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Vulnerable carotid plaques are closely related to the occurrence of ischemic stroke.
Therefore, accurate and rapid identification of the nature of carotid plaques is essential.
This study aimed to determine whether texture analysis based on a vascular ultrasound
can be applied to identify vulnerable plaques. Data from a total of 150 patients
diagnosed with atherosclerotic plaque (AP) by carotid ultrasound (CDU) and high-
resolution magnetic resonance imaging (HRMRI) were collected. HRMRI is the in vivo
reference to assess the nature of AP. MaZda software was used to delineate the
region of interest and extract 303 texture features from ultrasonic images of plaques.
Following regression analysis using the least absolute shrinkage and selection operator
(LASSO) algorithm, the overall cohort was randomized 7:3 into the training (n = 105)
and testing (n = 45) sets. In the training set, the conventional ultrasound model, the
texture feature model, and the conventional ultrasound-texture feature combined model
were constructed. The testing set was used to validate the model’s effectiveness by
calculating the area under the curve (AUC), accuracy, sensitivity, and specificity. Based
on the combined model, a nomogram risk prediction model was established, and the
consistency index (C-index) and the calibration curve were obtained. In the training and
testing sets, the AUC of the prediction performance of the conventional ultrasonic-
texture feature combined model was higher than that of the conventional ultrasonic
model and the texture feature model. In the training set, the AUC of the combined
model was 0.88, while in the testing set, AUC was 0.87. In addition, the C-index results
were also favorable (0.89 in the training set and 0.84 in the testing set). Furthermore, the
calibration curve was close to the ideal curve, indicating the accuracy of the nomogram.
This study proves the performance of vascular ultrasound-based texture analysis in
identifying the vulnerable carotid plaques. Texture feature extraction combined with CDU
sonogram features can accurately predict the vulnerability of AP.

Keywords: texture analysis, carotid ultrasound, vulnerable plaques, high-resolution magnetic resonance imaging,
atherosclerotic plaque

INTRODUCTION

Ischemic stroke (IS) exhibits a high disability rate, mortality, and recurrence rate, posing
a serious threat to human survival and health (Benjamin et al., 2019). Numerous
factors influence IS occurrence. In Europe and the United States, previous guidelines
for atherosclerosis prevention stratified IS severity according to the degree of carotid
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stenosis to guide prevention and intervention strategies
(Benjamin et al., 2019). However, numerous studies have recently
demonstrated that many patients develop IS even with only mild
carotid artery stenosis (Cai et al., 2002; Crombag et al., 2019).
Therefore, the assessment of IS risk should not be based only
on the degree of carotid luminal stenosis, and a comprehensive
assessment of the vulnerability of carotid atherosclerotic plaques
is required (Yamada et al., 2016).

Atherosclerotic plaque (AP) is a common chronic
inflammatory lesion of arterial intima, mainly composed of
lipids, inflammatory cells (especially T cells and macrophages),
calcium deposition, fibroblasts, and microvessels. The nature of
plaques can be categorized into stable and vulnerable. Internal
plaque components, such as a thin and incomplete fibrous cap,
a large lipid necrotic core, intra-plaque bleeding, intra-plaque
neovascularization, and ulcerative plaque formation contribute
to plaque vulnerability (Grimm et al., 2013; Yamada et al.,
2016; De Havenon et al., 2017; Beg et al., 2020). At present,
the commonly used non-invasive and non-radiation imaging
methods for evaluating vulnerable plaques are carotid ultrasound
(CDU) and cervical high-resolution magnetic resonance imaging
(HRMRI). Due to the non-invasive nature, low cost, simplicity of
operation, and almost no contraindications, CDU examination
is widely employed in clinical practice and has become the first
choice for imaging examination. While CDU can distinguish
between vulnerable and stable plaques based on their internal
echoes and morphology, there are some limitations to its
assessment of plaque vulnerability, including the operator’s skill
and clinical experience. CDU cannot accurately identify plaque
internal components.

High-resolution magnetic resonance imaging is an
examination method with high spatial resolution, high tissue
resolution, and good reproducibility. Multi-sequence contrast-
enhanced imaging can clearly show the substructure of blood
vessels from adventitia to the lumen to identify internal carotid
plaque components, which is highly consistent with plaque
histopathology results (Fairhead et al., 2005; Makris et al., 2011;
Brinjikji et al., 2016). However, HRMRI also exhibits limitations
in evaluating plaque vulnerability, including its slow imaging
speed, many contraindications (such as metal implants or
claustrophobia, etc.), and high cost.

With the development of imaging technology and artificial
intelligence, new tools have emerged to extract, analyze, and
interpret quantitative imaging features, namely radiomics. This
process objectively quantifies the change of gray pixel value and
potential distribution of lesions (Brinjikji et al., 2016). Texture
analysis has recently become a research hotspot in radiomics.
This technology can quantitatively analyze the texture features of
images in a relatively simple and cost-effectively manner (Lambin
et al., 2012; Houssami et al., 2017). These algorithms extract
hidden rules from the training dataset and are used for prediction
or classification (Tagliafico et al., 2020).

The current imaging omics are mostly based on MRI and
CT images and are rarely based on ultrasound images. As far
as we know, few studies have been conducted on the differential
diagnosis of carotid vulnerable and stable plaques using vascular
ultrasound texture analysis combined with LASSO regression.

This study aims to determine whether texture analysis based on a
vascular ultrasound can be applied to detect plaque vulnerability.

MATERIALS AND METHODS

Study Population
This bidirectional cohort study recruited 150 consecutive patients
with suspected acute ischemic stroke (AIS) or transient ischemic
attack (TIA), diagnosed with plaques in carotid arteries by
CDU and HRMRI examination from the stroke center of
the First Affiliated Hospital of Soochow University from May
2016 to December 2020. This study was approved by the
Ethics Committee of our organization (No. 2021197). Inclusion
criteria: (1) both CDU and HRMRI (Head and carotid plaques)
examinations were performed; Exclusion criteria: (1) intracranial
arterial stenosis and other etiologies, such as large artery
arteritis, moyamoya disease, etc.; (2) cardioembolic emboli, atrial
fibrillation, etc.; (3) more than one plaque; (4) incomplete clinical
and imaging data; (5) poor image quality (such as unclear
wall structure and lumen outline, low signal-to-noise ratio and
obvious vascular pulsation artifact). The eligible patients were
randomly divided in a 7:3 ratio into the training (n = 105) and
testing (n = 45) sets. The flow chart displays the analysis path of
this study (Figure 1).

Carotid Ultrasound Protocol
All patients were diagnosed using the iU Elite scanner (Phillips
Medical System, Holland). The L9-3 linear array probe and C5-
1 convex array probe were used to assess the blood vessels
from the proximal to the distal segment. Continuous cross-
sectional and longitudinal scans were performed. The bilateral
common carotid arteries (CCA), carotid artery bulb (CAB),
and internal carotid arteries (ICA) were observed by gray scale
imaging, color flow imaging, and spectral Doppler analysis. If
plaques were observed, the plaque size, shape, echo, integrity, and
degree of vascular stenosis were determined using multi-section
and multi-angle imaging, as well as the peak systolic velocity,
the end-diastolic velocity, and the resistance index (Lyu et al.,
2021a). All the images of carotid atherosclerotic plaques were
saved and analyzed.

Carotid Ultrasound Analysis
The CDU criteria to evaluate the nature of atherosclerotic
plaques (Johnsen and Mathiesen, 2009; Ten Kate et al., 2013;
Jang et al., 2020) are described below. Vulnerable plaques are
heterogeneous, hypoechoic, or moderately hypoechoic, with or
without plaque surface shape irregularity or incomplete fibrous
cap or plaque blood flow signal (ulcerative plaque). Stable
plaques are homogeneous with moderate or strong echo, with
a regular plaque surface and intact fibrous cap. Two observers
independently evaluated the images.

High-Resolution Magnetic Resonance
Imaging Protocol
All patients underwent an HRMRI examination using the
GE Signa HDXT 3.0T (GE Healthcare System, United States)
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FIGURE 1 | The flowchart of the inclusion and exclusion criteria.

MRI scanner, selecting the head and neck joint coil, ECG
gating, and the standard carotid artery multi-sequence contrast
imaging scheme. A 2D time of flight MR angiography (TOF
MRA) imaging was performed to determine the location of the
bifurcation of the common carotid artery. After locating the
common carotid artery bifurcation, a 3DTOF MRA imaging was
performed, followed by rotational imaging reconstruction using
maximum intensity projection (MIP). The plaque location was
determined by combining the cross-sectional position of TOF
and the reconstructed image. High-resolution target scanning
with black-blood sequence (including T1WI, T2WI, and PDWI)
was performed on cervical vessels and targeted plaques. The
parameters were as follows. Routine DWI scans of the head:
5400.00 ms repetition time (TR)/75.20 ms echo time (TE);
220.0 mm × 220.0 mm field of view (FOV); 2, number of
excitation (NEX); 256 × 256 matrix; 41 s total scanning time.
3D TOF MRA: 15.00 ms TR/3.45 ms TE; 200.0 mm × 200.0 mm
FOV; 2 NEX; 512 × 512 matrix; 4 min 47 s total scanning time.
T1WI: 500.00 ms TR/9.82 ms TE; 160 × 160 mm FOV; 4 NEX;
512 × 512 matrix; 5 min scanning time. T2WI: 3,560.00 ms
TR/71.04 ms TE; 160.0 mm× 160.0 mm FOV; 6 NEX; 512× 512

matrix, 3 min 51 s scanning time. PDWI: 1980.00 ms TR/11.30 ms
TE, 160.0 × 160.0 mm FOV, 2 min 50 s scanning time.
Both Gd-DTPA enhanced T1WI and Gd-DTPA were injected
into the cubital vein at a concentration of 0.1 mmol/kg. All
HRMRI data were measured and calculated using Siemens syngo
MR B15 software.

High-Resolution Magnetic Resonance
Imaging Analysis
The American Heart Association (AHA) classification was used
for MRI analysis (Lubner et al., 2017): for vulnerable plaques,
type IV-V: plaques with large lipid necrotic core and fibrous
caps with a small amount of calcification and type VI: plaque
surface ulcers, or intra-plaque bleeding and thrombosis and for
stable plaques, type III: diffuse intimal thickening or small non-
calcified eccentric plaques; type VII: calcified plaque; and type
VIII: fibrous plaque without a fat nucleus, with a small amount
of calcification (Supplementary Figure 1). Previous studies have
demonstrated that HRMRI results are highly consistent with
plaque histopathology in evaluating plaque vulnerability, so this

Frontiers in Neuroscience | www.frontiersin.org 3 June 2022 | Volume 16 | Article 885209

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-885209 May 28, 2022 Time: 17:42 # 4

Zhang et al. Texture Analysis Based on Ultrasound

study uses HRMRI results as the in vivo reference to assess plaque
properties (Fairhead et al., 2005; Makris et al., 2011; Brinjikji et al.,
2016). Two observers independently evaluated the images.

Texture Protocol
Patch Image Segmentation
The ultrasonic images of 150 plaques were acquired from
the institution’s PACS in BMP format. The region of interest
(ROI) was manually drawn using MaZda software (version
4.6.0, Institute of Electronics, Rhodes University of Technology).
According to HRMRI results, the following steps were applied:
ROI was manually determined along the maximum area of
the plaque on the CDU longitudinal section and the arbitrary
shape of the CDU plaque was drawn with two different colors.
Figure 2 illustrates the region of interest on the CDU image
of carotid plaque.

Texture Feature Extraction
In order to avoid interference caused by insufficient image
contrast (uneven brightness distribution of image pixels),
the ultrasonic images of 150 plaques were first normalized
by MATLAB R2020 so that the gray value of pixels was
distributed between 0 and 1. Each ROI was delineated by
two experienced sonographers, both blinded to the actual
nature of the plaque. Then, gray-scale normalization was
performed between m ± 3d (where m represented the mean
value of the gray levels within the ROI; d represented the
standard deviation) to reduce the influence of data acquisition
environment, acquisition parameters, and other factors on a
gray scale image. This step improves the comparability and

reliability of the experimental results, as applied in previous
studies (Galm et al., 2018; Oh et al., 2019). 303 texture features
were extracted from each region of interest based on 6 texture
feature algorithms: gray scale histogram (Histogram), gray
absolute gradient (Absolute gradient), run matrix (Run-length
matrix), gray co-occurrence matrix (Gray-level co-occurrence
matrix), autoregressive model (Autoregressive model), and
wavelet analysis (Wavelet transform). A detailed description
of these texture features can be found on the official MaZda
website.1

Texture Feature Selection
Subsequently, another experienced sonographer segmented the
regions of interest independently from 50 randomly selected
plaques to evaluate the stability and repeatability of these texture
features. All sonographers were blinded to the actual nature of
the plaques. The intraclass correlation coefficient (ICC) values
of each texture feature were calculated. Only features with an
ICC value of ≥0.75 were considered repeatable and selected for
further analysis (Khan et al., 2015). After ICC screening, 238
different texture features were selected for the following process.
The least absolute shrinkage and selection operator (LASSO)
algorithm was applied to minimize the potential collinearity of
variables measured from the same patient and the overfitting
of variables. For multivariable analyses, the L1-penalized least
absolute shrinkage and selection algorithm augmented with 10-
fold cross-validation was used for internal validation. This logistic
regression model penalizes the absolute size of the regression

1http://www.eletel.p.lodz.pl/programy/mazda/

FIGURE 2 | Examples of the manual segmentation in stable and vulnerable plaques. (A) Original ultrasound image of stable plaque (arrow). (B) The segmented area
was within the green contour on the largest area on stable plaque (arrow). (C) Original ultrasound image of vulnerable plaque (arrow). (D) The segmented area was
within the red contour of the largest area on the vulnerable plaque (arrow).
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model’s coefficients based on the value of λ. The penalty
determines the rate at which the weak factors shrink toward zero,
retaining only the strongest predictors in the model. The most
predictive plaque indicators were selected by the minimum λ.
The R package “glmnet” statistical software (R Foundation) was
employed to perform the LASSO algorithm.

Nomogram Construction and Validation
The classification and Regression Training package in R version
3.6.1 was used to divide patients into a training set (105 plaques)
and a testing set (45 plaques). The construction of the nomogram
was based on the analysis in the training set. The results of
multivariate logistic regression were further used to formulate
the nomogram by applying the rms package in R version 3.6.1.
Two criteria, the consistency index (C-index) and the calibration
curve, were used to validate the nomogram model in the testing
set. The C-index with a value range between 0 and 1, was used to
evaluate the performance of the model. A larger C-index (>0.70)
indicates better performance of the model. A calibration curve
close to the ideal one was considered to indicate the accuracy of
the nomogram prediction.

Statistical Analysis
Based on the HRMRI evaluation results, the patients were
divided into stable and vulnerable plaque groups. The clinical
and imaging data were analyzed by the chi-square test, the t-test,
and the Mann–Whitney U test. In this study, three logistic
regression models have been established: the conventional
ultrasonic logistic regression model, the texture feature logistic
regression model, and the conventional ultrasonic-texture feature
logistic regression combined model. The variables included
in the final multiple logistic regression were determined by
stepwise regression. The areas under the receiving operating
characteristic (ROC) curves were used to evaluate the accuracy
of the three models in identifying the nature of carotid plaques.
The area under the curve (AUC), sensitivity, and specificity were
represented in a graphical plot. The interobserver agreement was
calculated using Cohen’s Kappa statistics or ICC values assessed
by observer A and observer B. All tests were two-tailed, with
a p-value threshold of 0.05 for statistical significance. Statistical
analyses were conducted in R statistical software (version 3.6.1).2

RESULTS

Comparison of Baseline Data Between
the Two Groups
This study included 150 consecutive patients (mean age,
61.7 ± 10.0 years; 120 [80.0%] men); 116 (77.3%) had
hypertension, 53 (36.3%) had diabetes, and 51 (34.0%) had
coronary heart diseases. The patient characteristics are listed
in Table 1, and there were no significant differences between
the vulnerable plaques group and the stable plaques group in
terms of age, gender, hypertension, diabetes, coronary heart

2http://www.Rproject.org

diseases, history of alcohol intake, current or former smokers, and
laboratory tests.

Efficiency of Conventional Ultrasonic
Model
The diagnostic model was constructed with four variables of
conventional ultrasound: surface morphology, fibrous cap state,
plaque echo, and plaque ulcer formation. In the training set,
83 vulnerable and stable plaques were accurately identified.
The accuracy, sensitivity, and specificity of the model were

TABLE 1 | Baseline data of patients in the stable plaque group and vulnerable
plaque group (n = 150).

Subject characteristic Stable
plaques group

(n = 57)

Vulnerable
plaques group

(n = 93)

P-value

Age (median ± SD) (year) 62.9 ± 9.3 61.0 ± 10.4 0.277

Male (n) (%) 45 (78.9) 75 (80.6) 0.605

Hypertension (n) (%) 34 (59.6) 75 (80.6) 0.005

Systolic blood pressure
(median ± SD) (mm Hg)

138.8 ± 18.8 140.8 ± 18.3 0.520

Diastolic blood pressure
(median ± SD) (mm Hg)

81.6 ± 10.4 81.2 ± 12.2 0.855

Diabetes (n) (%) 23 (40.4) 30 (32.3) 0.314

Blood glucose
(median ± SD) (mmol/L)

5.7 ± 1.5 5.6 ± 1.6 0.699

Coronary heart
disease (n) (%)

21 (36.8) 30 (32.3) 0.565

Dyslipidemia (n) (%) 13 (22.8) 26 (28.0) 0.485

TC (median ± SD) (mmol/L) 3.9 ± 1.1 4.0 ± 1.1 0.499

TG (median ± SD) (mmol/L) 1.5 ± 0.7 1.5 ± 0.6 0.495

HDL-
C (median ± SD) (mmol/L)

1.2 ± 0.5 1.1 ± 0.5 0.547

LDL-C [Median (Q1 -
Q3)] (mmol/L)

2.2[1.7–2.8] 2.2[1.7–3.0] 0.827

hs-CRP [Median (Q1 -
Q3)] (mmol/L)

3.6[2.3–6.8] 3.5[2.2–6.7] 0.763

Uric
acid (median± SD) (mmol/L)

315.2 ± 87.2 290.7 ± 93.5 0.112

Fibrinogen [Median (Q1 -
Q3)] (g/L)

2.2[1.7–2.8] 2.2[1.7–3.0] 0.207

HCY (median± SD) (mmol/L) 8.5 ± 3.7 8.0 ± 3.5 0.385

Neurologic symptoms

Unilateral limb
symptoms (n) (%)

32 (56.1) 48 (51.6) 0.445

Indistinct speech (n) (%) 18 (31.6) 24 (25.8) 0.784

Blurred vision (n) (%) 14 (24.6) 12 (12.9) 0.067

Dizzy (n) (%) 18 (31.6) 25 (28.9) 0.537

TIA (n) (%) 9 (15.8) 15 (16.1) 0.956

History of alcohol
intake (n) (%)

21 (30.6) 35 (37.6) 0.922

Current or former
smokers (n) (%)

11 (19.3) 28 (30.1) 0.143

Numbers are given as n (%) or mean ± SD or median (Q1–Q3).
TC, total cholesterol; TG, triglycerides; HDL-C, high-density lipoprotein cholesterol;
LDL-C, low-density lipoprotein cholesterol; hs-CRP, high-sensitivity C-reactive
protein; HCY, homocysteine; TIA, transient ischemic attack.
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79.05, 85.94, and 68.29%, respectively. In the testing set, 35
vulnerable and stable plaques were accurately identified, resulting
in an accuracy, sensitivity, and specificity of 77.78, 75.86, and
81.25%, respectively.

Feature Extraction and Efficiency of
Texture Feature Model
To seek potential significant texture features, we identified
the nature of carotid plaques thought non-zero coefficients
in the logistic regression model (Figure 3). Only seven
features were selected for the texture feature model (Perc.10%,
WavEnLH_s-2, WavEnLH_s-3, WavEnLH_s-4, S(2,-2)Contrast,
S(0,3)Contrast, S(5,0)DifVarnc) (Table 2). In the training set, 86
vulnerable and stable plaques were accurately identified, yielding
an accuracy, sensitivity, and specificity of 81.90, 87.50, and
73.17%, respectively. In the testing set, 36 vulnerable and stable
plaques were accurately identified. The accuracy, sensitivity,
and specificity of the model were 80.00, 72.41, and 93.75%,
respectively. All were higher compared with the conventional
ultrasound model (except for sensitivity in the testing set).

Efficiency of the Conventional
Ultrasound-Texture Feature Combined
Model
Finally, the combined model was constructed using
eight variables (Perc.10%, WavEnLH_s-2, WavEnLH_s-
3, WavEnLH_s-4, S(2,-2)Contrast, S(5,0)DifVarnc, surface
morphology, and fibrous cap state). In the training set, 89
vulnerable and stable plaques were accurately identified.
The accuracy, sensitivity, and specificity of the model were
84.76, 77.94, and 97.30%, respectively. In the testing set, 39
vulnerable and stable plaques were accurately identified, yielding
an accuracy, sensitivity, and specificity of 86.67, 84.00, and
90.00%, respectively.

Comparison of the Diagnostic
Performance of Different Models
In the training set, the highest AUC (0.88), accuracy (84.76%),
and specificity (97.30%) were observed in the combined model,
whereas the highest sensitivity (87.50%) was found in the texture

FIGURE 3 | Selection process of texture features. (A) The variation of coefficient of the variable with penalty coefficient. (B) The optimal penalty coefficient is selected
by 10-fold cross-validation, and seven optimal texture features are selected when the binomial deviation is the smallest (minimum standard). (C) The absolute value
of the coefficient of variables is finally included.
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TABLE 2 | Statistically significant texture features extracted from 150 carotid
plaques and conventional ultrasonic characteristics.

Feature Stable
plaques group

(n = 57)

Vulnerable
plaques group

(n = 93)

P-value

Histogram

Perc.10% 41.0 ± 26.9 23.2 ± 16.2 <0.001

Co-occurrence matrix

S (2,-2)Contrast 63.9 ± 33.5 36.8 ± 21.6 <0.001

S (0,3)Contrast 97.8 ± 47.7 57.7 ± 28.9 <0.001

S (5,0)DifVarnc 16.8 ± 9.5 15.6 ± 11.3 0.03

Wavelet

WavEnLH_s-2 267.9 ± 181.6 128.5 ± 83.2 <0.001

WavEnLH_s-3 535.1 ± 378.9 248.8 ± 138.9 <0.001

WavEnLH_s-4 721.9 ± 447.4 401.8 ± 200.6 <0.001

Conventional ultrasonic variables (n) (%)

Surface morphology <0.05

Regular 56 (37.3) 26 (17.3)

Irregular 1 (0.6) 67 (44.7)

Fibrous cap state <0.05

Intact 55 (36.7) 68 (45.3)

Crippled 2 (1.3) 25 (16.7)

Hypoechoic/mainly
Hypoechoic plaque

0.02

Yes 49 (32.7) 61 (40.7)

No 8 (5.3) 32 (21.3)

Ulcerative plaque 0.02

Yes 56 (37.3) 85 (56.7)

No 1 (0.6) 8 (5.3)

feature model. In the testing set, the highest AUC (0.87), accuracy
(86.67%), and sensitivity (90.00%) were found in the combined
model, while the specificity of the texture feature model was the
highest among the models (Figure 4). Statistical studies revealed
that the combined model had the highest AUC in both the
training and testing sets, with a statistically significant difference.

Construction and Validation of the
Nomogram
According to the final combined model variables, a nomogram
containing independent risk factors was established. The scores
of items displayed in the nomogram should be added together.
As illustrated in Figure 5, WavEnLH_s-3 contributed most to
risk, followed by Perc.10%, S(5,0)DifVarnc, and S(2,-2)Contrast.
C-index and calibration curves were utilized to validate the
nomogram’s predictive accuracy. The C-indexes observed in the
training (0.89) and testing sets (0.84), indicated that this model
is accurate. Furthermore, the ideal and calibration curves were
close in the testing set (Supplementary Figure 2). These results
revealed that the nomogram model possessed a high degree
of discrimination.

Interobserver Agreement
The Cohen’s kappa between two observers for evaluating plaque
vulnerability by CDU was 0.95 (95% CI = 0.88 to 0.98), 0.89
(95% CI = 0.82 to 0.96) for the surface morphology of plaque,

0.88 (95% CI = 0.78 to 0.97) for the fibrous cap state, 0.89 (95%
CI = 0.81 to 0.97) for hypoechoic/mainly hypoechoic plaque, and
0.71(95% CI = 0.49 to 0.93) for ulcerative plaque; The Cohen’s
kappa between two observers for evaluating plaque vulnerability
by HRMRI was 0.94 (95% CI = 0.89 to 0.99), 0.90 (95% CI = 0.86
to 0.97) for the surface morphology of plaque, 0.92 (95% CI = 0.86
to 0.99) for the fibrous cap state, 0.92 (95% CI = 0.85 to 0.99)
for intra-plaque hemorrhage, 0.90 (95% CI = 0.84 to 0.95)
for lipid necrotic core, and 0.88 (95% CI = 0.75 to 0.96) for
ulcerative plaque.

DISCUSSION

In this study, a diagnosis model based on vascular ultrasound
combined with a LASSO algorithm was constructed to identify
vulnerable and stable carotid plaques. The conventional
ultrasound-texture feature combined model demonstrated
satisfactory diagnostic performance.

The vulnerability of carotid plaque is affected by multiple risk
factors. These pathological processes interact with each other,
greatly increasing their pathogenic effects. Previous studies have
confirmed that age, gender, diabetes mellitus, hyperlipidemia,
smoking, and other factors are closely related to the development
of atherosclerosis (Rubinat et al., 2016; Lyu et al., 2021b). In
this study, there was no significant difference between patients
from the stable and the vulnerable groups in terms of age,
gender, diabetes mellitus, coronary heart diseases, history of
alcohol intake, current or former smokers, and laboratory tests.
Study bias may arise from the sample size, plaque location,
study methods, and underlying diseases. Izzo et al. (2015)
investigated 2,143 patients with hypertension with a follow-
up of 56.6 months, revealing that about 1/3 had new-onset
carotid plaque formation. Marfella et al. (2007) observed that
patients with hypertension with peak blood pressure in the
morning had more inflammatory components and poor stability
within carotid plaques. Long-term hypertension leads to intimal
thickening and loss of elasticity, especially in the presence
of elevated systolic blood pressure. In addition, mechanical
stress, sympathetic nerve activity, and vasoconstrictor levels
are increased. This causes intimal damage and promotes lipid
deposition, platelet adhesion, and aggregation, gradually forming
vulnerable plaques. Therefore, carotid plaques tend to be
unstable in patients with hypertension. Moreover, systolic blood
pressure plays a greater role in the process of transformation
of plaque vulnerability, and the results of our study are in
accordance with previous studies (Fusegawa et al., 2006; Iwata
et al., 2012). Minimizing risk factors, accurately and timely
identifying carotid plaque vulnerability, and adopting effective
interventions are important approaches to preventing acute
cerebrovascular events.

The plaque’s nature is determined by its internal components
(Lubner et al., 2017). At present, gray scale ultrasound is
commonly used in clinical practice and has gradually become
a screening method; however, differential diagnosis using gray
scale ultrasound is somewhat subjective to the operator’s
skill and clinical experience. Plaque echo varies according to
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FIGURE 4 | Different models for predicting classification performance. (A) The ROC curve with the AUC value for the training set. (B) The ROC curve with the AUC
values for the testing set.

its internal composition. Although plaque properties can be
identified by their echoes, they cannot accurately distinguish
their internal components (such as intra-plaque bleeding and
lipid core). Furthermore, they are easily affected by calcified
sound and shadow, respiratory movement, and operator
skill, and they are insensitive to plaque surface structural
features such as fibrous caps and ulcers (Kwee et al.,
2009).

With the development of imaging technology and artificial
intelligence, radiomics extracts and quantifies the texture features
of medical images, significantly reducing the variability of the
personal experience of radiologists (Lambin et al., 2012). In
the past, researchers attempted to carry out research on related
aspects such as lesion detection, tumor prognosis, or efficacy
evaluation for multiple organs and multiple diseases in order
to explore new ways of disease diagnosis and treatment by
texture analysis technology (Friedrich-Rust et al., 2009; Anderson
et al., 2012). However, most of them were based on imaging
examinations such as CT and MRI, and relatively few were
based on ultrasonic images. In particular, for the vulnerability
of carotid plaques, our study explored the diagnostic value

of texture analysis technology based on ultrasonic images of
carotid plaques.

The size, shape, surface irregularity, complex composition,
rich lipids, calcification, and other information of plaques affect
each texture’s eigenvalue (Baeßler et al., 2018). In a previous
study (Rakebrandt et al., 2000), the histopathology of 10 carotid
plaques after carotid endarterectomy revealed that five texture
features corresponded to the plaque tissue components (fibrin,
elastin, calcium, bleeding, and lipid). Since 2010, multiple studies
have explored texture features from ultrasound images of plaques
to describe their properties (Acharya et al., 2012; Zhou et al.,
2019). Acharya et al. (2012) presented a local binary pattern
(LBP)/law’s texture energy (LTE) technique based on two carotid
datasets for ultrasound characterization of plaques, picking
each significant combination of texture features. When using
the atheromatic-based system on semiautomatically determined
plaque regions, the support vector machine (SVM) classifier
was adapted with the highest accuracy of 83%. In our study,
eight statistically significant features were extracted from the
ultrasound images of carotid plaques, including six textural
features and two morphological features, and an accuracy rate
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FIGURE 5 | The nomogram was constructed based on the combined model, and the scores of each variable were added to obtain the total score, corresponding to
the risk probability of predicting a vulnerable plaque. The nature of each plaque in the nomogram can be directly read out.

of 84.76% was obtained in the evaluation of vulnerable plaques.
Our findings indicated that the combination of textural and
morphological features may improve the classification ability of
plaque properties. Azzopardi et al. (2020) extracted phase maps
from two-dimensional (2D) carotid ultrasound images as input
to convolutional neural networks (CNNs) to segment the carotid
media-adventitia boundary (MAB) with SegNet. However, the
full set of images used in that study was derived from only five
patients, resulting in a large correlation of training and testing
data, the validity of which requires a larger size. van Engelen
et al. (2014) extended texture features to three-dimensional
(3D) ultrasound images of carotid arteries. In total, 298 patients
with carotid atherosclerosis were evaluated at baseline and after
1 year; carotid plaque volume and 376 measures of plaque
texture were assessed. The study showed that combined changes
in texture and total plaque volume provided the best predictor
of vascular events. This study demonstrates that texture analysis
based on 3D ultrasound holds great clinical value, which provides
a direction for our next research.

The AUC and accuracy of the combined model were higher
than that of the conventional ultrasonic model and the texture
feature model in the training and testing sets, indicating the
predictive value of the combined model. In the training set, the
conventional ultrasonic model, the texture feature model, and the
combined model training set’s AUC values were 0.77, 0.80, and
0.88, respectively; and in the testing set, the AUC values were 0.79,
0.83, and 0.87, respectively. The performance of the combined
model was slightly lower, but the AUC was >0.85, indicating
the reliability and stability of the model, without obvious
overfitting. The LASSO algorithm is a compression estimate with
extremely low data requirements and wide application. It gets a

more refined model by constructing a penalty function, which
compresses some coefficients, sets some smaller coefficients, and
even directly changes some coefficients with smaller absolute
values to 0. In addition, LASSO can filter the variables, reduce
the complexity of the model, and make the model relatively
stable. Unlike traditional statistical analysis, the combination of
LASSO algorithm and logistic regression in this study greatly
improves the efficiency of differential diagnosis between stable
and vulnerable plaques and provides a future method for
objective differential diagnosis in clinical practice.

This research has several limitations. First, this is a
bidirectional cohort study, so selection bias cannot be completely
avoided. Second, the evaluation of plaque properties by CDU
and HRMRI and the manual delineation of ROI involved
some bias. Third, the number of cases in this study is
relatively small, and the sample size should be expanded in
the future. Moreover, this study only established a model
based on imaging, and a future model that combines clinical
information with imaging may improve the efficiency. Finally,
not all lesions can be confirmed pathologically in clinical practice.
However, we believe that a similar diagnostic efficiency can
be achieved by combining various techniques to assess the
pathological findings.

CONCLUSION

This research proves the satisfactory performance of vascular
ultrasound-based texture analysis in identifying vulnerable
carotid plaques. Therefore, texture feature extraction in
conjunction with CDU sonogram features can accurately predict
the properties of atherosclerotic plaques.
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T1WI C + (indicated by the white arrow) and the lipid necrotic core in the T2WI
(indicated by the white arrow), indicates the plaque is more likely to be vulnerable;
The second plaque (E–H) was acquired from the posterior wall of left internal
carotid artery of a 70-year-old patient. The fibrillar component is observed as the
high-intensity area in the T2WI and PDWI (indicated by the white arrow); the high
risk composition was absent, indicating the stability of this plaque.

Supplementary Figure 2 | (A) The calibration curve of the nomogram model.
Apparent represents the original curve, Ideal represents the reference line obtained
by the ideal model, and Bias-corrected represents the calibration curve. The ideal
curves and calibration curves were very close in the testing set. (B) DCA curve for
the nomogram. The net benefit was plotted vs. the threshold probability. The
dotted line represents the nomogram. The gray and black lines represent the
treat-all-patients scheme or the treat-none scheme, respectively. DCA,
decision curve analysis.
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