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Neutrophil extracellular trap (NET) formation represents a form of cell death distinct from 
apoptosis or necrosis, by which invading pathogens are simultaneously entangled and 
potentially eliminated. Increased NET formation is observed in systemic lupus erythe-
matosus (SLE), rheumatoid arthritis, antineutrophil cytoplasmic antibody-associated 
small vessel vasculitis, antiphospholipid antibody syndrome (APS), and psoriasis. NETs 
contribute to the pathogenesis of autoimmunity by exposing cryptic autoepitopes, which 
may facilitate the generation of autoantibodies, induce the production of interferons, 
and activate the complement cascade. In SLE, augmented disease activity and renal 
disease are associated with increased NET formation, so that NETs could serve as a 
marker for the monitoring of disease activity. NETs can additionally cause endothelial 
cell damage and death and stimulate inflammation in atheromatous plaques, adding to 
the accelerated atherosclerosis witnessed in autoimmune disease. Since NETs induce 
production of interferons, assessing the extent of NET formation might facilitate the 
prediction of IFN-alpha levels and identification of SLE patients with presumably better 
responses to anti-IFN-alpha therapies or other novel therapeutic concepts, such as 
N-acetyl-cysteine and inhibitors of DNase 1 and peptidylarginine deiminase 4 (PAD4), 
which also target NETs. In summary, the study of NETs provides a novel approach to the 
understanding of autoimmune disease pathogenesis in childhood and opens new vistas 
in the development of sensitive disease markers and targeted therapies.

Keywords: neutrophils, neTs, neTosis, biomarkers, juvenile idiopathic arthritis, SLe

inTRODUCTiOn

Neutrophils play a key role in innate immunity with multiple strategies for defending the host 
against pathogens. Neutrophils initially migrate to the site of infection and exert their critical 
roles through phagocytosis, degranulation and secretion of antimicrobial factors, production 
of reactive oxygen species (ROS), and release of neutrophil extracellular traps (NETs) (1–3). 
Although the primary function of neutrophils is to protect the body from hazardous microbes, 
the influx of neutrophils to an inflamed site can contribute directly to tissue damage and the 
progression to chronic inflammation. Neutrophils mediate a pro-inflammatory response to tissue 
injury or infection by releasing cytokines that recruit and stimulate other immune cells and 
promote the activation of adaptive immunity. Neutrophil granulocytes have been traditionally 

http://www.frontiersin.org/Pediatrics
http://crossmark.crossref.org/dialog/?doi=10.3389/fped.2016.00097&domain=pdf&date_stamp=2016-09-13
http://www.frontiersin.org/Pediatrics/archive
http://www.frontiersin.org/Pediatrics/editorialboard
http://www.frontiersin.org/Pediatrics/editorialboard
http://dx.doi.org/10.3389/fped.2016.00097
http://www.frontiersin.org/Pediatrics
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:stavros.giaglis@unibas.ch
http://dx.doi.org/10.3389/fped.2016.00097
http://www.frontiersin.org/Journal/10.3389/fped.2016.00097/abstract
http://www.frontiersin.org/Journal/10.3389/fped.2016.00097/abstract
http://www.frontiersin.org/Journal/10.3389/fped.2016.00097/abstract
http://www.frontiersin.org/Journal/10.3389/fped.2016.00097/abstract
http://loop.frontiersin.org/people/64889/overview
http://loop.frontiersin.org/people/50942/overview
http://loop.frontiersin.org/people/71963/overview


FiGURe 1 | (A) Scanning electron microscopy image of polymorphonuclear neutrophils undergoing NETosis, after in vitro treatment with PMA for 3 h. (B) Schematic 
overview of potential NETs targeting therapies. A series of antioxidants can reduce generation of ROS, which triggers NET formation. DNase 1 digests extracellular 
DNA and, thus, degrades NETs. PAD4 inhibitors block histone citrullination, an important event for autoantibody generation in autoimmune disease. Sifalimumab 
and rontalizumab are monoclonal antibodies to IFN-a, which is a byproduct of NETosis that can further stimulate neutrophil activation and NET release. Eculizumab, 
a monoclonal antibody to C5, can block complement activation that stimulates formation of NET.
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viewed as short-lived cells that die at sites of inflammation; 
increasing evidence, however, suggests that they can expand 
their life span upon specific stimuli and transmigrate away from 
inflammatory loci (2–4).

More recently, neutrophils were found to form extracellular 
meshes called NETs, which are composed mainly of DNA, 
histones, and granular proteases (Figure  1A). NETs were first 
observed as a unique form of cell death, distinct from apoptosis or 
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TABLe 1 | involvement of neutrophils and neTs in autoimmune diseases 
during childhood and adulthood.

Disease Proposed role of neutrophils and/or neTs Reference

Childhood
Juvenile  
idiopathic  
arthritis

• NETs as a source of citrullinated pathogenic 
autoantigens

• Involvement of the S100A proteins 
originating from activated neutrophils in 
the local tissue damage

(46–50)

Sytemic lupus 
erythematosus

• dsDNA extruded as an pathogenic 
immunostimulatory autoepitope, 
promoting IFNα production – LDGs

• Decreased NET degradation capacity
• Endothelial cell damage and dysfunction

(26, 41, 
52–55)

Spondyloarthritis • Active IL-12/IL-23 and the IL-17 cytokine 
pathways in MPO+/CD15+ neutrophils

(56–58)

Juvenile 
dermatomyositis

• Abnormal generation of NETs could be a 
factor initiating and exaggerating the lung 
involvement

• Decreased NET degradation capacity

(59)

Type 1 diabetes 
mellitus

• Involvement of the granular proteolytic 
enzymes NE and MPO originating from 
NETs affect the IRS-1 dependent glucose 
tolerance and local tissue damage

(64–67)

Adulthood
Rheumatoid arthritis• NETs as a source of citrullinated 

pathogenic autoantigens
(15, 23)

Psoriasis • LL-37 extruded with the NETs drives 
production of IFNα

(26)

ANCA-associated 
vasculitis

• The granule protein contents of NET may be 
the antigen source for pathogenic ANCAs

• Increased NET formation may contribute 
to clot formation

(22)

APS • NETs could promote clot formation (25)
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necrosis (5), a process further described as NETosis (6, 7). NETs 
trap and restrain invading pathogens and utilize their highly 
localized focus of antimicrobial granular peptides to degrade 
virulent factors and even kill microorganisms (6–8).

Neutrophil extracellular traps were originally defined being 
sparked by stimulation with Gram-positive and -negative bacteria, 
fungi, and parasites, together with agents as IL-8, lipopolysaccha-
ride (LPS), and PMA (6, 7). The most prominent pathway medi-
ating NET formation appears to be NADPH oxidase-generated 
ROS, with the granular enzymes myeloperoxidase (MPO) and 
neutrophil elastase (NE) promoting chromatin decondensation 
and peptidyl arginine deiminase (PAD4) catalyzing histone 
citrullination (9–12). Moreover, recent data show that NET 
formation is directly linked to autophagy (13), while regulation 
of autophagy is closely tied to ROS (14). Most importantly, 
ROS levels determine whether the autophagy response ends in 
NETosis (13). The precise ways, however, in which ROS interfere 
with the signaling network behind NETs and autophagy are only 
partly understood.

The identification of NETs has been accomplished via micro-
scopic techniques, such as immunofluorescence microscopy, 
transmission electron microscopy (TEM), and scanning electron 
microscopy (SEM). Recently, a series of novel immunocyto- and 
histochemical procedures allowed improved imaging and quan-
tification of NETs. On the one side, in vitro live-cell imaging led 
to profound new concepts over the mechanisms of NET genera-
tion. These include fluorescence microscopy and spectroscopy 
(6, 15), electron microscopy (15, 16), and lately flow cytometry 
with simultaneous imaging (17, 18). On the other side, diverse 
intravital, in  vivo, and in  situ microscopic techniques led to 
deeper insights into the role of NET formation during health 
and disease (12, 19).

Moreover, the deposition of NETs observed in various 
inflammatory pathologies was associated with the circulating 
cell-free DNA (cfDNA) levels in biological fluids of the respec-
tive patients, such as plasma and serum (15, 20, 21). Therefore, 
circulatory cfDNA could eventually be utilized as a surrogate 
marker of NETs in these pathologies, while determination of 
the DNA levels might facilitate monitoring the disease activity 
and assessment of the effectiveness of a selected therapeutic 
strategy.

Although they play a key role in the defense against pathogens, 
NETs may cause undesirable effects to the host. Most importantly, 
there has been increased interest in the role of neutrophils and 
NETs in autoimmunity. Augmented NET formation was first 
described in preeclampsia and ANCA-associated vasculitis, and 
successively in a series of autoimmune conditions, including 
psoriasis, SLE, antiphospholipid antibody syndrome (APS), and 
rheumatoid arthritis (RA) (15, 22–26) (Table 1).

Neutrophil extracellular trap are an obvious source of nuclear 
material. Among these are a range of cytoplasmic and extracel-
lular citrullinated antigens, well-established targets of anticitrul-
linated protein antibodies (ACPAs) found in RA (15,  23). 
Not  only do the  protein contents of NETs serve as the targets 
for autoantibody and immune complex formation but they also 
induce further NETosis, resulting in a harmful positive-feedback 
loop. These factors form an inflammatory microenvironment that 

may trigger a strong autoimmune response in individuals with 
the corresponding susceptibility (27, 28).

Pro-inflammatory cytokines, such as tumor necrosis factor 
α (TNFα) and interleukin-17 (IL-17), as well as autoantibodies 
stimulate the formation of NETs and also affect their protein com-
position (23). Additionally, NETs have been shown to stimulate 
autoimmunity via the production of interferons and activation 
of the complement cascade. Antimicrobial granular proteolytic 
enzymes and the DNA contents of NETs induce plasmacytoid 
dendritic cell (pDC) interferon α (IFNα) production in SLE 
and psoriasis, as well as in the case of invading viruses (24). 
Interferons activate both innate and adaptive immune systems, 
inducing a Th1 immune response and stimulating B cells toward 
the generation of autoantibodies.

In addition to the elevated NET formation in patients with 
autoimmune diseases, increased NET stability and defects in the 
clearance of NETs have also been observed, particularly in SLE 
and ANCA-associated vasculitis. In a subset of SLE and ANCA-
associated vasculitis patients, a decreased capacity for NET clear-
ance due low DNase 1 activity as well as the presence of DNase 1 
inhibitors has been described. Moreover, antibodies may prevent 
DNase 1 access to NETs, thus protecting them from degradation 
(25, 29–31). Finally, complement appears to directly interact with 
NETs and inhibit DNase 1-mediated NET degradation, while 
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non-degraded NETs activate complement in  vitro (32). Taken 
together, a detrimental positive-feedback loop seems to activate 
complement by the formation of NETs, which, in turn, increases 
NETs even further by preventing their degradation.

Neutrophil extracellular trap represent a relatively novel 
therapeutic target in autoimmune disease. There are several key 
events throughout neutrophil activation toward NETosis, which 
could be aimed to inhibit NET formation (Figure 1B). Given the 
involvement of ROS and oxidative stress in NETosis and autoim-
munity, the utilization of antioxidants, such as Trolox, Tempol 
(33), and vitamin C (34), which prevent NET release, could be 
introduced for treating autoimmune inflammatory diseases. 
Another target for blocking NETosis is PAD4, inhibitors of 
which might ameliorate disease manifestations but also improve 
endothelial dysfunction (35). Recombinant DNase 1 could 
potentially degrade NETs, leading to efficient clearance of harm-
ful debris. Finally, a series of recombinant human monoclonal 
antibodies are shown to restrain NET formation, acting indirectly 
on molecules released from the activated neutrophils together 
with NETs. These recombinant mAbs could be administered for 
neutralization of the cytokine byproducts of the NETotic process, 
such as IFN and members of the complement system (36, 37).

AUTOiMMUne COnDiTiOnS in 
CHiLDHOOD

The role of neutrophils and NETs in pediatric rheumatology is 
currently gaining increasing attention. Childhood rheumatic dis-
orders are categorized into autoimmune and autoinflammatory 
conditions (38). Neutrophil infiltration into the tissues is present 
in both autoinflammatory diseases characterized by activation of 
the innate immune system, and classic autoimmune diseases are 
characterized by the presence of autoantibodies and autoreactive 
T cells. This makes the common basic effector pathways evident. 
In the pediatric setting, special attention must be given to the 
possibility of congenital immune deficiencies that present with 
features of autoimmune disease. For instance, children may 
develop manifestations of inflammatory bowel disease (IBD) 
with neutrophilic inflammation due to primary genetic defects 
in the innate immune system, including chronic granulomatous 
disease (CGD) with mutations in NADPH oxidase (39).

neutrophils and neTs in JiA
Juvenile idiopathic arthritis (JIA) is the most common chronic 
autoimmune disease of childhood (40). JIA represents a group of 
entities that start prior to puberty with incident arthritis lasting 
at least 6 weeks without any additionally identified cause (41). 
The 2001 ILAR classification criteria divide JIA into several 
disease categories based on the number and type of affected 
joints and the presence of systemic presentations (42). Although 
different JIA categories share common pathogenic mechanisms 
and therapeutic strategies, they are distinct entities, and the role 
of neutrophils in pathogenesis likely differs by JIA subtype as 
suggested by both heterogeneous clinical characteristics and 
underlying genetics.

A series of factors indicate that oligoarticular and rheumatoid 
factor (RF)-negative polyarticular JIA are typical autoimmune 

diseases, including the linkage with specific HLA haplotypes, 
as well as the presence in the synovial fluid of specific memory 
Th1 lymphocytes (43, 44). Genome wide association studies have 
detected associations with a series of loci that overlap with clas-
sic autoimmune diseases, including adult RA, multiple sclerosis 
(MS), and type I diabetes mellitus (T1D) (43, 45).

Gene expression analyses in neutrophils from patients suffer-
ing from RF-negative polyarticular JIA revealed modulation of 
IL-8- and IFNγ-regulated genes (46). Alleles related to calcium 
flux and ROS generation have been reported in affected neutro-
phils (47). These abnormalities distinguished JIA from healthy 
controls, but not active from inactive disease, suggesting the 
existence of additional intrinsic cellular defects. Furthermore, 
there is evidence for chronic activation of peripheral neutro-
phils in pediatric patients with polyarticular disease like in 
adult RA (46).

S100A proteins are zinc and calcium-binding proteins that 
represent up to half of the total cytosolic protein in phagocytes. 
Neutrophils and monocytes produce the S100A8/S100A9 heter-
odimer, also known as calprotectin, while S100A12 is primarily 
produced by activated neutrophils. Upon binding the receptors 
for advanced glycation end products (RAGE), S100A proteins 
activate endothelial cells, inducing expression of adhesion mol-
ecules and chemoattractants, thus increasing leukocyte recruit-
ment (48). Calprotectin also triggers toll-like receptor 4 (TLR4), 
promoting secretion of pro-inflammatory cytokines, such as IL-6, 
IL-1β, and TNFα (49). Levels of calprotectin and S10012A rise to 
very high levels within inflamed joints, but increased serum levels 
have been also reported, reflecting a state of intense neutrophil 
activation (39).

Interestingly, calprotectin was found to be the major anti-
fungal component in NETs. Absence of calprotectin resulted in 
the complete loss of antifungal activity in vitro and in vivo (50). 
Moreover, reconstituted NET formation after gene therapy for 
human CGD was associated with rapid resolution of pulmonary 
aspergillosis in vivo, underlining the role of functional NADPH 
oxidase in NET formation and calprotectin release for antifungal 
activity (51). The circulating levels of S100A seem to have an 
even higher impact in systemic JIA, in which neutrophils are 
the primary effector cells. Clinical symptoms, such as fever, 
rashes, hepatosplenomegaly and serositis, and the underlying 
genetic background of the affected individuals, place this condi-
tion firmly into the “autoinflammatory disease” category, with 
IL-1 and IL-6 playing major roles in the manifestations of this 
disorder (44).

Although clearly implicated in JIA, the influence of neutro-
phils and NETs on pathogenesis and the utility of biomarkers for 
neutrophil activity require further studies.

neutrophils and neTs in SLe
Systemic lupus erythematosus (SLE) is a systemic autoimmune 
disease with multi-organ involvement characterized by autoan-
tibody generation and deposition of immune complexes in the 
tissues. The main emphasis in SLE pathogenesis has been laid 
on the adaptive immune system. Nevertheless, recent studies 
have brought attention to the role of the innate immune arm of 
defense, and neutrophils in particular (41).
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In contrast to arthritis, where neutrophils are considered to 
be generally primed, even in the circulation (15, 23), there is 
evidence that neutrophils from SLE patients show compromised 
activation and reduced capacities for oxidative burst, chemot-
axis, adhesion, and phagocytosis (26, 41). Lupus neutrophils, 
however, might present an activated phenotype locally in the 
vasculature, where they contribute to the development of vascu-
litis by damaging the endothelium (26, 41, 52). A possible reason 
is most likely the presence of a special neutrophil subset in the 
circulation, determined by a distinctive gene expression profile, 
termed low-density neutrophils (LDGs). Although deficient in 
some typical neutrophil effector functions (degranulation, phago-
cytosis), LDGs exert a pro-inflammatory phenotype as measured 
by cytokine release (including type I IFNs) and enhanced capacity 
for endothelial damage (53). Compared with normal density neu-
trophils, LDGs have an unusual tendency toward NET formation 
in the absence of any secondary stimuli and externalize various 
immunostimulatory proteins (53). LDGs show an enhanced 
capacity to stimulate pDCs to secrete type I interferon, a major 
cytokine implicated in lupus (24, 54). Moreover, NETs are a pos-
sible source of autoepitopes in lupus (41). Otherwise, neutrophils 
from pediatric SLE patients exert increased apoptosis that could 
also act as a source of autoantigens. In particular, serum from 
pediatric lupus patients induces neutrophil apoptosis, which is 
abrogated by granulocyte-macrophage colony-stimulating factor 
(GM-CSF) treatment, suggesting a potential therapeutic benefit 
of GM-CSF in SLE patients (55).

In conclusion, most of the current evidence supports a role 
of neutrophils in the pathogenesis of this disease, particulary 
by LDGs.

neutrophils and neTs in Spondyloarthritis
Calprotectin levels are found increased in enthesitis-related 
arthritis (ERA). These elevations, though, are less than in other 
types of juvenile arthritis, suggesting a reduced role for neutro-
phils in spondyloarthritis (56). Recent studies underline the sig-
nificance of the IL-12/IL-23 and the IL-17 cytokine pathways in 
the pathogenesis of the disease (57). Remarkably, MPO-positive 
CD15-positive neutrophils were foremost in producing IL-17, 
suggesting an unexpected role for the innate immune system (58). 
In this context, cytokine production may be the main driver of 
neutrophil mediated inflammation rather than NET formation.

neutrophils and neTs in Juvenile 
Dermatomyositis
The pathogenesis of the systemic autoimmune disorders der-
matomyositis (DM) and polymyositis (PM) remains unclear. 
Patients suffering from DM and PM were shown to be exposed to 
large amounts of NETs (59). Compared to control subjects, these 
patients exhibited a significantly enhanced capacity for inducing 
NETs, which was supported by elevated levels of plasma LL-37 
and cfDNA in the circulation (59). More importantly, DM and 
PM patients did not show an adequate ability to clear NETs suf-
ficiently due to the low activity of DNase 1.

Moreover, patients suffering from DM and PM presenting with 
interstitial lung disease exhibited the lowest NETs degradation 

capacity in vitro. DNase 1 activity in patients with disease-specific 
autoantibodies was significantly lower than in patients without, 
while treatment with glucocorticoids seemed to improve this 
condition (59). This finding suggests that abnormal regulation of 
NETs may be involved in the disease pathogenesis and could be 
one of the factors that initiate and exaggerate lung involvement.

neutrophils and neTs in Type 1 
Diabetes Mellitus
Metabolic diseases represent a leading health challenge (60). 
Microvascular complications, including diabetic nephropathy, 
retinopathy, and neuropathy, are major causes of morbidity 
and mortality in individuals suffering from diabetes worldwide. 
Current therapies are still inadequate, as high glucose levels pro-
mote activation, dysfunction, and apoptosis of both intravascular 
and extravascular immune cells (61).

Several recent studies revealed unexpected roles for neutro-
phils in metabolic conditions. It has long been acknowledged 
that obesity, a major cause of type 2 diabetes mellitus (T2D) and 
metabolic syndrome broadly, exhibits a distinct pro-inflammatory 
character that contributes to insulin resistance (62). Neutrophils 
are present in increased numbers in obese patients and migrate 
into the adipose tissue (63). Moreover, a strong increase of neu-
trophil numbers in the adipose tissue, accompanied by elevated 
release of NE and high NE activity is confirmed (64). Most 
importantly, inhibition of NE lead to a remarkable improvement 
of glucose tolerance and insulin sensitivity in vivo. NE degrades 
insulin receptor substrate 1 (IRS-1) in hepatocytes, inhibiting 
the insulin-driven signal transduction, akin to a mechanism 
proposed previously in lung cancer cells (65).

Furthermore, a role for neutrophils in the pathogenesis of 
autoimmune type 1 diabetes (T1D) was implied, which is usu-
ally diagnosed in children and young adults, previously known 
as juvenile diabetes. Neutrophils are involved by the triggering 
of pDC cytokine production and subsequent activation of the 
adaptive immune system (66). This study, among others, placed 
neutrophils high in the rank of possible players involved in 
the pathogenesis of autoimmunity, adding a crucial influence 
in shaping the adaptive immune response (15, 27, 54). In this 
context, a recent report confirmed a clear elevation of NE and 
proteinase 3 (PR3) in T1D patients, which was associated with 
elevated formation of NETs (21). These findings support a role 
of neutrophil activation and augmented protease activities in 
the early pathogenesis of β-cell autoimmunity and also suggest 
that circulating NE and PR3 could serve as sensitive diagnostic 
markers for T1D (21).

Moreover, NETs were recently shown to impair wound healing, 
particularly in diabetes, where neutrophils are more susceptible 
to form NETs. Inhibition of NET formation or cleaving NETs 
with DNase 1 was shown to improve wound healing and reduce 
NET-driven chronic diabetic inflammation (67). Finally, high 
glucose and hyperglycemia increase NET release and circulat-
ing markers of NETosis, respectively, providing a link between 
neutrophils, inflammation, and tissue damage in T2D (68), while 
MPO inhibition is the suggested potential strategy for prevention 
and treatment of insulin resistance (69).
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COnCLUSiOn

The study of neutrophils and NETs offer insight into the patho-
genesis of multiple autoimmune diseases, since they are of high 
relevance in a broad series of such disorders. There are yet only 
few studies reporting on the role of neutrophils in pediatric auto-
immunity; however, there is currently growing interest in relating 
the findings in adult disease to pediatrics.

Although neutrophils are the most common cells in the 
synovial fluid during arthritis, the understanding of their role 
in pathogenesis is only emerging. Studies of neutrophils in 
oligo- and polyarticular JIA reveal intrinsic activity-independent 
abnormalities in gene expression. Evidence of activation of circu-
lating neutrophils, such as S100A proteins and surrogate markers 
for NET formation, appear as promising biomarkers for overt 
and subclinical disease activity. Nevertheless, prospective studies 
regarding the practical application of these neutrophil-related 
biomarkers are required.

Distinct activated neutrophil subsets and altered apoptosis 
have been described in lupus. NETs may be the source of key 
autoantigens and potent inducers of IFNα. The importance of 
the IL-12/IL-23 and IL-17 cytokine pathways in the neutrophil-
mediated pathogenesis of spondyloarthritis were recently implied.

Dermatomyositis is currently considered as a NET-related 
pathology due to the detection of overt NET formation and the 
reduced NETs clearance capacity.

Moreover, in type 1 diabetes mellitus, activated neutrophils 
contribute to the pathogenetic process, especially via the granular 

proteolytic enzymes NE and MPO, which may originate from 
enhanced NET formation.

In summary, neutrophil NETs are shown to be of high rel-
evance in the pathobiology of a series of childhood autoimmune 
disorders and provide the potential for developing successful 
disease markers and ultimately novel targeted effective therapeu-
tics, such as DNase 1, PAD inhibitors, and anti-IFN therapies. 
Clarifying the remaining issues will pose novel implications for 
a broad range of pediatric rheumatologic conditions’ diagnosis 
and treatment.
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