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Phospholipid hydroperoxide glutathione peroxidase

(PHGPx), an antioxidative selenoprotein, is modulated by

estrogen in the testis and oviduct. To examine whether

potential endocrine disrupting chemicals (EDCs) affect

the microenvironment of the testes, the expression patterns

of PHGPx mRNA and histological changes were analyzed

in 5-week-old Sprague-Dawley male rats exposed to several

EDCs such as an androgenic compound [testosterone (50,

200, and 1,000µg/kg)], anti-androgenic compounds [flutamide

(1, 5, and 25 mg/kg), ketoconazole (0.2 and 1 mg/kg), and

diethylhexyl phthalate (10, 50, and 250 mg/kg)], and

estrogenic compounds [nonylphenol (10, 50, 100, and 250

mg/kg), octylphenol (10, 50, and 250 mg/kg), and diethyl-

stilbestrol (10, 20, and 40 µg/kg)] daily for 3 weeks via oral

administration. Mild proliferation of germ cells and

hyperplasia of interstitial cells were observed in the testes

of the flutamide-treated group and deletion of the

germinal epithelium and sloughing of germ cells were

observed in testes of the diethylstilbestrol-treated group.

Treatment with testosterone was shown to slightly decrease

PHGPx mRNA levels in testes by the reverse transcription-

polymerase chain reaction. However, anti-androgenic

compounds (flutamide, ketoconazole, and diethylhexyl

phthalate) and estrogenic compounds (nonylphenol,

octylphenol, and diethylstilbestrol) significantly up-

regulated PHGPx mRNA in the testes (p < 0.05). These

findings indicate that the EDCs might have a detrimental

effect on spermatogenesis via abnormal enhancement of

PHGPx expression in testes and that PHGPx is useful as a

biomarker for toxicity screening of estrogenic or anti-

androgenic EDCs in testes.
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Introduction

Phospholipid hydroperoxide glutathione peroxidase

(PHGPx) is an intracellular antioxidant that belongs to the

superfamily of selenium-dependent peroxidases. It interacts

directly with peroxidized phospholipid and cholesterol and

cholesteryl ester, even when they are incorporated into

biomembranes and lipoproteins [13,31,35]. There are three

different isoforms of PHGPx (cytosolic, mitochondrial, and

nuclear), all derived from a single gene [15]. PHGPx is

widely expressed and its enzymatic activity has been detected

in a variety of tissues, particularly in the endocrine organs

including the testis [5]. PHGPx gene expression and

enzymatic activity are hormone-dependent. PHGPx activity

is influenced by testosterone levels during spermatogenesis

[19]. In rat testes, PHGPx is preferentially expressed after

puberty. Although PHGPx is essentially absent following

hypophysectomy, it can be partially restored by treatment

with human chorionic gonadotropin or testosterone [29].

A variety of structurally diverse natural and synthetic

chemicals, called endocrine disrupting chemicals (EDCs),

have been reported to interfere with the endocrine system.

At the cellular level, EDCs can induce ‘endocrine disruption’

via a number of routes that involve steroid-receptor binding

(agonists), blocking of steroid-receptor binding (antagonists),

or disruption of the biosynthesis and metabolism of steroids

[30]. Estrogenic and androgenic chemicals with similar

structures to estrogen and androgen bind to estrogen receptors

(ERs) or the androgen receptor (AR) and ultimately alter the

normal function of tissues and organs [16]. ERs and AR are

expressed in a cell-specific manner in male and female

reproductive organs [27]. Many studies have reported the

detrimental effects of EDCs on the development of

reproductive organs. Recently, we have demonstrated that

the expression of 3β-hydroxysteroid dehydrogenase, a

histochemical marker for Leydig cells in the testes, can be

affected by treatment with various EDCs [14]. The

administration of vinclozolin, an AR antagonist, during
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sexual differentiation demasculinizes and feminizes male rat

offspring, such that the treated males display a female-like

anogenital distance at birth, retained nipples, hypospadias,

suprainguinal ectopic testes, a blind vaginal pouch, and

small-to-absent sex-accessory glands [11]. Neonatal injection

of vinclozolin at 200 mg/kg/day demasculinized aggressive

play behavior in male rats at 35 days-of-age, indicating that

sexual differentiation was altered in an anti-androgenic manner

[12]. These findings suggest that reproductive organs are

highly susceptible to EDC exposure during organ development

and sexual differentiation and that EDCs have the potential

to perturb steroidogenesis in testes.

Brigelius-Flohe et al. [6] reported that the porcine PHGPx

gene contains a variety of putative regulatory elements,

including estrogen-, progesterone-, and glucorticoid-responsive

sequences [6]. Recently, it was reported that PHGPx

expression and enzymatic activity are up-regulated by

estradiol in the female reproductive tract [17]. We have

previously demonstrated that estradiol can increase PHGPx

mRNA expression in male reproductive organs [23]. In this

study, we examine whether potential anti-androgenic or

estrogenic EDCs affect spermatogenesis, by analyzing

PHGPx mRNA expression and histopathological changes in

testes of rats exposed to various EDCs.

Materials and Methods

EDC treatments

Four-week-old male Sprague-Dawley rats were purchased

from Samtaco (Korea) and acclimated in polycarbonate

cages for 1 week. The animals (n = 10/group) were housed

in an environmentally controlled room with a 12-h light/

dark cycle, temperature of 21 ± 2oC, and frequent ventilation

at 10 times/h. The animals were fed standard rat chow

(Samyang, Korea) and tap water ad libitum throughout the

experimental period. Testosterone propionate (50, 200, and

1,000 µg/kg), flutamide (FM; 1, 5, and 25 mg/kg), diethylhexyl

phthalate (DEHP; 10, 50, and 250 mg/kg), ketoconazole

(KC; 0.2 and 1 mg/kg), octylphenol (OP; 10, 50, and 250

mg/kg), nonylphenol (NP; 10, 50, 100, and 250 mg/kg), or

diethylstilbestrol (DES; 10, 20, and 40 µg/kg) were orally

administered to the rats daily for 3 weeks. All chemicals

were obtained from Sigma (USA). Control animals received

corn oil (the vehicle) for the same period. All animal

experiments were conducted in compliance with ‘Guide for

Care and Use of Animals’ (Chungbuk National University

Animal Care Committee, according to NIH #86-23).

Histological examination

The rats were euthanized at 8 weeks-of-age under

pentobarbital anesthesia and their testes were rapidly

removed. Testes were fixed in Bouin’s fixative, dehydrated

with increasing concentrations of ethyl alcohol, cleared in

xylene, infiltrated with paraffin and paraplast with an

automatic tissue processor (Shandon, USA), and embedded

in paraffin wax with an embedding machine (Leica,

Germany). The tissue blocks were cut into 5-µm thicknesses

with a rotary microtome (Leica, Germany), stained with

hematoxylin and eosin, and observed under a light microscope

(Leica, Germany).

Total RNA extraction and RT-PCR

Total RNA was extracted from testes using a TRIzol

reagent (Invitrogen, USA) according to the manufacturer’s

instructions. The RNA pellet obtained in the final step was

dissolved in 50 µl of sterile diethylpyrocarbonate (DEPC)-

treated water, and its concentration was determined using a

UV spectrophotometer at 260 nm. RNA was kept in DEPC-

treated water at −70oC until use. Total RNA (5 µg) was

reverse transcribed using pd(N)6 primers and first-strand

cDNA synthesis reagents (Amersham Biosciences, UK).

The following primer sets were used to amplify PHGPx

(accession number: NM_008162, S1-As2 fragment; 461 bp)

and beta-actin (accession number: NM_007393, S1-As2

fragment; 376 bp) as an internal control:

PHGPx forward: 5'-ATGCACGAATTCTCAGCCAAG-3'

PHGPx reverse: 5'-GGCAGGTCCTTCTCTAT-3'

Beta-actin forward: 5'-CGTGACATCAAAGAGAAGCT

GTGC-3'

Beta-actin reverse: 5'-GCTCAGGAGGAGCAATGATC

TTGAT-3'.

The PCR products were separated on a 2%-agarose gel in

Tris-borate-EDTA buffer. Results were analyzed with an

AlphaEase V5.5 analyzer system (Alpha Innotech, USA).

Statistical analysis
The data were analyzed by analysis of variance and

Duncan’s test as a post-hoc analysis, using the SPSS

software (p < 0.05). All data were presented as means ± SD.

Results

Histological findings

The seminiferous tubules in the testosterone-, OP-, NP-,

DEHP-, and KC-treated groups showed a normal morphology

as well as the control group (Fig. 1A, B & D). However in

the testes from the FM-treated group, mild proliferation of

germ cells and hyperplasia of interstitial cells were observed

(Fig. 1C). In addition, deletion of germinal epithelium and

sloughing of germ cells were observed in the group treated

with 40 µg/kg/day DES (Fig. 1E & F).

Effect of EDCs on PHGPx mRNA expression

The detrimental effects of EDCs on rat testes were studied

using PHGPx mRNA expression as a biomarker. Treatment

with EDCs other than testosterone resulted in a general

increase in PHGPx expression. The testosterone treatment

slightly decreased the PHGPx mRNA levels, but the levels
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were not significantly different from the control (Fig. 2).

The expression of PHGPx mRNA in testes was increased in

a dose-dependent manner by FM treatment and was

significantly increased to 194% of the control in rats treated

with 25 mg/kg/day FM (p < 0.05; Fig. 3). In the DEHP-

treated groups, PHGPx mRNA was increased to 113-137%

of the control level (Fig. 4). In the KC-treated groups,

PHGPx mRNA was significantly increased to 147-150% of

the control (p < 0.05; Fig. 5). OP caused the up-regulation of

PHGPx mRNA by more than 37% of the control level (Fig.

6). NP stimulated PHGPx mRNA expression in the testes at

all doses. In particular, the level was significantly increased

to 158% of the control level in the groups treated with 50

and 250 mg/kg/day NP (p < 0.05; Fig. 7). The testicular

level of PHGPx mRNA in the rats exposed to various

concentrations (10, 20, and 40 µg/kg/day) of DES was

significantly higher (154-248%) than that of the control

group (p < 0.05; Fig. 8).

Discussion

Although several putative estrogen-responsive elements

Fig. 1. Histological findings in the testes of 8-week-old rats
treated with the vehicle alone (A), testosterone (1,000 µg/kg)
(B), flutamide (25 mg/kg) (C), diethylhexyl phthalate (250 mg/
kg) (D), or diethylstilbestrol (40 µg/kg) (E & F), daily for 3
weeks by oral administration. H&E stain, A-E; ×100, F; ×200.

Fig. 2. Analysis of expression levels of PHGPx mRNA in the
testes of testosterone-treated rats using reverse transcription-
polymerase chain reaction. β-actin: an intrinsic control. The
values represent mean ± SD.

Fig. 3. Expression pattern of PHGPx mRNA in the testes of
flutamide-treated rats using reverse transcription-polymerase chain
reaction. β-actin: an intrinsic control. The values represent
mean ± SD. *Significantly different from the control at p < 0.05.

Fig. 4. Investigation of expression levels of PHGPx mRNA in
the testes of diethylhexyl phthalate-treated rats using reverse
transcription-polymerase chain reaction. β-actin: an intrinsic
control. The values represent mean ± SD.
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have been located within the 5'-untranslated region and the

first intron of porcine PHGPx [6], the cellular mechanisms

that mediate the action of estrogen on PHGPx regulation

require further inquiry. We previously reported that PHGPx

mRNA expression in male reproductive organs of rats is

greatly influenced by treatment with estradiol or tamoxifen

[23]. PHGPx expression in oviducts is also up-regulated by

estradiol [17]. Based on this previous evidence, we investigated

the expression patterns of PHGPx mRNA and morphological

changes in rat testes after treatment with various EDCs,

including testosterone, anti-androgenic compounds (FM,

KC, and DEHP), and estrogenic compounds (NP, OP, and

DES). Our results indicate that estrogenic or anti-androgenic

EDCs might have a detrimental effect on spermatogenesis

via the abnormal enhancement of PHGPx expression in

testes.

In adult males, fertility and sexual functions are androgen-

dependent. The role of androgens such as testosterone and

their action mechanism in reproduction are well-established.

In testes, the AR is localized in nuclei of cells such as Sertoli

cells, Leydig cells, and peritubular myoid cells [27]. In

mouse testes, PHGPx mRNA is first expressed at 3 weeks-

of-age, greatly increases at 8 weeks, and persists at a high

level until 80 weeks. According to in situ analysis, PHGPx

mRNA is expressed stage-specifically in spermatogenic

cells and Leydig cells [24]. In the present study, treatment

with testosterone (50, 200 and 1,000 µg/kg/day) slightly

decreased PHGPx mRNA expression in testes. Anti-

androgens have the potential to perturb male reproductive

development and function in humans and experimental

animals and they can act via disturbance of the pituitary-

gonadal axis [3,11,18,22]. FM blocks the negative feedback

of testosterone in the hypothalamus and pituitary and

induces over-expression of steroidogenic enzymes in the

Fig. 5. Expression levels of PHGPx mRNA in the testes of
ketoconazole-treated rats. β-actin: an intrinsic control. The values
represent mean ± SD. *Significantly different from the control at
p < 0.05.

Fig. 6. Analysis of expression levels of PHGPx mRNA in the testes
of octylphenol-treated rats using reverse transcription-polymerase
chain reaction. β-actin: an intrinsic control. The values represent
mean ± SD.

Fig. 7. RT-PCR amplification of PHGPx mRNA in the testes.
Rats were treated with nonylphenol for 3 weeks per oral. β-actin:
an intrinsic control. The values represent means ± SD. *Significantly
different from the control at p < 0.05.

Fig. 8. Expression pattern of PHGPx mRNA in the testes
exposed to diethylstilbestrol as measured by RT-PCR. β-actin: an
intrinsic control. The values represent mean ± SD. *Significantly
different from the control at p < 0.05.
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testis by increasing testosterone production [33]. Ohsako et

al. [25] reported that serum and testicular testosterone levels

were significantly elevated by the administration of FM

[25]. In this study, the expression level of PHGPx mRNA

was increased by FM treatment (1-25 mg/kg/day) in a dose-

dependent manner. Moreover, mild proliferation of germ

cells and hyperplasia of Leydig cells were induced by

treatment with FM. These results suggest that PHGPx might

be intimately involved in the proliferation of spermatogenic

cells through the synthesis of androgen in Leydig cells.

In our study, treatment with DEHP (10-250 mg/kg/day)

slightly increased PHGPx mRNA expression in testes.

Phthalates, including DEHP, are widely used as a plasticizer

in the production of plastics. In mammals, DEHP treatment

produces developmental and/or reproductive toxicity with a

period of susceptibility extending from the fetal to pubertal

stages-of-life and induces reproductive-tract malformations

in androgen-dependent tissues in male rat offspring [26].

Unlike FM, DEHP does not interact with the AR. Rather,

the effects observed in rodents have been associated with a

reduction in testosterone synthesis by the fetal testis

[9,22,26]. Phthalate treatment interferes with the transcription

of several key genes involved in both cholesterol transport

and the biosynthesis of testosterone [2,32]. In contrast, KC,

a broad-spectrum imidazole antimycotic agent, interferes

with the cytochrome P-450 enzyme system and can cause

inhibition of microsomal steroidogenesis in Leydig cells

[1,21]. In this study, PHGPx mRNA expression was significantly

increased (p < 0.05) to 147-150% of the control level in the

KC-treated group. These findings indicate that the anti-

androgens DEHP and KC induce dysfunction of Leydig

cells and stimulation of PHGPx transcription in testes.

There are two types of ERs, ERα and ERβ, which differ

in the C-terminal ligand-binding domain and the N-terminal

transactivation domain. In testes, ERα is localized in nuclei

of Leydig cells, spermatocytes, and round spermatids. ERβ

is detected in spermatogenic cells of various stages and in

Sertoli cells, suggesting that estrogens directly affect germ

cells during testicular development and spermatogenesis

[27]. Alkylphenol ethoxylates are widely used as surfactants

throughout the world. Their metabolites (NP, OP) are

ubiquitous in the environment [10]. OP has been shown to

decrease the expression of steroidogenesis factor-1 mRNA

in the fetal testis [20]. It has also been found to bind to the

ER and to be weakly estrogenic in vitro [34]. NP is also a

weakly estrogenic compound. Several studies have reported

the adverse effects of NP on the development of the male

reproductive tract [4]. In this study, treatment with OP and

NP stimulated PHGPx mRNA expression in testes at all

doses. In particular, the signal was significantly increased by

50 or 250 mg/kg/day NP treatment. These results show that

the alkylphenolic compounds stimulate the expression of

PHGPx mRNA in a pattern similar to that found in our

previous estradiol-treatment study [14]. DES is a nonsteroidal

synthetic estrogen that has been used to prevent miscarriage

and premature birth. According to in vivo knockout studies,

DES acts through an ERα-mediated mechanism in the male

and female reproductive tracts [7,8,28]. In this study,

PHGPx mRNA in the testis was significantly up-regulated

at various concentrations (10, 20, and 40 µg/kg/day) of

DES. In addition, deletion of germinal epithelium and

sloughing of germ cells in the testes were detected following

DES treatment. These results suggest that, like endogenous

estrogen, environmental estrogenic compounds might stimulate

PHGPx expression in testes via the ER pathway.

In conclusion, we demonstrate that anti-androgenic and

estrogenic EDCs enhance expression of PHGPx mRNA in

the testes, suggesting that PHGPx is useful as a biomarker to

screen for detrimental effects of exogenous EDCs in testes.
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