtained from the Ensembl database, release 62 [74]. For
genes encoding multiple transcripts owing to alternative
splicing, the variant encoding the longest protein (i.e.,
the “canonical transcript”) was used. For each protein in
the human signaling network, the 1:1 mouse ortholog
was identified using a best reciprocal BLAST approach
(using BLASTP and an E-value cut-off of 10–10). Pairs of
orthologous amino acid sequences were aligned using
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ProbCons 1.12 [75], and the resulting alignments were
used to guide the alignment of the corresponding CDSs.
For each pair of orthologous sequences, the impact of

natural selection was characterized from the nonsynon-
ymous (dN) to synonymous (dS) divergence ratio
(ω= dN/dS). Estimates of ω, dN and dS were obtained
using the program codeml from the package PAML 4.4
[76] (under the M0 model). The action of positive selec-
tion was inferred using the M7 vs. M8 test [45]. Model
M7 assumes that codons’ ω values range between 0 and
1, following a beta distribution, whereas model M8
allows for an extra class of codons with ω > 1. The likeli-
hood of both models is compared using the likelihood
ratio test [77], assuming that twice the difference be-
tween the log-likelihoods of both nested models (2Δℓ)
follows a χ2 distribution with 2 degrees of freedom.
If model M8 significantly better fits the data, positive
selection is invoked. P-values for this test were cor-
rected for multiple testing using the false discovery rate
approach [78].
Statistical analyses
Proteins were considered to act in the upstream part of
the network if they modulate other proteins (out-de-
gree > 0) and are not modulated by any other protein
(in-degree = 0), or in the downstream part of the net-
work if out-degree = 0 and in-degree > 0. Third, I
evaluated whether the ω and dN values correlate
with measures of hierarchical position in the network
(in-degree, out-degree, and H) using the Spearman’s
rank correlation coefficient (ρ). These methods were
likewise applied to evaluate whether upstream and down-
stream genes differ in terms of a number of factors that
are known to correlate with the levels of selective con-
straint: gene expression level and breadth, codon usage
bias, connectivity, and number of paralogs (see below).
Furthermore, I considered whether the differences in

ω and dN observed between upstream and downstream
genes were attributable to the distribution of their corre-
lates across the network. For the first two methods
(paired sign and Mann–Whitney tests), linear regression
was used to model the dependence of ω and dN from
each factor. Then, the residuals of the model for each
gene (i.e., the difference between the observed and pre-
dicted values) were used in the analyses. Additionally,
partial correlation analysis was used to evaluate the
correlation between rates of evolution and upstream/
downstream location while controlling for each variable.
For that purpose, upstream/downstream location was
encoded as a binary variable (see refs. [58,59]). The
Spearman’s rank correlation test, when applied to a
continuous and a binary variable, is equivalent to the
Mann–Whitney test. Finally, partial correlation analysis
was also used to evaluate the correlation between evo-
lutionary rates and the measures of hierarchical position
(in-degree, out-degree and H) while controlling for each
of the controlling variables.

Correlates of selective constraint levels
For each human gene, estimates for a number of factors
that correlate with ω and dN were obtained from differ-
ent sources:

� Gene expression level and breadth: Human gene
expression data was retrieved from the BioGPS
portal [61,62] (U133A/GNF1H dataset gcRMA-
normalized). Probes were matched to genes through
Ensembl’s BioMart [79] (for the U133A dataset) or
the annotation file provided in the BioGPS portal
(for the GNF1H dataset). For each probe and tissue,
values were averaged across both replicates. For
each probe, expression level was computed as the
average across a subset of 25 nonredundant, adult
noncancerous tissues (as in ref. [40]). For genes
matching more than one probe, the one with the
highest average across the 25 selected tissues was
used. Expression breadth for each gene was
calculated as the number of tissues (out of the 25
selected ones) in which the gene is expressed above
the median across all tissues and genes.

� Codon bias: The effective number of codons (ENC;
ref. [80]) of each gene was computed using the
software CodonW 1.4.2 (http://codonw.sourceforge.
net/). For each pair of human-mouse orthologs,
ENC values were averaged.

� Number of paralogs: For each human gene, a list of
human paralogs was obtained from Ensembl’s
BioMart.

� Protein connectivity: The whole human protein–
protein interaction network was retrieved from the
BioGRID database version 3.0.67 [56]. Only physical
interactions between human proteins were used. For
each protein, connectivity was computed as the
number of proteins with which it physically
interacts. Genes not represented in the database
were assigned missing values.

� Subcellular location: For each gene, a list of the
Gene Ontology [81] terms to which it is associated
was obtained from Ensembl’s BioMart. Genes were
considered to act in the extracellular space (105
genes), in the plasma membrane (381), cytoplasm
(570) or in the nucleus (455) if associated to the
terms “extracellular region”, “plasma membrane”,
“cytoplasm” or “nucleus”, respectively. Among these,
34, 130, 125 and 121 act exclusively in the
extracellular compartment, the plasma membrane,
the cytoplasm and the nucleus, respectively.

http://codonw.sourceforge.net/
http://codonw.sourceforge.net/
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Additional file

Additional file 1: A single PDF file containing supplementary Tables
S1–S5. Table S1 lists the results of the paired tests comparing the
evolutionary rates of each gene with those of its direct downstream
targets while controlling for a number of correlates of rates of evolution.
Table S2 lists the Mann–Whitney tests comparing the evolutionary rates
of genes occupying extreme upstream and downstream positions while
controlling for a number of correlates of rates of evolution. Table S3 lists
the partial correlation analyses contrasting the association between
upstream/downstream position of genes and their rates of evolution
while controlling for a number of correlates of rates of evolution. Table
S4 lists the partial correlation analyses contrasting the association
between rates of evolution and measures of hierarchical position while
controlling for a number of correlates of rates of evolution. Table S5 lists
the ω values for genes involved in the mammalian Ras signaling
pathway.
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