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Abstract

Pathogen-driven selection and past interbreeding with archaic human lineages have resulted in differences in human
leukocyte antigen (HLA)-allele frequencies between modern human populations. Whether or not this variation affects path-
ogen subtype diversification is unknown. Here we show a strong positive correlation between ethnic diversity in African
countries and both human immunodeficiency virus (HIV)-1 p24gag and subtype diversity. We demonstrate that ethnic HLA-
allele differences between populations have influenced HIV-1 subtype diversification as the virus adapted to escape com-
mon antiviral immune responses. The evolution of HIV Subtype B (HIV-B), which does not appear to be indigenous to Africa,
is strongly affected by immune responses associated with Eurasian HLA variants acquired through adaptive introgression
from Neanderthals and Denisovans. Furthermore, we show that the increasing and disproportionate number of HIV-
infections among African Americans in the USA drive HIV-B evolution towards an Africa-centric HIV-1 state. Similar adapta-
tion of other pathogens to HLA variants common in affected populations is likely.

Key words: HIV-1; adaptation; subtype; diversification; HLA; phylodynamics; phylogenetics.

VC The Author(s) 2020. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

1

Virus Evolution, 2020, 6(2): veaa085

doi: 10.1093/ve/veaa085
Research Article

https://academic.oup.com/


1. Introduction

Differences in human leukocyte antigen (HLA) frequencies be-
tween geographically dispersed populations are primarily the
result of pathogen-driven selection (Doherty and Zinkernagel
1975) and past interbreeding with archaic human lineages
(Segurel and Quintana-Murci 2014; Quintana-Murci 2019).
Although some gene-flow from modern human into
Neanderthals appears to have occurred in Europe as early as
100,000–200,000 years before present (YBP) (Chen et al. 2020), the
major dispersal of modern humans from Africa into Eurasia
took place �60,000 YBP (Reich 2018). These modern humans
first mated with Neanderthals in the Levant and thousands of
years later with at least three distinct Denisovan lineages in
Western Asia, East Asia, and Oceania (Reich 2018; Jacobs et al.
2019). Because these groups of archaic humans had already
adapted to Eurasian pathogens for �700,000–450,000 years, the
introgression (the gaining of genetic material through inter-
breeding) of archaic HLA variants likely provided modern
humans with pre-adapted HLA variants that were crucial to
their survival in the new environments. This survival advantage
is evident today as HLA Class I alleles of archaic origin comprise
at least 50–85 per cent of the HLA variants in Eurasian popula-
tions, even though the overall archaic genomic inheritance is
only 1–6 per cent (Abi-Rached et al. 2011). Despite some back-
migration of Eurasians to Africa over the last �20,000 years
(Chen et al. 2020), these archaic HLA variants are the key differ-
ence between the HLA profile of populations in Africa and
Eurasia. Statistical analyses of African whole-genome sequenc-
ing data provide evidence of interbreeding with other lineages
of archaic humans within Africa, but the results are controver-
sial because of a lack of fossil DNA (Hsieh et al. 2016; Nielsen
et al. 2017). What impact the HLA variation between popula-
tions over time has had on the subtype diversification of both
old and novel pathogens such as human immunodeficiency vi-
rus (HIV)-1 is largely unknown.

The cross-species transmission of simian immunodeficiency
virus that gave rise to the HIV-1 group responsible for the ma-
jority of the global HIV-1 epidemic (Group M), likely occurred
�1900 in Cameroon or the Democratic Republic of the Congo
(DRC; Worobey et al. 2008). However, the HIV-1 pandemic only
ignited in Kinshasa in the DRC in the 1920s and spread over the
following decades via transport networks and migrant labour
throughout the country and beyond (Faria et al. 2014). HIV-1
started to diversify into subtypes around 1960 concurrent with
the transition from a slow to a much faster transmission phase
(Faria et al. 2014).

HIV-1 subtypes are defined using phylogenetic analyses and
the genetic distance between them is comparable; they are la-
belled alphabetically, and each subtype consensus sequence
carries distinct combinations of subtype-specific amino acids in
conserved subtype-specific positions in every viral protein in
addition to changes at other positions (Foley et al. 2018). These
subtype-specific amino acid differences are particularly striking
in the conserved, clinically important, highly immunogenic cy-
totoxic T lymphocyte (CTL) target regions of p24Gag (the capsid
protein) where they constitute the only difference between the
subtype consensus sequences (Supplementary Fig. S1; Kiepiela
et al. 2007; Matthews et al. 2008; Goulder and Walker 2012).

The highest number of HIV-1 subtypes and circulating and
unique recombinant forms (CRFs and URFs) of various HIV sub-
types is found within Africa (Chang et al. 2015; Foley et al. 2018).
Whereas subtype-precursor lineages to a high degree are em-
bedded within the larger HIV-1 diversity in the DRC, which also

includes examples of most global subtypes, only distinct sub-
types predominate outside the country (Rambaut et al. 2001;
Faria et al. 2014). The most geographically widespread subtype
is HIV-B (Hemelaar et al. 2011). The ancestral HIV-B virus origi-
nated in Africa and spread to Haiti around 1965–70 (Gilbert et al.
2007). The earliest HIV-B sequences in the USA were detected in
stored serum samples collected from men-who-have-sex-with-
men (MSM) in 1978–79 (Gilbert et al. 2007; Worobey et al. 2016).
HIV-B spread within the USA and beyond and now accounts for
�11 per cent of worldwide infections, although no indigenous
(i.e. not imported) HIV-B subtype has ever been identified in
Africa (Hemelaar et al. 2011). In contrast, an HIV-C-precursor
lineage spread successfully from the southern DRC Katanga
province to most of the Southern and Eastern parts of Africa,
and today HIV-C is responsible for �50 per cent of all infections
(Hemelaar et al. 2011; Faria et al. 2014).

Upon infection, HLA Class I (A–C) molecules on the cell sur-
face present peptide fragments (epitopes) from viral proteins
that have been digested by intra-cellular proteasomes. This pre-
sentation is a central point in the interplay between HIV-1 and
the host’s immune system as it triggers CTL and Natural Killer
cell responses that can kill HIV-infected cells. The HLA genes
are highly polymorphic, and an HLA molecule has specific bind-
ing motifs that allow only some of the produced epitopes to be
presented by each HLA variant. Because the combination of
HLA variants (or the HLA profile) varies between individuals,
the selective pressures on the virus vary accordingly (Tenzer
et al. 2014). The variation in HLA frequencies between popula-
tions and ethnic groups ensures that the sum of the HLA-
associated selective pressures on the virus will also differ.

HLA-associated polymorphisms have primarily been exam-
ined within distinct HIV-1 subtypes in combined Canadian/US
HIV-B sequence sets (Cotton et al. 2014; Kinloch et al. 2016) after
Bhattacharya et al. (2007) reported that viral subtype effects
confounded previously reported HLA associations (Moore et al.
2002). Many of the polymorphisms are intra-epitope CTL escape
mutations, and studies have focussed on the presence, accumu-
lation, and possible reversion of small subsets of these muta-
tions (Supplementary Fig. S2A; Leslie et al. 2004, 2005;
Kawashima et al. 2009; Fryer et al. 2012) and their impact on vi-
ral fitness and viral load set point (Matthews et al. 2008; Carlson
et al. 2015). Although HLA-associated polymorphisms are found
in all HIV-1 proteins, analyses of the specificity and breadth of
CTL responses associated with immune control of HIV-1 have
demonstrated that responses targeting p24Gag were almost ex-
clusively associated with lowering viremia (Kiepiela et al. 2007;
Matthews et al. 2008; Goulder and Walker 2012).

We experimentally identified a second form of HLA-
associated selection which occur at subtype-specific positions
in p24Gag and affects proteasomal production of all epitopes
encoded in epitope-clusters up- and down-stream of the
subtype-specific position (illustrated in Supplementary Fig. S2B
and explained in detail in the legend; Tenzer et al. 2014). These
epitope-clusters typically contain �20–50 epitopes presented by
approximately as many HLA variants and proteasomal produc-
tion of each epitope is either increased, unaffected, decreased,
or eliminated depending on the nature of the amino acid at the
subtype-specific position. We found that intra-host selection on
HIV-1 favoured an amino acid at the subtype-specific position
which thwarted or limited production of HIV-1 epitopes that
that individual’s HLA variants could present regardless of the
infecting subtype. At the population level, we observed an in-
verse relationship between the amount of each epitope pro-
duced following processing of the HIV-B or -C consensus
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sequences and the frequencies of the presenting HLA variants
in the populations in which these subtypes circulated
(Supplementary Fig. S2C and D; Tenzer et al. 2014).

Intra-host selection on HIV-1 to escape anti-viral CTL
responses through intra-epitope escape-mutations and changes
at subtype-specific sites that limit epitope-processing likely co-
occurs. However, within the conserved, highly immunogenic,
p24Gag regions (Supplementary Fig. S1), subtype-specific posi-
tions are subjected to the combined pressure by >80 HLA var-
iants (HIV Molecular Immunology Compendium 2016) and
changes at these positions at the HIV-1 consensus level are
likely observed faster than changes within single epitopes re-
stricted by one, or a few, HLA variants (Kawashima et al. 2009).

The current model for HIV-1 subtype diversification is that
HIV-1 subtypes are the results of multiple, selectively neutral,
random ‘founder events’, whereby individuals with distinct vi-
ral lineages moved to new regions and established local epi-
demics (Pybus and Rambaut 2009; Peeters, Jung, and Ayouba
2013). HLA variation and hence variation in immune response
targeting between populations are generally not assumed to
play a significant role in this process (Pybus and Rambaut 2009;
Peeters, Jung, and Ayouba 2013). Here we considered the effect
of HLA variation between populations and HLA-associated se-
lection at subtype-specific sites through modification of epitope
production (Tenzer et al. 2014).

First, we investigated whether differences in ethnic diversity
in African countries was associated with HIV-1 p24Gag diversity
(on the amino-acid level ignoring subtype) and subtype diver-
sity, respectively, and observed robust positive linear relation-
ships. Second, we explored the HLA profile patterns in all HIV-B
and HIV-C-infected patients with linked HLA information using
an HLA-based principal component analysis (PCA). We found
that the most influential drivers in principal component (PC)1
were Eurasian HLA variants introgressed from archaic humans,
whereas HLA variants associated with the two major haplo-
types in South Africa strongly influenced PC2. Third, we esti-
mated which of the >80 epitope-presenting HLA variants in the
clinically important HIV-B and HIV-C p24Gag regions had the
most substantial effect on the evolution of the five subtype-
specific sites within these regions. Fourth, we examined if the
continuously increasing proportion of African Americans in the
USA HIV-B infected population over time affected the evolution
of these subtype-specific sites. We found that the subtype-
specific sites in HIV-B-p24Gag in the USA over time increasingly
incorporated amino acids more commonly found in African
HIV-1 subtypes than in the HIV-B consensus sequence.

Collectively, our results suggest a modified model for HIV-1
subtype diversification. We propose that variation at subtype-
specific sites in HIV-1 p24Gag results from a combination of
global HIV-1 spread through random founder events and the
subsequent continuous granular viral adaptation to the HLA
profile of the infected population.

2. Results
2.1 African HIV-1 p24Gag and subtype diversity correlate
with ethnic diversity

We hypothesized that HLA-mediated selection drove HIV-1
p24Gag diversification and that subtype-specific amino acid dif-
ferences were the result of selection for HIV-1 sequences that
limited or abrogated processing of the epitopes presented
by the most common HLA variants in each population. If
HLA-mediated selection drove HIV-1 diversification, we should

find greater HIV-1 diversity in countries with greater HLA
diversity.

To investigate, we examined HIV-1 diversity within Africa
where modern humans originated and have maintained rela-
tively large effective population sizes for �300,000 years result-
ing in a high level of genetic diversity within and between the
�2000 distinct African ethnic groups (Felix and Meur 2001; Patin
et al. 2017; Tishkoff et al. 2009; Hershkovitz et al. 2018).
Unfortunately, HLA data from Africa is limited as gold standard
HLA A, B, and C data (i.e. all HLA types being reported as four-
digit HLA variants) from only eight Sub-Saharan African popula-
tions/ethnic groups are available in the HLA-allele database
(Gonzalez-Galarza et al. 2015; Supplementary Table S1). As a
proxy for HLA diversity we used the Shannon entropy of each
country’s ethnic demographics reported by Alesina et al. (2003)
and Busby et al. (2017), which is based on ethnic, linguistic, cul-
tural, and religious fractionalization.

Using this measure of ethnic diversity as a proxy for HLA di-
versity is justified by multiple studies that have demonstrated
that African population structure largely mirrors linguistic and
geographic similarity (Tishkoff et al. 2009; Busby et al. 2016,
2017) and have provided evidence of a strong link between ge-
netic diversity and ethno-linguistic diversity (Busby et al. 2016,
2017; Excoffier et al. 1987, 1991; Tishkoff et al. 2009; Pagani et al.
2012; Patin et al. 2017). This genetic diversity is even higher in
the HLA region as local adaptation at HLA loci generally are
more pronounced than in the rest of the genome due to strong
selective pressures by local pathogens and adaptive admixture
between expanding populations and adapted local groups (Cao
et al. 2004; Busby et al. 2017; Patin et al. 2017; Meyer et al. 2018).
The strong link between ethnicity, genetics, and linguistics is
not found on all continents as, for example, in South America,
ethnic groups are largely defined by racial or physical criteria,
not linguistics (Alesina et al. 2003).

To further justify using ethnic diversity of African countries
as a proxy for HLA diversity, we performed simulations showing
a linear relationship between different mixtures of fictive ethnic
groups and HLA diversity using the HLA A, B, and C data from
the eight Sub-Saharan African populations/ethnic groups
(Fig. 1).

Pooling our results across all replicates and numbers of eth-
nic mixing populations, we found a strong and statistically sig-
nificant relationship between ethnic diversity and HLA diversity
(R2 ¼ 0.41, F1, 1,748 ¼ 1,190, P< 2 � 10�16). Furthermore, this result
held for subsets of the data comprising simulations of popula-
tions from a given number of ethnicities. Collectively, these
simulations underscored that ethnic diversity in Africa is a valid
proxy for HLA diversity.

Next, we examined the relationship between the actual
combined measure of ethnic diversity (Alesina et al. 2003) and
HIV-1 p24Gag diversity using all HIV-1 p24Gag sequences in the
HIV database regardless of subtype (Foley et al. 2018). We ob-
served a highly statistically significant relationship between
ethnic diversity and p24Gag diversity (F1,13 ¼ 15.53, P¼ 0.0017;
Fig. 2A). To examine if the combined measure of ethnic diversity
also affected HIV-1 subtype diversity, we counted the number of
subtypes, URFs and CRFs in each country using the HIV data-
base sequences and allocation of subtype data (n¼ 36,044)
(Foley et al. 2018). The total number of subtypes, URFs and CRFs
per country was plotted against the ethnic diversity for each
country weighted by the number of sequences per country and
examined using linear regression. Similar to the result for HIV-1
p24Gag diversity, a significant relationship was found between
ethnic diversity and subtype diversity (P< 2 � 10�5; Fig. 2B).
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To further test robustness, we excluded Cameroon and the
DRC where HIV-1 first circulated (Worobey et al. 2008; Faria
et al. 2014), which still resulted in significant relationships (eth-
nic diversity versus HIV-1 p24gag variability (P¼ 0.0134) and
subtype diversity (P< 2 � 10�5)) indicating that the timing of the
epidemic in each African country was not the sole determinant
of HIV-1 diversification. Collectively, these results suggest that
the association between a country’s HIV-1 diversity and its eth-
nic diversity might be driven by the granular adaptation of HIV-
1 to the HLA variants common in particular ethnic groups as
countries with more ethnic groups end up with greater HIV-1
variation.

Geographically, the highest concentration of ethno-
linguistic (Felix and Meur 2001), ethnic (Alesina et al. 2003) and
HIV-1 subtype diversity was found along the equator, with, for
example, �110 and �370 ethno-linguistic groups within
Cameroon and the DRC, respectively (Felix and Meur 2001;
Fig. 2C and D). As ethnic differences typically correlate with lan-
guage differences in Africa (Tishkoff et al. 2009; Busby et al.
2016, 2017), we examined if HIV-1 subtypes clustered within
specific language families or sub-groups. Most African ethno-
linguistic groups belong to one of five language families (Niger-
Congo, Nilo-Saharan, Afro-Asiatic, Austronesian, and Khoe,
Fig. 2E), which each can be subdivided into several language
groups, for example, the Niger-Congo family includes Bantu-
speaking people that account for approximately one-third of all
Sub-Saharan Africans (Patin et al. 2017) and non-Bantu-
speaking people in West Africa.

We observed more similar HIV-1 subtype patterns in related
ethno-linguistic groups (Tishkoff et al. 2009; Busby et al. 2016,
2017; Fig. 2D and E). Notably, HIV-C predominated in countries
with the highest percentage of Bantu-speaking people (Patin
et al. 2017). One exception was the many HIV-1 subtypes found
in the DRC where adaptive introgression of HLA from rainforest
hunter-gatherers during the Bantu expansion �3,000 years ago

significantly increased the HLA variability of western and cen-
tral Bantu-speaking people relative to that of southern Bantu-
speaking people (Patin et al. 2017; Foley et al. 2018). Moreover,
HIV-C was only introduced into the Horn of Africa around 1980–
85 (Simmons et al. 2009), and has since, for example, in Ethiopia
evolved into two distinct Ethiopian HIV-C lineages (Amogne
et al. 2016). We explored whether countries which had at least
50 per cent Bantu First Language Speakers were more likely to
have at least 50 per cent subtype C in their HIV-infected popula-
tion. This analysis included all African countries regardless of
epidemiological history and demonstrated a link between high
levels of Bantu language speaking inhabitants and high levels of
HIV-C (Fisher’s test, P¼ 0.037). Niger-Congo non-Bantu language
groups reside in West Africa where CRF_02AG and HIV-G pre-
dominate, and HIV-C is rare. Nilo-Saharan, Afro-Asiatic and
Bantu language groups predominate in East Africa where HIV-
A, -D, and -C are frequently found (Fig. 2D and E).

Together with the explosion of HIV-1 subtypes in the 1960s
(Faria et al. 2014), our results suggest that ethnic diversity, and
hence HLA diversity, was a significant driver of HIV-1 diversifi-
cation, and that neutral evolution and/or differences in the tim-
ing of local African HIV-1 epidemics was not solely responsible
for the creation of HIV-1 subtypes as suggested previously
(Pybus and Rambaut 2009; Peeters et al. 2013).

2.2 Spatio-ethnic HLA profiles associated with distinct
HIV-1 subtypes

We next asked which HLA variants contributed most to the vari-
ance–covariance structure of the worldwide HIV-infected pa-
tient population by performing a PCA on all publicly available
HLA Class I data from patients infected with HIV-B (n¼ 318) or
HIV-C (n¼ 704; Foley et al. 2018). Because of the history of HIV-1
research, similar data on patients infected with other subtypes
are rare, and most African data derive from South Africa, espe-
cially the KwaZulu-Natal province (Foley et al. 2018). We as-
sumed that the distribution of HLA variants and HLA
haplotypes (a series of HLA genes on one chromosome that is
found together more often than expected due to linkage dis-
equilibrium (LD)) in geographically dispersed populations
reflected the sum of past infectious challenges and adaptive in-
trogression from archaic humans (Doherty and Zinkernagel
1975; Segurel and Quintana-Murci 2014; Quintana-Murci 2019).
For each member of the population, we proposed that their ge-
netic ‘HLA profile’ abstractly could be considered as a point in
the population’s multidimensional HLA profile space. A novel
pathogen such as HIV-1 would rapidly spread and evolve within
this HLA space. The space itself would only change slowly due
to the added selective effect of HIV-1 infection on HLA frequen-
cies and largely outside of our current observation time.

The individual HLA variants which contributed most to the
first two PCs clustered in three groups, reflecting three common
haplotypes (Fig. 3A): one group containing Eurasian variants
(HLA-A*02:01, HLA-B*07:02, and HLA-C*07:02) and two groups of
HLA variants more common in Africa (HLA-B*58:02, HLA-
C*06:02, and HLA-A*30:01, HLA-B*42:01, HLA-C*17:01; Fig. 3B and
Supplementary Table S6). The first two PCs explained 14.5 per
cent of the variance and the first 12 explained 50 per cent. PC1
revealed four features: (i) the HLA separation correlated with
the geographical origin of the patients with Africans and
Eurasians at the extremes (Fig. 3C), (ii) the Caribbean patients
were near the centre, reflecting the history of admixture in that
population (Fig. 3C; Benn-Torres et al. 2008), (iii) the separation
correlated with the distribution of the patients’ HIV-1 subtypes
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(Fig. 3D), and, (iv) the three HLA variants that contributed most
to the separation were all inherited by Eurasians from
Neanderthals and Denisovans (Abi-Rached et al. 2011) with
HLA-A*02:01 explaining most of the variance (Fig. 3E).

PC2 robustly distinguished between two common Southern
African HLA haplotypes with opposing effects on HIV-1 disease
progression; HLA-B*58:02-HLA-C*06:02, linked to fast progres-
sion (found in �20% of the population), and HLA-A30:01-HLA-
B*42:01-HLA-C*17:01, linked with slow progression through the
accumulation of fitness-reducing CTL escape-mutations (found
in �13%; (Goulder and Walker 2012; Gonzalez-Galarza et al.
2015; Fig. 3F). In Zambia, HLA-B*42:01 is also linked to a faster

HIV-1 acquisition (allele frequency �30%) (Song et al. 2011;
Gonzalez-Galarza et al. 2015). We calculated a haplotype score,
which started at zero and was incremented or reduced by one
for each allele in these two haplotypes, revealing the near-
complete stratification of PC2 (Supplementary Fig. S4). Although
these HLA variants can occur in other combinations, the LD is
almost complete in Bantu-speaking South Africans and other
Southern Bantu-speaking people in countries with the highest
levels of HIV-C infection (Fig. 3D, F, and Supplementary Fig. S5;
Paximadis et al. 2012; Gonzalez-Galarza et al. 2015).

These results suggest that the HLA variants that contributed
most to the variance–covariance structure within the HIV-1
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S5.
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patient population worldwide originated from interbreeding be-
tween the ancestors to modern Eurasians and Neanderthals
and Denisovans. An African HIV-1 lineage imported to Eurasia
would, therefore, circulate in a partly new HLA profile space.
Within Africa, we observed that the HLA variants that explained
most of the variance were part of common haplotypes, which
are associated with opposing HIV-1 disease progression pat-
terns and facilitated HIV-1 acquisition in some regions.

2.3 Distinct ethnic HLA variants affect HIV-B and -C
evolution

To estimate the selective pressure of individual HLA Class I var-
iants on the diversification of subtype-specific amino acids in a
population, we analysed all p24Gag HIV-B and -C sequences
linked to an HLA profile (Foley et al. 2018) using a Bayesian phy-
logenetic HLA selection model. The analyses were performed on
each subtype separately. We focussed on five subtype-specific
positions (27, 41, 116, 120, and 128) situated within the two con-
served p24Gag regions that dominate the clinically effective
HIV-specific CTL response in patients infected by either HIV-B
or -C (Goulder and Walker 2012; Fig. 4A and B and
Supplementary Fig. S1). Because each subtype-specific position
is independently influenced by the phylogeny (Supplementary
Figs S6 and S7), the model was corrected for phylogenetic
co-variation using the BEAST-derived phylogenetic variance–co-
variance matrix for each subtype-specific position. This correc-
tion adjusted for potential viral population structure and
neutral evolution. Because some subtype-specific positions vary

between subtypes, but only have limited variation within the
given subtype (position 128 in HIV-B, and positions 27, 41, 116,
and 128 in HIV-C), or too much variation for these analyses
given our dataset (position 120, HIV-B; Supplementary Fig. S1),
HLA associations could only be robustly determined for three
positions in HIV-B and one in HIV-C. At the HIV-B positions 27,
41, and 116, selection typically favours one of two amino acids,
and at position 120 in HIV-C, one of three (Supplementary Fig.
S1). The total HLA pressure on each subtype-specific position
could be considered to be the joint pressure exerted by all the
HLA variants able to present epitopes encompassing (Tenzer
et al. 2014) or overlapping that subtype-specific position (Foley
et al. 2018; Fig. 4A and B), and by HLA variants associated
through structural codon-co-variation (Carlson et al. 2008;
Crawford et al. 2011). Significant statistical links between an
HLA variant and selection for either HIV-B or non-HIV-B-like
amino acids at the four subtype-specific positions were
expressed as odds ratios (ORs).

Overall, �50 per cent of the Caucasian/Eurasian HLA A, B,
and C variants that shaped HIV-B evolution originated from
Neanderthals and/or Denisovans, which is similar to the fre-
quencies of these variants in people of European descent (Abi-
Rached et al. 2011; Fig. 4C and D). A minority of HLA variants
appeared to be footprints of the on-going HIV-B epidemic in the
Caribbean and in African-Americans (e.g. HLA A*23:01, HLA
B*57:03, and HLA C*16:01; Fig. 4D). Although most HLA variants
selected for HIV-B-like subtype-specific amino acids, some se-
lected for non-B likeness (e.g. HLA C*16:01 (Position 27) and HLA
A*31:01 (Position 41)). These results are in line with previous
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analyses of intra-host adaptation of HIV in (Tenzer et al. 2014),
which demonstrated that the consensus HIV-B (or HIV-C) se-
quence was often observed in carriers of common HLA variants
whereas carriers of rare HLA variants frequently selected for
non-consensus amino acids. The data are consistent with the
variation within our patients (illustrated in Supplementary Fig.
S8) and in HIV-B sequences worldwide (Foley et al. 2018). In

contrast, HIV-C evolution was shaped by African HLA variants
common in Bantu-speaking people and one ancient HLA variant
(HLA-A*01:01) found in parts of Africa (Abi-Rached et al. 2011;
Fig. 4E and F), consistent with the spread of the HIV-C epidemic
(Gonzalez-Galarza et al. 2015).

Our estimated HLA ORs (Fig. 4C and E) do not reflect the HLA
selection pressure acting on the HIV-B-precursor virus during
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the first 30–40 years of the HIV-1 epidemic outside of Africa, be-
cause >80 per cent of our data were from 2001 or later (Foley
et al. 2018), and because the epidemiological demographics
have changed from predominately Caucasian until the mid-
nineties to one with mixed ethnicities (Worobey et al. 2016).

To examine how the current HLA ORs and neutral selection
would affect HIV-B evolution we used an agent-based epidemic
model. As the first HIV-1 lineage in Haiti is unknown (Rambaut
et al. 2004), we chose to test an HIV-C-like virus, which differs
from HIV-B at subtype-specific positions 27, 41 and 116
(Supplementary Fig. S1). We found that neutral evolution of
HIV-C would take �250 years to approach a 50 per cent HIV-B
subtype-specific amino acid frequency (position 27, Fig. 4G, blue
line; positions 41 and 116, Supplementary Fig. S9), whereas
HLA-mediated selection would reach this threshold more than
twice as fast (Fig. 4G, green line). This result demonstrates that
the estimated HLA ORs are not only statistically significant but
also biologically relevant.

Next, we tried to imitate the HLA selective pressure acting
on the HIV-B precursor early in the epidemic. We ignored the
selective pressure from African HLA variants and modelled how
much the HLA ORs selecting for HIV-B-likeness should be in-
creased to reach the current consensus subtype-specific amino
acid frequencies within 50–55 years, a time span similar to that
of HIV-B evolution (Worobey et al. 2016). We found that the HLA
ORs had to be raised by a factor of 1.8–2.5 depending on
subtype-specific position (Position 27, Fig. 4G, orange line;
Positions 41 and 116, Supplementary Fig. S9). This result sug-
gests that the initial HLA-mediated selective pressure on the
HIV-B-precursor was either stronger than our estimates and/or
that we are missing the effect of some HLA variants due to viral
adaptation before 2001. Alternatively, or additionally, some of
the subtype-specific amino acids in the HIV-B-precursor might
have been more similar to HIV-B than HIV-C, and/or structural
co-evolutionary effects (Carlson et al. 2008; Crawford et al. 2011)
might be stronger than expected.

Collectively, our analyses reveal that HIV-B and HIV-C circu-
late in populations with distinct, and partly non-overlapping,
HLA profiles and that the difference in population-specific HLA-
mediated selective pressures affected HIV-1 evolution.

2.4 The emergence of an African American-adapted
HIV-B

If the subtype-specific differences between HIV-B and HIV-C are
the result of different HLA-allele frequencies between Eurasian
and African populations, changes in the ethnic demographics of
an HIV-infected population should affect the selective pressure
at the subtype-specific positions. To investigate this hypothesis,
we examined the HIV-1 epidemic in the USA. HIV-B was likely
introduced in the 1970s (Worobey et al. 2016) and initially circu-
lated primarily amongst Caucasian MSM. However, the epi-
demic gradually spread to other groups, and, regardless of
sexual orientation, African and Hispanic Americans have in-
creasingly been disproportionally affected (Fig. 5A). A complex
set of socioeconomic factors drive risk to these groups, includ-
ing discrimination, stigma, poverty, lack of access to care, and
cultural differences combined with in-group sexual bias
(Centers for Disease Control and Prevention 2020, www.cdc.
gov). Currently, African and Hispanic Americans account for
�42 and 20 per cent of all new infections despite making up
only about 13 and 16 per cent of the US population, respectively
(Hall et al. 2008; Prejean et al. 2011).

Based on our previous HLA diversity analysis (Fig. 1), we pro-
posed that the increased fraction of non-Caucasians in the US
HIV-infected population would increase its HLA diversity. To in-
vestigate, we performed simulations using the HLA A, B, and C
frequency data for US Caucasians and African Americans
reported by Gragert et al. (2013). Briefly, we created mixed popu-
lations of the two groups and calculated the HLA Shannon en-
tropy (diversity) of the simulated mixed populations (HLA B is
shown in Fig. 5B, all HLA simulations and plots of HLA frequen-
cies are shown in Supplementary Fig. S10). The results demon-
strated that the HLA B and HLA C diversity peaked when the
two groups were present in approximately equal proportions,
whereas the HLA A diversity continuously increased as the pro-
portion of African Americans grew. These differences were due
to the relatively lower diversity of US Caucasian HLA A alleles
and the more similar diversity of HLA B and C alleles between
the groups (Supplementary Fig. S10). For simplicity, we did not
add HLA data from US Hispanics, which are more like those of
US Caucasians. Adding these would only increase the overall
diversity.

Because 73–78 per cent of the African American genetic heri-
tage originates from Africa (�30% from Bantu-speaking people
and �70% from regions of West Africa; Patin et al. 2017), we hy-
pothesized that the HIV-B subtype-specific amino acids would
evolve towards amino acids more commonly found in African
HIV-1 strains than in HIV-B (Fig. 5C). We estimated the ethnic
demographics of the HIV-infected population in the USA from
(Hall et al. 2008) and (Prejean et al. 2011) and used that demo-
graphic data to calculate the frequency of African Americans in
the US HIV-infected population over time (Supplementary Fig.
S11; Gonzalez-Galarza et al. 2015).

We compiled all dated HIV-B p24Gag sequences associated
with a patient ID (to prevent oversampling sequences from sin-
gle patients) and used these in a Hierarchical Bayesian multi-
level model that incorporated phylogenetic information from
BEAST to prevent phylogenetic relationships from biasing the
analysis, thereby correcting for viral population structure and
neutral evolution (Supplementary Fig. S12). The posterior distri-
butions over the regression coefficients of the phylogenetic
model robustly demonstrated that the probability that the 41,
116, and 120 subtype-specific position was occupied by an HIV-
B subtype-specific amino acid was inversely associated with the
frequency of African HLA variants in the infected population
(Fig. 5D). Although the pattern was similar for Position 27 and
the 80 per centBCI excluded zero, the 95 per cent BCI did not
quite exclude zero.

Collectively, our analyses demonstrated that the subtype-
specific positions in HIV-B over the last 20 years in the USA
have evolved away from the original HIV-B consensus sequence
and increasingly incorporate amino acids found in African HIV-
1 subtypes (Fig. 5E, Supplementary Fig. S12, and Table S7).
These results show that HIV-1 diversification is an on-going
process that can be influenced by changes in the ethnic compo-
sition of the HIV-infected population within a country. As
African Americans continue to suffer a disproportionate num-
ber of HIV-infections, HIV-B is likely to continue to adapt to the
HLA variants common in this group.

3. Discussion

In this study, we found that HLA Class I allelic frequency differ-
ences and archaic HLA Class I variants combine to create
population-specific HLA-associated selective pressures that
uniquely shape HIV-1 p24Gag variation and subtype
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diversification. This observation suggested that these
population-specific HLA-associated selective pressures might
also shape the evolution of other novel pathogens in emerging
epidemics, for example, Zika virus and Severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), and might be partly re-
sponsible for the subtype diversification of viruses that have a
longstanding infection history in humans (e.g. Hepatitis B,
Hepatitis C, and Morbilli). Similarly, these population-specific
selective pressures could affect the evolution of old pathogens
when these spread into previously naı̈ve populations in new

geographical locations due to human activities, and/or climate
change (e.g. dengue virus and West Nile virus). This granular
adaptation of pathogens to a population-specific HLA composi-
tion mirrors the already accepted granular adaptation of human
populations to different combinations of infectious challenges
(Doherty and Zinkernagel 1975).

The adaptive introgression of Neanderthal and Denisovan
HLA variants in Eurasians, and of HLA B*73:01 (a unique major
histocompatibility complex (MHC)-BII allele more closely re-
lated to chimpanzee and gorilla MHC-B alleles than to other
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modern human B alleles; Abi-Rached et al. 2011), and more
recently of rainforest hunter-gatherers HLA variants in Bantu-
speaking people (Patin et al. 2017) collectively suggest that in-
trogression of pre-adapted, advantageous HLA variants might
have occurred throughout hominid evolution and modern hu-
man history as invading populations mixed with adapted locals.
Such adaptive introgression events are likely not limited to pri-
mate evolution. The repeated introgression of immune
response-related genes would expose locally established patho-
gens to a continuous selective pressure for longer than the
length of time that the most recently immigrated host lineage
has been in a place.

In Africa, we found significant positive relationships be-
tween ethnic diversity and HIV-1 p24Gag sequence and subtype
diversity, respectively. These robust associations suggested that
ethnic diversity, and by extension HLA diversity and differences
in HLA-associated selective pressures, helps drive HIV-1 evolu-
tion and might result in subtype diversification. It will be impor-
tant to confirm and extend the findings reported here across
other antigenic regions of HIV-1. The spread and adaptation of
HIV-1 to different ethnic groups might initially have been facili-
tated by, for example, a combination of the socioeconomic and
cultural changes induced by the colonization of the DRC in the
early 1900s, for example, the rise of cities, extended transport
networks, and centralized camps for treatment of sleeping sick-
ness (Worobey et al. 2008; Faria et al. 2014).

Our results, and previous experimental work (Frahm et al.
2006; Tenzer et al. 2009, 2014), suggest that the local HIV-1 con-
sensus sequence represent the most common adaptions to es-
cape effective immune responses in the majority of people in
the population in which it circulates. Consequently, the local
HIV-1 consensus sequence is the least likely sequence combina-
tion to evoke effective immune responses upon transmission.
This proposal is in line with reports that the virus closest to the
consensus sequence in a population is most readily transmitted
(Carlson et al. 2014; Song et al. 2011). Because the transmitted
virus only needs to be present in small amounts in the infec-
tious dose (Keele et al. 2008), these observations together might
help the understanding of why the HIV-1 evolutionary rate at
the within-host compared with the population scale is �5-fold
faster (Raghwani et al. 2018). The predominant viral variants in
the host are typically those best adapted to escape that particu-
lar host’s specific immune responses, while those viruses that
are most likely to be transmitted are those most like the local
consensus sequence. These ‘consensus-like’ sequences are
likely to be found as a minority population and to be more
closely related to the initially infecting viral variants, compati-
ble with both the ‘store and retrieve’ and ‘adapt and revert’ sce-
narios suggested by Raghwani et al. (2018).

Between 1962 and 1970, HIV-1 spread beyond Africa as a
Haitian aid-worker returned from the DRC (Gilbert et al. 2007).
Whether this person was infected by HIV-B or a Subtype-B/D an-
cestor lineage is unknown, but the latter is likely given the lack
of reports of indigenous HIV-B epidemics in Africa (van
Harmelen et al. 1997; Hemelaar et al. 2011; Foley et al. 2018). The
Haitian HIV-B epidemic is characterized by being more geneti-
cally diverse than elsewhere, and the predominant viral line-
ages are distinct from the pandemic HIV-B lineage (Gilbert et al.
2007). Despite �70,000 American tourists visiting Haiti every
year throughout the 1970s, and a rapidly developing hetero-
and homosexual sex industry (Giraud 2010), it took �10–12 years
before HIV-B spread within the USA to a sufficient extent for the
epidemic to be detected (Gilbert et al. 2007; Worobey et al. 2016).
It is also noteworthy that no HIV-1 outbreak was observed in

Belgium following the return of the colonialists when Congo
achieved independence in 1960. The causes of this lack of
spread or these interludes are debateable and likely multiple,
partly dissimilar, and complex. However, we propose that one
shared contributing factor could be lower transmissibility of
African HIV-1 lineages to and between Europeans, perhaps be-
cause these HIV-1 lineages were not pre-adapted to escape im-
mune responses associated with HLA variants common in
Caucasians. This hypothesis is indirectly supported by reports
of; (i) faster disease progression in HLA-matched recipients of
pre-adapted HIV-1 (Carlson et al. 2016), (ii) less polyfunctional
and more narrow CTL responses and higher viral loads in
infected vaccine recipients with higher HLA I adaptation to the
Gag vaccine insert (Boppana et al. 2019), and (iii) studies in
Zambia demonstrating an association between specific, com-
mon HLA variants and faster HIV-1 acquisition (Song et al. 2011)
and a more readily transmission of the predominant HIV-C con-
sensus sequence (Carlson et al. 2014). In combination, these
observations suggest that the increasing HIV-B adaptation to
African-Americans, and the on-going high infection rates, could
result in faster transmission and disease progression in this
group.

Our results, and the many HIV-1 vaccine trial failures
(Barouch and Korber 2010), suggest that the starting point for
HIV-1 vaccine design should be the HLA composition of the tar-
get population, not the HIV-1 subtype infecting that population
as in, for example, the unsuccessful Step and Phambili trials
(Corey, McElrath, and Kublin 2009), because the circulating sub-
type will have adapted to avoid evoking strong immune
responses in the majority of the population (Tenzer et al. 2009,
2014). One vaccine design option would be to select in-natural-
infection subdominant epitope sequences from vulnerable parts
of HIV-1 (Dahirel et al. 2011) that are presented by HLA variants
common in the target population and embed these in artificial
contexts that promote high epitope production. The resulting
abundant epitope production will help prime anti-viral CTL
responses (Faroudi et al. 2003), while even limited production of
these epitopes after HIV-1 infection will allow the primed CTLs
to recognize and kill infected cells (Purbhoo et al. 2004).

4. Materials and methods
4.1 Simulation of the relationship between ethnic
diversity and HLA diversity

To investigate the relationship between ethnic diversity and
HLA diversity we compiled HLA data from all available African
populations/ethnic groups that had been HLA typed to a ‘Gold
standard’ (i.e. all HLA types were reported as four-digit HLA var-
iants) (n¼ 8; detailed in Supplementary Table S1). Although
three of the seven African populations came from Kenya, they
belonged to distinct ethnic groups and were, therefore, all in-
cluded. The eight populations were mixed in arbitrary propor-
tions to simulate the mixture of ethnic groups within different
fictive African ‘countries’. The proportions were assigned as fol-
lows: k random draws were taken from a uniform distribution.
These were turned into proportions by dividing each random
draw by the sum of all random draws. HLA types were mixed
proportionally into each simulated ‘country’, and Shannon en-
tropies were calculated both for the simulated ethnic diversity
and the simulated HLA diversity. Linear regressions were per-
formed of the Shannon entropy of the HLA diversity calculated
from these mixes versus the population Shannon entropy cal-
culated from the simulated mix. Statistically significant results
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were obtained for linear regression analyses of simulated coun-
tries consisting of n ‘ethnic groups’ and for all simulated coun-
tries (not shown).

4.2 Shannon entropy analyses of African HIV-1 p24Gag
diversity

To calculate the Shannon entropy (diversity) of HIV-1 group M
p24Gag for each country we searched the LANL HIV database
(Foley et al. 2018) for one non-problematic HIV-1 p24Gag se-
quence per patient from Sub-Saharan Africa (each sequence
was � 684 nucleic acids in length (�99% of the HXB2 p24 se-
quence (GenBank K03455))) using the integer patient ID tool.
Subsequently, we removed all sequences from HIV-1 Groups N,
O, and P, and URFs and CRFs thereof, as well as sequences with-
out a unique patient ID to avoid oversampling individual
patients. We screened the remaining sequences for those origi-
nating from uncultured peripheral blood mononuclear cells,
and those originated from cultured virus by examining all paper
references. All sequences originating from cultured virus were
discarded because culturing likely obscures the sequence foot-
prints of the intra-host immune response. The remaining 2,274
sequences were aligned using the LANL HIV Align program, af-
ter which the sequences were stratified by country. Minor man-
ual corrections were made to each country’s alignment as
needed, and the mean amino acid Shannon Entropy of each of
these alignments was calculated using the R (version 3.4.3)
package bio3d (version 2.3-3).

4.3 Shannon entropy analysis of ethnic diversity

As a proxy for each country’s HLA diversity, we used ‘ethnic di-
versity’, which was based on the combined measure of ethnic,
linguistic, cultural, and religious fractionalization defined by
Alesina et al. (2003). This combined measurement is based on
data from several sources, including Encyclopaedia Britannica,
The CIA World Factbook, Minority Rights Group International,
and (Levinson 1998). The ethnic diversity for each country was
estimated by calculating the Shannon entropy for the ethnic
proportions data in (Alesina et al. 2003) as follows:

H ¼ �
Xn

i¼1

pilogpi

where n indicates the number of ethnicities recorded with the
database, and pi is the proportion of ethnicity i within the coun-
try’s population.

4.4 Examination of ethnic versus HIV-1 p24Gag diversity

Ethnic diversity was plotted against the mean HIV-1 p24Gag
amino acid entropy, weighted by the number of p24Gag sequen-
ces per country, using ggplot2 (version 2.2.1). The size of each
dot was scaled logarithmically by the number of sequences to
indicate graphically how this weighting was occurring. A
weighted linear model was fit in R (version 3.4.3) to assess sta-
tistical significance.

4.5 African HIV-1 sequences and subtype analysis

We searched the LANL HIV database (Foley et al. 2018) for all
non-problematic HIV-1 sequences originating in Africa (176,071
sequences). HIV-1 from Groups N, O, and P, and URFs and CRFs
thereof were removed, and all HIV-1 group M pure subtypes,
URFs and CRFs were filtered for one sequence per patient

according to the integer patient ID (Foley et al. 2018). Sequences
were then filtered for those originating in Sub-Saharan African
(as defined by the United Nations Statistics Division, not LANL)
yielding 36,044 sequences. From these, the number of subtypes,
URFs, and CRFs per country and the number of sequences of
each subtype, URF, and CRF per country was calculated. The to-
tal number of subtypes, URFs and CRFs per country was plotted
against the ethnic diversity for each country weighted by the
number of sequences per country using ggplot2 (version 2.2.1).
The size of each point was scaled logarithmically by the number
of sequences. A weighted generalized linear model was fit using
R (version 3.4.3) to determine the significance. We generated a
map with pie charts showing the relative amounts of each sub-
type in the LANL database for each country, using Tableau 10.4
(Fig. 2D; a non-weighted version is shown in Supplementary Fig.
S3). The ethnic diversity for each country was also displayed on
this map. We generated a map showing the African ethno-
linguistic groups (Fig. 2E). For each African country we obtained
the proportion of First Language Users of Bantu languages in
the general population from Ethnologue (2020; www.ethno
logue.com). For ease of analysis we dichotomized this variable
using 50 per cent as a threshold value. Similarly, we divided the
African countries into two groups by the prevalence of HIV-C in
their HIV-infected population.

4.6 Worldwide HIV-infected patient information

To study potential HLA driven selection on HIV subtype-specific
motifs, we searched the LANL HIV database (Foley et al. 2018)
for all HLA typed HIV-1-infected patients from which HIV-1
p24Gag had been sequenced. For each patient, we obtained the
majority rule consensus for five Gag subtype-specific positions
(Positions 27, 41, 116, 120, and 128, Supplementary Fig. S1). The
LANL HLA annotations were manually curated to ensure a con-
sistent HLA nomenclature (e.g. ‘B2705’, ‘B*27:05’, and ‘HLA-
B*27:05’ were all rewritten as ‘B2705’). We used HLA annotations
with four or more digits to generate an HLA presence–absence
matrix to avoid pooling HLA variants with different effects on
HIV evolution (e.g. HLA-B*35-Py/Px and HLA-B*58:01/02 (Goulder
and Watkins 2008; Goulder and Walker 2012)). However, this
matrix was extended by two-digit HLA annotations if the four-
digit HLA type could be inferred based on (i) the patients HLA
variants (typical for either Caucasians or African Americans), or
(ii) the escape mutation pattern in their HIV-1 sequences (see
Supplementary Table S8 for patient ID). For example, patients
with HLA-B*27:05 often target the KK10 epitope, and the R264K,
R264T, or L268M substitutions are often present within the epi-
tope, but this is not the case in patients with HLA-B*27:02. In to-
tal, four-digit HLA types were inferred for 23 patients with HLA-
B*27 (Goulder et al. 2001; Goulder and Watkins 2008; Goulder
and Walker 2012). Likewise, 29 B*57 patients were reclassified as
B*57:01 based on the associated paper reference (Migueles et al.
2003) and two patients were classified as B*57:01 carriers based
on their other HLA types and cohort demographics (Goulder and
Watkins 2008; Goulder and Walker 2012). We reassigned six
American patients with HLA type B*35 to B*35:01 in African-
American patients, as the frequency of HLA B*35:01 in this eth-
nic group is far higher than that of HLA B*35:02 or HLA B*35:03
(Gonzalez-Galarza et al. 2015). After assessing all the publicly
available data, we limited ourselves to HIV-B (n¼ 318) and HIV-C
(n¼ 704), the only subtypes for which there were enough
patients to perform our analyses.
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4.7 HLA presence–absence matrix

We generated a binary HLA presence–absence matrix; the rows
represented patients (n¼ 1,022), and the columns the HLA Class I
variants (the total number of HLA A, B, and C variants was 78).
The entries were 1 when a patient was annotated with an HLA
variant in the LANL database, and 0 otherwise resulting in an HLA
profile for each patient (the table is available upon request).

4.8 Population HLA Class I information

The HLA frequencies of all populations were derived from the
HLA-allele database (Gonzalez-Galarza et al. 2015) except for the
South African Zulu population. These HLA frequencies were
obtained as part of the Females Rising through Education,
Support, and Health project and were shared by Professor Bruce
Walker, Harvard University, and Professor Mary Carrington,
Frederick National Laboratory for Cancer Research.

4.9 Exploratory PCA

To investigate the variance–covariance structure of the HLA
presence–absence matrix, we performed a PCA (Menozzi,
Piazza, and Cavalli-Sforza 1978) and created a scatterplot of the
first two PC scores (Fig. 3 and Supplementary Fig. S4). Briefly,
PCA uses an orthogonal transformation to convert the variables
in the HLA presence–absence matrix into a smaller set of linear
combinations called PCs and determines the minimum number
of factors that will account for the maximum variance in the
data. The first PC accounts for as much of the variability in the
data as possible, and each succeeding PC accounts for as much
of the remaining variability as possible.

4.10 Accounting for phylogenetic variance

In our statistical model, we explicitly accounted for the phyloge-
netic covariance between individuals infected by closely related
viruses by including a parameter (uijÞ for every patient (i) and
amino acid position (j) combination. Every column in this ma-
trix (representing the phylogenetic effect for one subtype-
specific position) was modelled by a multivariate normal distri-
bution over patients using a phylogenetically informed covari-
ance matrix, thereby representing the similarity between
patients through the relatedness of their viruses. This phyloge-
netic correction was necessary because, for example, antenatal
transmission could lead to closely related viruses (with very
similar amino acids in the subtype-specific positions) in
patients with similar HLA variants even in the absence of HLA-
associated selection. We chose to use a separate phylogeneti-
cally informed multivariate normal for each subtype-specific
position because using just a single multivariate normal (i.e. a
single parameter per patient, shared over all k subtype-specific
positions, from a phylogenetically informed multivariate nor-
mal distribution) would fail to capture the independence of
each subtype-specific position.

This model can be expressed as follows:

logitðpijÞ ¼ aj þ bj;1:lj
� Xi;j;1:lj þ uij

u�j � N nð0; rCÞ

yij � BernoulliðpijÞ

n is the number of patients.k is the number of amino acid posi-
tions.lj is the number of HLA types used as explanatory varia-
bles for subtype-specific position j.

Y is a n� k matrix (with individual elements yij) of binaries
representing whether the majority rule amino acid in a patient
is the same as the HIV-B Majority Rule consensus amino acid.

X is a n� k� lj array of binaries representing the selected
HLA types for the jth subtype-specific position. This ragged 3D
construction is necessary because we use different sets of HLA
types as explanatory variables for each amino acid; hence a sep-
arate 2D HLA matrix is needed for each position.

b is a k�maxðljÞmatrix representing the HLA coefficients for
the k different amino acids. Vectors bj� are not used in the
model beyond index lj; this is because ragged arrays are not
available in Stan (the software we used to do Markov chain
Monte Carlo (MCMC) analysis; Carpenter et al. 2017).

We define P as an n� k matrix containing the inferred proba-
bilities pij of amino acid j in patient i being B-like.

C is a covariance matrix representing genetic relatedness be-
tween the viruses infecting the patients in our sample (see
below).

The parameterization bj;1:lj
� Xi;j;1:lj was chosen because there

is little overlap between the HLA types that selected for each
amino acid position. The lj variable is necessary because differ-
ent numbers of HLA types are appropriate for the different
subtype-specific positions.

Gelman’s recommendation (Gelman et al. 2008) for weakly
informative priors appropriately scaled for logistic regression
was adopted for the alpha and beta parameters; namely Cauchy
distributions with a location parameter of 0 and a scale parame-
ter of 2.5. The r parameter was given a half-normal prior with a
0 mean and a standard deviation of 1. Because this analysis is
highly parameterized (one uij per data point), allowing r to vary
resulted in high sampling variance in r and the uij parameters
until the inverse logit function collapses to 0 or 1 for all data
points, leading to instability of the r parameter and non-
convergence due to non-identifiability. To prevent this, we set
r¼ 1. This choice of parameter is reasonable in the context of a
logit link function, which rapidly approaches 0 and 1 outside
the range [�2.71, 2.71]. This method is based on a previous
Bayesian model which only allowed for linear regressions (de
Villemereuil et al. 2012), which we here extend to allow the fit-
ting of generalized linear models. We do not incorporate phylo-
genetic uncertainty, but instead use a point-estimate of the
phylogenetic correlation matrix C.

We used simulations to justify our choice for an indepen-
dent phylogenetically informed multivariate Gaussian prior for
each amino acid position. We simulated each amino acid sepa-
rately using a Bernoulli distribution where p is a draw from the
multivariate normal distribution using a phylogenetic variance–
covariance matrix and the logistic link function; x was a draw
from a multivariate Gaussian distribution using the same phy-
logenetic variance–covariance matrix. We varied the number of
amino acids simulated between 1 and 9 and generated 2,000
simulated datasets for each amino acid count. We fitted a
model with a single phylogenetic multivariate Gaussian distrib-
uted random effect shared between all amino acids in a patient,
and a model with a separate phylogenetic multivariate
Gaussian distributed prior for each amino acid. We found that
the model with the shared multivariate Gaussian was prone to
increase false positive rates (FPRs) and that the FPR increased
with increasing numbers of simulated amino acids. The FPR in
the model with a separate phylogenetical multivariate normal
distribution for each amino acid was stable. Stan code is avail-
able upon request.
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4.11 Generating the phylogeny and the phylogenetic
correlation matrix

For each subtype, we built manually curated alignments with a
single representative sequence per patient and used the LANL
HYPERMUT tool to remove hypermutated sequences. To avoid
biasing the analysis by including HLA selective effects in the
correlation matrix C, which could occur since CTL responses
can drive convergent evolution leading to clustering in phyloge-
netic trees (Matthews et al. 2009), we removed from the align-
ment the five subtype-specific columns we use as response
variables in the multilevel model, and columns subject to CTL
escape mutation known to skew phylogenetic analysis. BEAST
was used to sample from the posterior distributions of phyloge-
nies by running 10 chains for 200 million steps with an HKYþG
model of nucleotide evolution, a lognormal clock, and a logistic
growth coalescent tree prior. The initial portions of the chains
were discarded as burn-in (50 million for HIV-B; 100 million for
HIV-C, except one HIV-C chain for which we discarded 150 mil-
lion). We evaluated the posterior using CODA (Plummer et al.
2006), and ensured that all effective sample sizes (ESS) for con-
tinuous parameters were larger than 200. We used
TreeAnnotator to build a Maximum Clade Credibility (MCC) tree
for each subtype, keeping the heights of the maximum posterior
tree to prevent visualization artefacts. For every tree sampled
from the posterior, we calculated a phylogenetic variance–co-
variance matrix (Felsenstein 1985; Freckleton, Harvey, and Pagel
2002). By averaging over all sampled trees, we estimate the pos-
terior phylogenetic variance–covariance matrix scaled in years,
which was transformed into the phylogenetic correlation ma-
trix C.

4.12 Cross-validation

To avoid overfitting the high number of HLA types relative to
the number of patients (HIV-B: 26 HLAs/292 patients; HIV-C: 45
HLAs/687 patients) we performed a 5-fold cross-validation pro-
cedure (Kohavi 1995). This procedure incorporated both feature
selection and model fitting, which allowed us to optimize the
bias-variance trade-off. Within each training set, we calculated
the correlation coefficients between each subtype-specific posi-
tion and all HLA types; we then constructed Bayesian models
with the l best-correlating HLA types for every subtype-specific
position and used the inferred parameters to predict the ex-
cluded validation sets. From these predictions, we calculated
the area under the curve (AUC) of the receiver operator charac-
teristic curves (ROC) values for each subtype-specific position
(Fawcett 2006). We chose this metric because it is invariant to
the calibration of the latent probabilities in the Bernoulli model.
The training and validation sets were constructed on the pa-
tient level to avoid upwardly biasing the AUC (Saeb et al. 2016).

This procedure was repeated for every l until all HLA var-
iants were included in the model. After 10 replications, to re-
duce cross-validation error, a LOESS (LOcally Estimated
Scatterplot Smoothing) curve of the results was calculated for
each subtypes-specific site. In the cross-validation model fitting
procedure on the training set, all lj were identical. For each
subtype-specific position, the lj associated with the highest AUC
was taken as the starting point for the parsimonious model.
Cross-validation was performed on HIV-B and HIV-C separately
for both the patient-parameter and the phylogenetic model.
The numbers of HLA variants vary at each position in Fig. 5 as
they reflect the point when adding additional HLA variants

ceased to improve our predictions for that particular subtype-
specific position.

4.13 Parsimonious model

For the parsimonious models, we took the lj HLA types for each
position which had the highest correlations with the amino
acids, calculating the correlations using the entire dataset, where
lj was the optimum number of HLA types for a subtype-specific
position j according to the cross-validations. We then fitted a
multilevel Bayesian model using these predictors and refitted it
after removing any HLA types where the associated OR 80 per
cent BCI failed to exclude 1. We obtained posterior distributions
from the model using the Stan MCMC sampler (Carpenter et al.
2017). We ran four chains for 2,000 generations each, discarded
the default 50 per cent burn-in and confirmed convergence by
ESS >500 for all parameters, R̂<1.01 and satisfactory Gelman
diagnostics (Gelman and Rubin 1992; Brooks and Gelman 1998;
Gelman et al. 2008). Pairs plots of the beta posteriors were exam-
ined to check for collinearity between the HLA types, which could
arise if two or more included HLA types were part of a common
haplotype. Pair plots of the MCMC traces were examined at every
step to search for potential interactions.

4.14 An agent-based method to investigate HIV-1 sub-
type diversification

To create our model, we combined a transmission dynamics
model with a model for within-host HIV-1 evolution (both de-
scribed below). We examined the effect of HLA selection on HIV-1
evolution in two ways. First, we used the HLA ORs estimated from
the HIV-B HLA regression dataset and evaluated how these would
affect the modelled amino acid frequencies (Fig. 4G and
Supplementary Fig. S9) and second, we tested how much the HLA
ORs would have to be increased to result in the HIV-B amino acid
frequencies observed today. To more adequately capture the dy-
namics of the early, primarily Caucasian, HIV-1 epidemic outside
of Africa, we adjusted all HLA ORs from HLA variants common in
AfricanAmericans to 1. Because only non-B like subtype-specific
amino acids are present initially in our model, there would be no
selective pressure against HIV-B-like amino acids as this selective
pressure would originate from the CTL response against epitopes
that are only processed, or processed to a greater degree, when an
HIV-B-like amino acid is present in a subtype-specific position. To
reflect this, we restricted all odds <1 (i.e. those which drive evolu-
tion away from subtype-B) to equal 1.

4.14.1 Model part 1: transmission dynamics
We assumed a human population of a fixed size into which an
initial infection of an HIV-C-like virus was introduced to a small
subset of the population at time zero. The infection subse-
quently spreads stochastically through the population accord-
ing to the following processes:

• Random mating between an infected person and one of the sus-

ceptible individuals (S) occurs at a rate b. This assumption

implies there is no spatial structure to the community that is, it

is panmictic.
• Death of a susceptible individual occurs at a rate lS.
• Death of an infected individual occurs at a rate lI > lS.

To maintain a constant population size, whenever an indi-
vidual died they were replaced with a susceptible individual.
We assumed that all the individuals in the population were
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susceptible to HIV-1 before the infection was introduced. After
the introduction, the population was composed of a mix of sus-
ceptible and infected individuals. In this model, individuals
could not recover from their HIV-1 infection, and so the infec-
tion dynamics followed that of a stochastic ‘susceptible-infec-
tious’ model. To simulate the dynamics we used the continuous
time Gillespie algorithm (see Erban, Chapman, and Maini 2017).

4.14.2 Model part 2: within-host evolution of the HIV sequences
We recognize that in reality, an individual is usually infected
with a limited number of HIV-1 variants that are not specifically
adapted to the recipient. In our simulations, however, we sup-
pose that within-host evolution of HIV-1 is sufficiently rapid to
ensure that the HIV-1 population within a patient during most
of the infectious period (i.e. after �9 months; Karlsson et al.
2007; Goulder and Walker 2012; Abrahams et al. 2013) becomes
dominated by HIV-1 that has adapted to that particular host.

We modelled the observed HIV-B and HIV-C subtype-specific
sites in HIV-1 p24Gag and assumed that the specific amino acid
present at each of these positions evolved in accordance with
the HLA profile of the host to be either HIV-B- or HIV-C-like.
When individuals in our model are ‘born’ they are endowed
with an HLA profile, which is drawn from an underlying pre-
specified distribution for a collection of HLA types for which we
have determined the selective ORs for selecting for an HIV-B-
like amino acid if HIV-1 infected. When each individual is cre-
ated, they can have a maximum of two (and a minimum of
zero) alleles for each of the HLA A, B, and C with associated ORs.
We recognize that in real life, an individual will possess two
alleles for each of the three HLA classes. In our model, if an indi-
vidual has, for example, zero HLA A variants associated with
HLA ORs, then this means that their two HLA Class A alleles are
not amongst those we model (and have an OR of one; see
below).

For a given amino acid position j we calculated the combined
odds across all HLA classes belonging to the host by taking the
product of the corresponding odds,

g j ¼
QK

i¼1 gij; (4)

where K 2 3; 4; 5; 6ð Þ is the number of HLA classes that we model,
and gij is the estimated odds for HLA class i and amino acid po-
sition j. We used an independent continuous time Markov
Chain to model the evolution of each amino acid position.
Specifically, we assume a transmission matrix of the form,

C ¼ 1� cð Þg j c
g jc 1� cð Þ

� �
;

where c is the mutation rate of an amino acid. The matrix is ori-
entated so that the diagonal entries determine the rate at which
an amino acid position remains at its current state (top-left cor-
responding to the rate of remaining in an HIV-B state, bottom-
right to remaining in an HIV-C state), and the off-diagonal ele-
ments correspond to the rate of mutation. In the matrix, the
left-hand column is multiplied by the estimated odds which re-
sult in neutrality if g j ¼ 1, a bias towards an HIV-B if g j > 1, or a
bias towards HIV-C if g j < 1. If one individual infects a suscepti-
ble (multiple HIV inoculations within one individual are not
allowed in our model) then they are given an HIV variant with a
sequence that corresponds to the current sequence (i.e. the re-
sult of the evolving Markov Chain after the time since infection)
within the infected person.

4.14.3 Model sequence
In the simulations, we first created a population of N individu-
als, and then randomly infect an initial number I0 of the popu-
lace with HIV-1 with one particular sequence (in our
simulations variants with all amino acids in the HIV-C posi-
tions). We then iterate the following until a given time T has
elapsed,

1. Determine the time step t until the next ‘event’ and the type
of event (an infection, a death of a susceptible, or a death of
an infected) to occur by the Gillespie algorithm.

2. Implement the event.
3. For each infected individual in the population evolve each

HIV amino acid position as a continuous time Markov Chain
for time t with rates determined by their HLA type.
We used the parameters shown in Table 1 in the simula-

tions. The transmission rate at the start of the epidemic was
obtained from Varghese et al. (2002).

4.15 HIV-infected US patient sequences and HLA
information

To assess HIV-1 evolution over time in the USA, we searched
the LANL HIV sequence database (Foley et al. 2018) for all dated
HIV-B sequences that spanned HXB2 nucleotide coordinates
1,252–1,569 (a fragment of p24Gag) and were sampled in the
USA and annotated with a patient ID (n¼ 9,729 HIV-B sequences
from 437 patients). This limitation was necessary to avoid
pseudo-replication through the inclusion of multiple sequences
from the same patient as unique data points. In contrast to the
compilation of the worldwide HIV-infected patient sequences,
we also included patients without HLA information and allowed
for multiple sequences to be used per patient rather than taking
the majority rule amino acid.

4.16 Building a posterior distribution of phylogenies
from US sequences

We ran 10 BEAST chains for 100 million steps using a single rep-
resentative sequence per patient and a GTRþG model of nucleo-
tide evolution, using a log-normal clock and a logistic
coalescent; this has previously been shown to be appropriate

for similar data (Worobey et al. 2016). To promote model conver-
gence, we fully incorporated ambiguous sites in this model and
did not treat them as missing. We removed an appropriate 20
per cent burn-in and confirmed ESS> 200 on all continuous
parameters in CODA (Plummer et al. 2006). We used
TreeAnnotator to calculate a MCC summary tree.

Table 1. The parameters used in the agent-based agent-based epi-
demic model

Parameter Interpretation Value

n Population size 1,000
I0 Initial infected group size 500
T Total time 230 years
b Transmission rate 0.0002 per infected/

susceptible pair
lS Death rate of susceptibles 0.02 per year
lI Death rate of infected 0.1 per year
c Amino acid mutation rate 0.06 per year
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4.17 Bayesian model comparison with BEAST from US
HIV-1 sequences

We also used the posterior distribution of trees to perform some
exploratory analyses. It was not possible to use BEAST to ana-
lyse multiple sequences sampled from a patient. Instead, we
limited our analysis to whichever sequence was most recently
sampled from the patient, to allow the virus the most time to
adapt to its host. We treated the amino acids as binary traits,
which can be either positive if the amino acid in the patient’s
subtype-specific position is the same as the HIV-B consensus,
or negative if it is different. We fitted four models of Discrete
Trait evolution, varying the parameter configuration. Because
we estimated that most transitions would occur from the HIV-B
consensus amino acids to non-HIV-B consensus amino acids,
we investigated if a unidirectional model, which did not allow
the reverse transition, would fit better than a bi-directional
model. Because we believe that these four subtype-specific posi-
tions are undergoing roughly the same process, we specified a
hierarchical prior on their transition rates. Implementing the hi-
erarchical prior was trivial in the unidirectional case, as there
we could set the B!non-B transition rates to 1, and the non-
B!B transition rates to 0, and put a hierarchical prior on the
clock rates. The bi-directional models were parameterized by
setting the B!non-B transitions to 1 and allowing the non-B!B
transitions to vary as a relative rate; this model was made hier-
archical by allowing the clocks to vary freely and independently,
while hierarchical priors were placed on the relative rate for
each subtype-specific site. We used the stepping stone sam-
pling procedure implemented in BEAST to obtain estimates of
the marginal likelihood for each of the four models, which were
converted to Bayes Factors for model comparison by taking the
difference between the marginal likelihoods of two models on
the log scale (Baele et al. 2012, 2013). XML files are available
upon request.

4.18 Calculating the fraction of African Americans in the
US HIV-infected population over time

To estimate the ethnic demographics of the HIV-infected popu-
lation in the USA, we converted existing estimates of the ethnic
demographics of HIV incidence (new infections) to prevalence
(number of living hosts infected). We obtained incidence data
from the literature (Hall et al. 2008; Prejean et al. 2011) and used
the following assumptions:

1. In the beginning of the epidemic (when no drugs were avail-
able) the average survival time was 10 years.

2. Starting from 1996 the availability of combination therapy
increased the survival time to at least 25 years.

3. Starting from 2002 further improvement in the standard of
care extended this to at least 32 years.

These assumptions were the same for all ethnic groups.
We then calculated the fraction of African Americans in the

US HIV-1 infected population at each time point.

4.19 Regression of the US HIV-Infected population’s
African American frequencies on time

To smooth the data and to incorporate uncertainty in the esti-
mates, we performed a Bayesian regression of time on the esti-
mated African American proportions of HIV-1 infected
Americans (Supplementary Fig. S11). Initial observations
revealed a change (or a change-point) between growth and de-
cay of the proportion of African Americans around 1998 and we

used a Bayesian change-point analysis to model this. To pre-
vent discontinuity at the change-point, it was required that the
function was continuous with a continuous first derivative, and
we, therefore, chose the following form:

f ðxÞ ¼ a0 þ a1ðx� pÞ þ a2ðx� pÞ2 þ a3ðx� pÞ3 þ a4ðx� pÞ4

g xð Þ ¼ cþ dec x�pð Þ

y ¼ f ðxÞ if x � p
gðxÞ otherwise:

�

where:

a0 ¼ cþ d

a1 ¼ dc

We used normal priors of mean 0 and standard deviation 10
on all parameters, except the p change-point parameter (normal
with mean corresponding to the year 1998 and SD 1), because
the approximate position of the change-point is clearly between
1996 and 2000, and the likelihood function precision parameter
(gamma with shape¼ 0.001 and rate¼ 0.001). To stabilize the
variance and thereby ensure homoscedasticity, a regression
model was fitted, which was weighted by the total number of
patients alive according to the simple population model; this
had the further advantage of allowing some uncertainty around
the earlier time points. The calculated frequency of African
Americans in the US HIV-infected population was standardized,
and 1980 was taken as Year 0. Because the model uses latent bi-
nary variables to distinguish between the f and g functions we
used the JAGS Gibbs sampler (Plummer 2003). Because of strong
correlations between the parameters (due to collinearity of the
(x–p) polynomials), it was necessary to run JAGS for 100,000
steps. The median fitted values from this regression were used
as the explanatory variable in the subsequent Bayesian Multi-
level Model.

4.20 Bayesian multi-level model incorporating phyloge-
netic information

We included a phylogenetic signal in much the same way as in
the previous analysis, by fitting parameters for every position/
patient combination. These parameters were sampled from a
single multivariate normal distribution for every subtype-
specific position, using the phylogenetic correlation matrix to
relate patients according to the evolutionary history of the vi-
rus. This can be expressed as follows:

yij � BernoulliðpijÞ

logitðpijÞ ¼ aj þ bjxi þ uzij

The (hyper-)priors are:

aj � Nð0; 2Þ

bj � Nðk; rÞ

k � Nð0; 2Þ

r � Half �Normalð0; 1Þ

u�j � Nm 0;Cð Þ
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This creates a multi-level model where each data point
informs both the estimated probability of HIV-B-likeness for a
subtype-specific position in an individual patient (through the
uij parameters) and the population level estimates (through
bjxi). Additionally, we used a hierarchical prior on the slopes to
relate the four subtype-specific sites to one another, creating
what would be in classical statistical terms a random slope
model, which allows the partial pooling of information to fur-
ther protect against phylogenetic covariance as well as giving
us additional power. This construction is justified by our prior
belief that these four positions are special in the same way, and
by our explorations of the data set when testing the phyloge-
netic model, which favoured a hierarchical prior on the transi-
tion rates. A hierarchical prior on the transition rates is the
phylogenetic analogue to the hierarchical prior on the regres-
sion coefficients implemented here. More generally, a hierarchi-
cal prior can also be seen as a conservative choice due to the
protection it confers against multiple hypothesis testing
(Gelman 2009). As in the previous worldwide analyses, we used
the correlation matrix as a variance–covariance matrix to pre-
vent non-identifiability, implicitly setting the r in rC to 1 (not
shown in Equation (4) to avoid confusion with the b variance r).
The model was fitted using Stan and ran for 5,000 steps using a
non-centred parameterization and the MCMC chains converged
on the posterior distributions (all R̂�1.01). To validate the gener-
ative properties of the model, we performed a posterior predic-
tive test, which confirmed that the actual data could have been
generated by our model. Due to the binary nature of our data,
we took the proportion of HIV-B consensus amino acids in each
position for every patient in each year and calculated the yearly
average for each subtype-specific position separately.

4.21 Population-level estimates of HIV-B consensus
amino acid frequencies

Using our multilevel model, we reconstructed the population-
level proportion estimates of the HIV-B consensus amino acid
over time. We set x’ as the inferred African American frequency
in every year between 1982 and 2009 and used the following for-
mula, which only included the population level parameters in
the multilevel model and left out the patient-specific
adjustments:

logitðqijÞ ¼ aj þ bjx
0
i (6)

By plotting these population-level estimates (qij) against
time, we recovered the underlying pattern from the data, which
was the population level estimate that can be visualized to-
gether with the uncertainty inherent in the estimate (Fig. 5).

5. Data sets and code availability

The data were obtained from publicly available databases (the
LANL HIV sequence database (Foley et al. 2018) and the Allele
Frequency Net database (Gonzalez-Galarza et al. 2015)), and the
South African Zulu HLA data were kindly shared by Professor
Bruce Walker, Harvard University, and Professor Mary
Carrington, Frederick National Laboratory for Cancer Research.
All new code and algorithms are available upon request .
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Supplementary data are available at Virus Evolution online.
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