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Objective: Supraphysiological hormone exposure, in vitro culture and embryo transfer
throughout the in vitro fertilization-embryo transfer (IVF-ET) procedures may affect
placental development. The present study aimed to identify differences in genomic
expression profiles between IVF-ET and naturally conceived placentals and to use this
as a basis for understanding the underlying effects of IVF-ET on placental function.

Methods: Full-term human placental tissues were subjected to next-generation
sequencing to determine differentially expressed miRNAs (DEmiRs) and genes (DEGs)
between uncomplicated IVF-ET assisted and naturally conceived pregnancies. Gene
ontology (GO) enrichment analysis and transcription factor enrichment analysis were used
for DEmiRs. MiRNA-mRNA interaction and protein-protein interaction (PPI) networks were
constructed. In addition, hub genes were obtained by using the STRING database and
Cytoscape. DEGs were analyzed using GO and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis. Differentially expressed miRNAs were validated
through qRT-PCR.

Results: Compared against natural pregnancies, 12 DEmiRs and 258 DEGs were
identified in IVF-ET placental tissues. In a validation cohort, it was confirmed that hsa-
miR-204-5p, hsa-miR-1269a, and hsa-miR-941 were downregulation, while hsa-miR-
4286, hsa-miR-31-5p and hsa-miR-125b-5p were upregulation in IVF-ET placentas.
Functional analysis suggested that these differentially expressed genes were significantly
enriched in angiogenesis, pregnancy, PI3K-Akt and Ras signaling pathways. The miRNA-
mRNA regulatory network revealed the contribution of 10 miRNAs and 109 mRNAs while
EGFR was the most highly connected gene among ten hub genes in the PPI network.
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Conclusion: Even in uncomplicated IVF-ET pregnancies, differences exist in the placental
transcriptome relative to natural pregnancies. Many of the differentially expressed genes in
IVF-ET are involved in essential placental functions, and moreover, they provide a ready
resource of molecular markers to assess the association between placental function and
safety in IVF-ET offspring.
Keywords: in vitro fertilization-embryo transfer, placenta, differentially expressed genes, MiRNA-mRNA, next-
generation sequencing
INTRODUCTION

In vitro fertilization-embryo transfer (IVF-ET) is the main
method of assisted reproductive technology (ART), and can
improve the success rates of infertility treatment (1, 2). The
use of this procedure has been steadily increasing worldwide and
for example, in China, the average number of ART treatments
performed now exceeds 700,000 annually (3). The vast majority
of children successfully delivered through ART are healthy (4).
Nonetheless, there are increased risks of several pregnancy-
related complications, including gestational diabetes (5), pre-
eclampsia (6), placenta previa (7), abnormal placental growth,
preterm delivery (8), and low birth weight (9). Some reports have
suggested that the adverse perinatal outcomes occur due to IVF-
ET procedures such as supraphysiological estrogen level during
stimulation, in vitro culture, and microscopic manipulation (10,
11). However, the underlying causes of IVF-ET-associated
complications are largely unknown, although many
conceptually appear related to placental vascular complications
and the resulting effects on fetal development.

MicroRNAs (miRNAs) represent a major class of non-coding
RNAs consisting of single-stranded RNAs of approximately 18-
25 nucleotides in length (12). They function as negative gene
regulators by binding to the 3’ UTR of messenger RNAs
(mRNAs), to either prevent protein translation or to direct the
mRNA towards degradation (13). The placenta expresses many
ubiquitous as well as specific miRNAs and a growing body of
evidence proposes that miRNAs function as important regulators
of placental development (14). Here, various miRNAs have been
shown to control the differentiation, replication, apoptosis,
invasion/migration and angiogenesis of trophoblasts, indicating
the widespread contribution of miRNAs to the placental growth
(15, 16). For example, miR-346 and miR-582-3p down-regulate
the expression of endocrine gland-derived vascular endothelial
growth factor (EG-VEGF) and inhibit trophoblast cell invasion
and migration (17). miR-191 inhibits angiogenesis by activating
the nuclear factor-kB (NF-kB) signaling pathway (18). It was
also found that miR-29b inhibited trophoblast invasion and
angiogenesis by suppressing vascular endothelial growth factor
(VEGF) expression (19). In addition, animal experiments in mice
revealed that miR-450a-3p played a role in inhibiting cell
proliferation, promoting apoptosis and interfering with
embryonic development through regulating the target gene
Bub1 (20). However, the impact of specific microRNAs in IVF-
ET placental tissue, and their potential impact on related gene
regulatory networks has to date been poorly investigated.
n.org 2
This study aimed to understand the differences in placental
genomic expression profiles comparing IVF-ET and natural
pregnancy-derived placentas, and the link between IVF-ET
manipulation and placental structure and function. We used
next-generation sequencing techniques to analyze of miRNA and
mRNA expression profiles in IVF-ET and natural gestational
placental tissue. Based on co-expression analysis and online
prediction. we established a miRNA-mRNA regulatory
network comprising 10 miRNAs and 109 mRNAs together
with a PPI network comprised of ten hub genes. Furthermore,
we verified that miR-204-5p, miR-1269a and miR-941 were
downregulated in IVF-ET placentals thereby proposing these
as key regulators involved in the effects of IVF-ET on placental
development and function. Moreover, our study constitutes a
verified resource for enabling further investigation into the
transcriptomic and mechanistic differences between IVF-ET
and naturally conceived pregnancies with the goal of providing
new targets to assess the safety of IVF-ET in the clinic.
MATERIALS AND METHODS

Tissue Collection and Ethics
Placental tissue samples were collected from women who
underwent caesarean deliveries after IVF-ET assisted (n=3) or
natural conceived (n=3) pregnancies. Inclusion criteria included
full-term singleton delivery after IVF-ET, with age between 20
and 35 years, 37-42 gestational weeks, infant birth weight
between 2500 g and 4000 g, and uncomplicated pregnancies.
Three strictly matched natural pregnancies were selected as
controls with matching parameters: delivery, maternal age,
parity, and gestational duration (Table 1). A validation cohort
of 8 uncomplicated IVF-ET and 8 normal conception patients
were similarly collected (Table 2). We used an equal number of
male and female placentals for both discovery and validation
cohorts and selected tissue from the middle placenta throughout
to minimize sampling bias. All placental tissues were rinsed
extensively with ice cold PBS and stored at -80°C until later RNA
extraction. Tissue collection was approved by the Ethics
Committee of the Third Affiliated Hospital of Zhengzhou
University with written informed consent provided by all
patients prior to sample collection.

RNA Extraction and Sequencing
Total RNA was isolated from placental tissue using the mirVana
RNA Isolation Kit (Cat #. AM1561, Austin TX, US) according to
November 2021 | Volume 12 | Article 774997
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the manufacturer’s instructions. RNA concentration and
integrity were then verified using an Agilent Bioanalyzer 2100
(Agilent technologies Santa Clara, US) before subjecting the
samples to library preparation and sequencing. The
concentration and size of the constructed libraries were
measured using a Qubit® 2.0 Fluorometer (Life Technologies,
USA) and Agilent 2100 Bioanalyzer, respectively. The samples
were prepared according to the HiSeq 2500 User Guide, and the
flow cell with the cluster was loaded on the Illumina HiSeq 2500
(50-bp single-end FASTQ reads). The number of sequencing
reads per sample was at least 10M and the proportion of bases
with mass greater than 20 was greater than 95%, and the quality
control meets the requirements of data analysis.

Differential Expression Analysis
The DESeq2 package of R version 3.5.2 (http://www.r-project.
org) was used to define differentially expressed miRNAs
(DEmiRs) and genes (DEGs) with the Bayesian method used
to correct batch effects. MiRNAs and mRNAs with statistical
significance between the IVF-ET and control groups were
selected according to the threshold criterion of fold change
(FC) >1.5 and P < 0.05. Volcano maps were created in the R
studio using the plot packages to illustrate the differential
expression of DEmiRs and DEGs.

GO Enrichment Analysis for the Targets of
Transcription Factors
DEmiRs were uploaded to FunRich software to screen for
upstream transcription factors, which is primarily used for
functional enrichment and interaction network analysis of
genes and proteins, as well as enrichment targets for
transcription factor pathways (21). For interaction network
analysis between miRNAs, gene/mRNA, and transcription
Frontiers in Endocrinology | www.frontiersin.org 3
factors, gene ontogeny (GO) enrichment analysis was also used
(22, 23).

Construction of the miRNA-mRNA
Regulatory Networks
The miRWalk V2.0, StarBase and TargetScan databases were used
to predict the target mRNAs of the miRNAs identified as DEmiRs.
Subsequently, the predicted DEGs were matched with the
experimentally determined DEGs to develop miRNA-mRNA
regulatory networks with visualization using Cytoscape
software (http://www.cytoscape.org/) (24). All node degrees,
proximity and presence of the regulatory network were
simultaneously computed.

GO and KEGG Enrichment Analyses
For gene ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis of DEGs, we used the
Database for Annotation, Visualization and Integrated
Discovery (DAVID) and used ggplot2 packages in the R studio
to identify significantly altered biological processes (BPs),
cellular components (CCs), molecular functions (MFs) and
pathways associated with DEGs (P < 0.05).

Protein-Protein Interaction (PPI) Network
Analysis and Hub Gene Identification
Differentially expressed gene data was uploaded to the STRING
database (http://www.string-db.org/) (25). Interactions with a
composite score of >0.4 were considered significant. The target
genes in the PPI network act as nodes and the line from two
nodes indicates relevant interactions. Cytoscape software was
used to visualize the PPI network. We screened the top 10 genes
with the highest degree of correlation to the others as hub genes
with the CytoHubba plugin of Cytoscape (26).
TABLE 2 | Clinical characteristics of IVF-ET and controls.

Clinical features IVF-ET (n = 8) Control (n = 8) P value

Maternal age (years) 31.13 ± 2.58 28.63 ± 2.67 0.078
Gestational week at delivery 39.41 ± 0.69 39.43 ± 0.86 0.967
Mode of delivery Cesarean Cesarean
Birth weight(g) 3512.50 ± 410.64 3686.25 ± 302.04 0.351
Infant sex
Female 4 4
Male 4 4
Baby/placenta weight 5.94 ± 0.46 5.69 ± 0.70 0.387
November 2021 | Volume 12 | Article
Data are presented as mean ± SD. t-test. IVF-ET, in vitro fertilization-embryo transfer.
TABLE 1 | Clinical characteristics of IVF-ET and controls for high-throughput sequencing.

Cases Age (years) Gravidity Parity Gestational week at delivery Mode of
delivery

Sex of
the baby

Birth weight(g) Weight of
placenta(g)

Baby/placenta weight

Control 1 27 1 0 39 Cesarean Female 3150 500 6.30
Control 2 28 1 0 40.29 Cesarean Male 3850 630 6.11
Control 3 21 1 0 39.71 Cesarean Male 3500 510 6.86
IVF-ET 1 31 2 0 38.14 Cesarean Male 3000 540 5.56
IVF-ET 2 33 1 0 38.57 Cesarean Female 2800 480 5.83
IVF-ET 3 29 1 0 38.14 Cesarean Male 3100 540 5.74
774997
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Quantitative Real-Time Polymerase Chain
Reaction (qRT-PCR)
One mg total RNA was reverse transcribed into cDNA using the
ReverTra Ace qPCR RT Kit (Toyobo, Japan) according to the
manufacturers’ instructions. Specific primers were used to
synthesize the cDNA of miRNAs. qRT-PCR reactions were
performed with the indicated primers (Table 3) in triplicate
20 mL reactions using the SYBR Green Realtime PCRMaster Mix
(Toyobo, Japan) on a StepOnePlus™ Real-Time PCR System.
Cycling conditions were as follows: 95°C for 60 seconds, 40
cycles of 95°C for 15 seconds, 60°C for 15 seconds, and 72°C for
45 seconds. The results were normalized to U6 and the relative
changes calculated using the 2−DDCt method (27).

Statistical Analysis
Data were presented as means ± standard deviations (SD) for
quantitative variables and the Student’s t-test used to assess
differences between groups. Otherwise, for discrete variables
the Mann-Whitney U-test was used. A value of P < 0.05 was
regarded as statistically significant. SPSS 21.0 and GraphPad
Prism 6.0 were used for analysis.
RESULTS

Identification of Differentially Regulated
Genes in IVF-ET Placentals
The schema of the overall study and analysis approach is
presented in Figure 1. High throughput sequencing analysis
was performed to analyze the expression profiles of miRNAs and
mRNAs in placentals from uncomplicated full-term IVF-ET and
natural conception pregnancies. From these data we identified a
total of 12 differentially expressed miRNAs (DEmiRs; Figure 2A)
including 4 downregulated miRNAs: hsa-miR-1269a, hsa-miR-
204-5p, hsa-miR-224-5p and hsa-miR-941, and 8 upregulated
miRNAs: hsa-miR-1269b, hsa-miR-125b-5p, hsa-miR-193b-3p,
hsa-miR-193b-5p, hsa-miR-31-5p, hsa-miR-371a-5p, hsa-miR-
4286 and hsa-miR-9-5p (Table 4). We also identified 258
differentially expressed mRNAs consisting of 52 downregulated
Frontiers in Endocrinology | www.frontiersin.org 4
and 206 upregulated DEGs (Figure 2B and Supplementary
Table SI).

Verification of the DEmiRs by qRT-PCR in
Placental Tissues
To ensure the veracity of the high throughput sequencing
analysis, it was necessary to validate our findings using
alternative methodology and samples. On the basis of
subsequent bioinformatics (see below), we selected 6 of the 12
DEmiRs (3 downregulated and 3 upregulated, respectively) and
analyzed their expression using qRT-PCR in a validation cohort
of 8 IVF-ET and 8 normal conception placentas. Instructively,
we found that the relative expression levels of hsa-miR-204-5p,
hsa-miR-1269a, and hsa-miR-941 were significantly
downregulated whereas hsa-miR-4286, hsa-miR-31-5p and
hsa-miR-125b-5p were all upregulated, respectively, in IVF-ET
compared to the control placentas (Figures 3A–F). These results
suggest that the dysregulation of these miRNAs commonly
occurs in IVF-ET pregnancies but further verification will be
required to support the general veracity of the global sequencing
data and analysis of the study.

Transcription Factor Enrichment and GO
Enrichment Analysis
Transcription factors often represent the critical final step in
signal transduction pathways. To investigate the enrichment of
transcription factor targets likely associated with the genetic
landscape of the IVF-ET placenta, we filtered out the top 10
transcription factors most closely linked to the DEmiRs. In
deceasing probability order, this analysis identified SP1, EGR1,
SP4, KLF7, ONECUT1, MYF5, TCF3, NFIC, SRF, and HOXB4
(Figure 4A). It indicates a regulatory interaction between these
transcription factors and DEmiRs. Intriguingly, SP1 was
apparently able to regulate majority of the DEmiRs.

In concert with these findings, GO enrichment analysis
indicated that the top 5 biological progress (BP) terms with the
most enriched targets of the DEmiRs involved signal
transduction; regulation of nucleobase, nucleoside, nucleotide
and nucleic acid metabolism, transport, apoptosis, and
regulation of immune response (Figure 4B). GO enrichment
TABLE 3 | Oligonucleotides used in this study.

Primer sets name Reverse transcriptase primer (5′ to 3′) Real-time quantitative PCR primer (5′ to 3′)

U6 AACGCTTCACGAATTTGCGT F:CTCGCTTCGGCAGCACA
R: AACGCTTCACGAATTTGCGT

has-miR-204-5p GTCGTATCCAGTGCAGGGTCCGAGGTAT F: CGCGTTCCCTTTGTCATCCT
TCGCACTGGATACGACAGGCAT R:AGTGCAGGGTCCGAGGTATT

has-miR-1269a GTCGTATCCAGTGCAGGGTCCGAGGTAT F: CGCTGGACTGAGCCGTG
TCGCACTGGATACGACCCAGTA R: AGTGCAGGGTCCGAGGTATT

has-miR-941 GTCGTATCCAGTGCAGGGTCCGAGGTAT F: CACCCGGCTGTGTGCAC
TCGCACTGGATACGACGCACAT R: AGTGCAGGGTCCGAGGTATT

has-miR-4286 GTCGTATCCAGTGCAGGGTCCGAGGTAT F: GCGCGACCCCACTCCT
TCGCACTGGATACGACGGTACC R: AGTGCAGGGTCCGAGGTATT

has-miR-31-5p GTCGTATCCAGTGCAGGGTCCGAGGTAT F: GCGAGGCAAGATGCTGGC
TCGCACTGGATACGACAGCTAT R: AGTGCAGGGTCCGAGGTATT

has-miR-125b-5p GTCGTATCCAGTGCAGGGTCCGAGGTAT F: CGCGTCCCTGAGACCCTAAC
TCGCACTGGATACGACTCACAA R: AGTGCAGGGTCCGAGGTATT
November 2021 | Volume 12 | Article 774997
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terms associated with molecular function (MF) indicated most of
the genes were involved in transcription factor activity,
transporter activity, RNA binding, Receptor signaling complex
scaffold activity, and GTPase activity (Figure 4C). The top 5
enriched cellular component (CC) terms were nucleus,
cytoplasm, Golgi apparatus, lysosome and membrane
raft (Figure 4D).

Construction of miRNA-mRNA Regulatory
Networks
Reliable identification of miRNA targets is still an imprecise
process, but it is widely appreciated that predictions can be
improved using the outputs of multiple algorithms (28).
Frontiers in Endocrinology | www.frontiersin.org 5
Consequently, we employed three databases (miRWalk V2.0,
StarBase and TargetScan) to analyze the potential impact of the
DEmiRs on the placental transcriptome. Screening miRNA
targets based on the overlapping results of the three databases
and the intersection with DEGs. This analysis yielded paired
interactions between 109 DEGs with 10 of the 12 identified
DEmiRs. The network of miRNA-mRNA interactions was
visualized in Cytoscape (Figure 5) and the target genes of the
DEmiRs are listed in Table 5. Notably, among these, the four
downregulated DEmiRs, particularly hsa-miR-204-5p, hsa-miR-
1269a and hsa-miR-941, formed the most extensive interactive
network with multiple gene targets while the upregulated
DEmiRs aligned with a more discrete set of target genes.
FIGURE 1 | Flow diagram of the study design. DEmiRs, differentially expressed miRNAs; DEGs, differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto
Encyclopedia of Genes and Genomes; PPI, protein-protein interaction.
A B

FIGURE 2 | Identification of DEmiRs and DEGs. Volcano plots illustrating (A) DEmiRs and (B) DEGs in placental tissues determined by comparing IVF-ET (n = 3)
with normal conception (n = 3) pregnancies. Differential expression thresholds employed for deriving DEmiRs and DEGs involved fold change (FC) >1.5 and P < 0.05.
Red and blue points represent significantly upregulated or downregulated miRNAs/mRNAs, respectively.
November 2021 | Volume 12 | Article 774997
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Functional Enrichment Analysis
of the DEGs
Independent of the preceding analysis, we utilized ggplot2 and
enrichment analysis to profile GO annotations and KEGG
pathways associated with the differentially expressed genes.
These predictions would allow an improved understanding of
the functional impact of the genes dysregulated in IVF-ET. As
illustrated, the top 10 enriched GO and KEGG terms are
presented in categories of biological processes (BPs), cellular
components (CCs), molecular functions (MFs) and defined
KEGG pathway identifiers (Figure 6).
Frontiers in Endocrinology | www.frontiersin.org 6
Notably, this analysis revealed significant enrichment for BP
entries aligned with angiogenesis, pregnancy, cell adhesion,
positive regulation of transcription from the RNA polymerase
II promoter and positive regulation of angiogenesis (Figure 6A).
Furthermore, the protein binding, poly (A) RNA binding and
transcriptional activator activity accounted for the majority of
MF terms (Figure 6B) while the most enriched CCs were
extracellular exosome, membrane, and extracellular region
(Figure 6C). The top 10 most highly enriched KEGG
classifications included the PI3K-Akt and Ras signaling
pathways along with focal adhesion (Figure 6D).
TABLE 4 | The 12 differentially expressed miRNAs (DEmiRs) in IVF-ET.

Symbol P Value logFC Up/Down

hsa-miR-941 <0.001 -0.758138251 Down
hsa-miR-9-5p 0.047 0.659018502 Up
hsa-miR-4286 <0.001 0.938226403 Up
hsa-miR-371a-5p 0.003 0.633507315 Up
hsa-miR-31-5p <0.001 0.962107998 Up
hsa-miR-224-5p <0.001 -0.664686886 Down
hsa-miR-204-5p <0.001 -1.207550612 Down
hsa-miR-193b-5p 0.020 0.954586891 Up
hsa-miR-193b-3p <0.001 0.878208945 Up
hsa-miR-1269b <0.001 3.787867629 Up
hsa-miR-1269a <0.001 -1.314083333 Down
hsa-miR-125b-5p <0.001 0.639432322 Up
November 2021 | Volume 12 | Arti
IVF-ET, in vitro fertilization-embryo transfer; FC, fold change.
A B

D E F

C

FIGURE 3 | Validation of differential expression of randomly selected DEmiRs in IVF-ET versus control placental tissues. The relative expression levels of (A) hsa-
miR-204-5p, (B) hsa-miR-1269a, (C) hsa-miR-941, (D) hsa-miR-4286, (E) hsa-miR-31-5p and (F) hsa-miR-125b-5p were measured in an independent cohort of
placental tissues from uncomplicated IVF-ET (n = 8) and natural conceived pregnancies (n = 8). Box and whisker plot with relative expression plotted in log scale
showing the range (whiskers), first and third quartiles (boxes) and median values. *P < 0.05, **P < 0.01.
cle 774997
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Construction of Protein-Protein Interaction
(PPI) Networks
Using the DEGs we next built a PPI network using the online
STRING database and tools in Cytoscape. The network was
mapped to a limit of 148 DEGs (Figure 7). Node size is
proportional to the degree of the node itself. Edge width is
proportional to the combined degree between genes. We assessed
their degree of connectivity and identified 10 hub genes, and the
genes are listed in Table 6.

Biological Analysis of the Hub Genes
Highly-connected genes with a network are considered master
regulatory elements otherwise known as hub genes (29). We used
the cytoHubba plugin of Cytoscape to reveal the ten most
strongly related interactions amongst the DEGs in IVF-ET.
This approach generated 10 nodes with 37 edges with the most
likely hub genes consisting of EGFR, FOS, SERPINE1, LEP, HGF,
EGR1, SPP1, HNRNPA2B1, IGF2 and ENG (Figure 8A). In
addition, KEGG analysis of the top 10 enrichment pathways
were identified (Figures 8B, C).
DISCUSSION

As one of the main tools of ART, IVF-ET can improve the
success rate of infertility treatments for many affected couples.
A B

DC

FIGURE 4 | Transcription Factor Enrichment and GO Enrichment Analysis. (A) Transcription factors (TF) of the differentially expressed miRNAs (DEmiRs) from
FunRich. Blue bars, orange bars, and red bars represent percentage of predicted genes, reference of P=0.05, and p value, respectively. (B) mRNAs involved in
biological process terms for DEmiRs. (C) mRNAs involved in molecular function terms for DEmiRs. (D) mRNAs involved in cellular component terms for DEmiRs.
Frontiers in Endocrinology | www.frontiersin.org 7
FIGURE 5 | Interaction networks of miRNA and target DEGs in IVF-ET
placenta tissues. microRNAs are represented by triangles and mRNAs
are represented by circles. Red indicates genes with up-regulated
expression and blue indicates genes with down-regulated expression.
miRNA, microRNA; mRNA, messenger RNA; IVF-ET, in vitro fertilization-
embryo transfer.
November 2021 | Volume 12 | Article 774997
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Nonetheless, despite its use for several decades and widespread
acceptance, there are still uncertainties associated with IVF-ET in
terms of perinatal risks and offspring health. On this basis we
hypothesized that complications associated with IVF-ET may be
associated with the altered expression of genes that regulate
placental development and function. Consequently, we
performed genome-wide miRNA and mRNA analyses
comparing placentas from IVF-ET assisted and naturally
conceived pregnancies. The choice of samples from
uncomplicated births was deliberate, as large gene differences
from pathological births would be expected while more
Frontiers in Endocrinology | www.frontiersin.org 8
fundamental changes could be revealed by the experimental
design used.

Foremost we considered the epigenetic regulatory
mechanisms involving miRNAs as these are recognized
effectors of placental-mediated complications during pregnancy
(15). Indeed, there has been strong interest in miRNAs as
predictive biomarkers for the detection of pathologies in
pregnancy with the villous trophoblast being a major source of
miRNAs found in maternal circulation (30). Such changes in
circulating miRNAs would naturally reflect the changes
occurring within the placenta. Our analysis produced a
TABLE 5 | The miRNA-mRNA network.

Symbol Up/
Down

Count Target mRNA

hsa-miR-941 Down 28 RBM25, MPHOSPH8, SOCS1, SEC62, HP1BP3, JUP, NFE2L1, THY1, FLT1, GOLGA4, TRIQK, C6orf89, NFYC, PPP1R13L,
ARHGAP26, IGF2, BCL6, LIFR, ANGPT2, FOSB, SCIN, PHACTR2, RRBP1, ARL5A, MME, ERBB3, UBE2V1, ENG

hsa-miR-4286 Up 2 RBP4, HMSD
hsa-miR-31-5p Up 5 GCSH, UCK2, HMSD, MXRA7, RPS4Y1
hsa-miR-224-5p Down 5 SYNCRIP, ARHGAP26, ARL5A, SERPINE1, SLC7A8
hsa-miR-204-5p Down 30 PAPPA2, WAC, SUB1, PROCR, SLCO2A1, HAPLN1, HP1BP3, LYNX1, NFE2L1, THY1, ACP2, CBR1, COBLL1, SLC7A8,

CREB3L2, ARID5B, SRSF11, TRIQK, SYNCRIP, ARHGAP26, BCL6, XPO7, SLC38A1, ATP6V1C2, ZFAT, NDEL1, SH3BP5,
RAP1B, SERPINE1, CYP19A1

hsa-miR-193b-5p Up 5 UCK2, DNASE1L3, HMSD, MXRA7, PLA2G2A
hsa-miR-193b-3p Up 2 HLA-G, DDX3Y
hsa-miR-1269b Up 2 RBP4, MXRA7
hsa-miR-1269a Down 28 RBM25, SYF2, SUB1, NCL, FOS, CALD1, THY1, SEC62, LAMC1, AFF1, LUC7L3, NUCB2, EIF3A, C6orf89, NSRP1, CREB3L2,

TRIQK, FLT1, SYNCRIP, ARHGAP26, NDRG1, LIFR, PHACTR2, ARL5A, ERV3-1, DERL3, MME, GBA
hsa-miR-125b-5p Up 2 GNG11, MXRA7
A B

DC

FIGURE 6 | Top 10 significant enrichment GO and KEGG terms of DEGs. (A) BP, biological process. (B) MF, molecular function. (C) CC, cellular component.
(D) KEGG, Kyoto Encyclopedia of Genes and Genomes.
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shortlist of 12 miRNAs that were differentially expressed in IVF-
ET compared to placental tissue from natural pregnancies.

Three of the 12 differentially expressed miRNAs were
confirmed in an independent cohort to be specifically
downregulated in IVF-ET placentas, i.e., hsa-miR-204-5p, hsa-
miR-1269a and hsa-miR-941. Notably, all three microRNAs have
been previously implicated in placental dysfunction and
potential fetal growth complications although the underlying
mechanisms generally remain unclear. The downregulation of
miR-204-5p is associated with fetal growth abnormalities and is
enriched in related biological pathways and has also been found
to be regulated in the presence of adverse pregnancy-related
outcomes (31). For instance, miR-204-5p can inhibit
angiogenesis by regulating pro-angiogenic genes such as
ANGPT1 and members of the VEGF family (32). miR-1269a
Frontiers in Endocrinology | www.frontiersin.org 9
was found to be a risk factor for ectopic pregnancy, and currently
known risk factors include assisted reproductive technologies
such as in vitro artificial insemination and hormonal stimulation
(33). It has also been suggested that miR-941 is expressed in
trophoblast cells and involved in insulin-related intracellular
signaling pathways such as Wnt signaling, phosphoinositide-3-
kinase, TGF-b signaling, and PPAR-gamma (34). In addition,
miR-941 has been shown to target Keap1 to activate the Nrf2
signaling pathway, which in turn protects human endometrial
cells from oxygen and glucose deprivation-re-oxygenation
induced oxidative stress and programmed necrosis (35). These
correlates provide a compelling rationale for the functional
significance of these miRNAs in IVF-ET fetal growth.

Given the central importance of miRNA expression in the
execution of the transcriptional programs, we predicted
transcription factors that might regulate these DEmiRs. The
top ranked transcription factor was specificity protein 1 (SP1),
a zinc finger transcription factor that binds to a variety of GC-
rich motifs and regulates the expression and function of miRNAs
as well as the expression of genes associated with embryonic
development and differentiation (36, 37). SP1 has been shown to
regulate the placental glucocorticoid barrier by repressing the
expression of 11b-hydroxysteroid dehydrogenase type 2, leading
to fetal growth restriction (FGR) (38). One study identified the
interaction of miR-331-3p with SP1 and the interaction of miR-
331-3p and miR-1908-5p with glycosyltransferases as a novel
mechanism for ABO blood group regulation (39). The second
ranked hit in the TF analysis was EGR1 which has been
previously implicated in follicular development, ovulation,
corpus luteum formation and placental angiogenesis (40), and
plays a key role in placental implantation (41). Notably, EGR1
was also identified in the construction of the PPI network.

Here we screened key genes altered in IVF-ET placental tissue
based on mRNA next-generation sequencing data and online
tools to identify ten hub genes. Among these, EGFR signals
through Src- and ERK-mediated pathways activated by VEGFR2.
Placental trophoblast cells are enriched in EGFR (42) and
activation of EGFR regulates the proliferation, migration and
invasive capacity of extravillous trophoblast cells (43). FOS is
another molecule involved in angiogenesis. FOS belongs to the
transcription factor-activated protein 1 (AP-1) superfamily,
which is responsible for a variety of cellular processes,
including proliferation, differentiation, apoptosis, hypoxia,
angiogenesis and steroidogenesis (44, 45), as demonstrated in
trophoblast cells (46). LEP, an important metabolic hormone,
is highly expressed in the placenta and regulates placental,
fetal growth and angiogenesis (47). SPP1, also called
osteopontin (OPN), is located in the cytoplasm of placental
syncytiotrophoblast and capillary endothelial cells and is
considered a marker of placental bed remodeling. Placental
development occurs in a hypoxic environment and can
stimulate angiogenesis through upregulation of the vascular
endothelial growth factor inhibitor of fibrinolytic plasminogen
activator 1 (SERPINE1) (48).

Considering the important role of these key genes in placental
development and angiogenesis, it was instructive to consider how
TABLE 6 | The top 10 genes in the network are ranked in order of degree.

Rank Symbol Score

1 EGFR 40
2 FOS 27
3 SERPINE1 21
3 LEP 21
5 HGF 19
5 EGR1 19
7 SPP1 18
8 HNRNPA2B1 17
9 IGF2 16
9 ENG 16
FIGURE 7 | The PPI Network of DEGs. The upregulated genes were
exhibited by the red color, while the blue color exhibited the downregulated
genes. Node size is proportional to the degree of the node itself. Edge width
is proportional to the combined degree between genes.
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these gene networks were impacted by altered miRNA
expression. We used the intersection of miRNA and mRNA
sequencing data to construct a microRNA-mRNA network. This
analysis revealed more complexity in predicted interactions for
the downregulated DeMiRs compared to their upregulated
counterparts. Indeed, the downregulated DeMiRs display a far
more extensive repertoire of target genes, particularly, hsa-miR-
204-5p, hsa-miR-1269a and hsa-miR-941, for which, as
discussed above, have tangible functional links to different
aspects of placental regulation. Nonetheless, more work is
needed to determine which gene targets are most functionally
important but further understanding of the underlying
mechanisms may help to reduce pregnancy complications and
improve offspring safety.

Our current study has its limitations. The discovery cohort
was small and we only validated selected miRNAs in the
placentas of 8 IVF-ET assisted conception patients and 8
normal controls, which may reduce the reliability of our
findings. Moreover, while we were diligent to sex match the
placentals and minimize sampling bias by location, placental
tissue is known to be divided into maternal, intermediate and
fetal zones with different gene expression profiles (49) and inter-
placental differences are inevitable. Moreover, the molecular
interactions and proposed functional relationships proposed by
Frontiers in Endocrinology | www.frontiersin.org 10
the bioinformatic analyses need formal verification in both
experimental and clinical settings. Thus, more work is needed
to explore the specific functions of differentially expressed genes
in IVF-ET placentas and their mechanisms.
CONCLUSIONS

In summary, we constructed a miRNA-mRNA regulatory
network to regulate the expression of genes essential for IVF-
ET placental development and function using bioinformatic
analysis. Our data reveal both previously identified miRNAs
and mRNAs associated with placental dysfunction and
pregnancy complications along with novel candidates. As such
these data represent a ready resource for subsequent
investigations into the effects of IVF-ET on placental
development and function and may provide a basis for future
prevention and treatment of adverse perinatal outcomes.
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