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For supporting clinical decision-making in audiology, Common Audiological

Functional Parameters (CAFPAs) were suggested as an interpretable

intermediate representation of audiological information taken from various

diagnostic sources within a clinical decision-support system (CDSS). Ten

di�erent CAFPAs were proposed to represent specific functional aspects

of the human auditory system, namely hearing threshold, supra-threshold

deficits, binaural hearing, neural processing, cognitive abilities, and a

socio-economic component. CAFPAs were established as a viable basis for

deriving audiological findings and treatment recommendations, and it has

been demonstrated that model-predicted CAFPAs, with machine learning

models trained on expert-labeled patient cases, are su�ciently accurate

to be included in a CDSS, but it requires further validation by experts. The

present study aimed to validate model-predicted CAFPAs based on previously

unlabeled cases from the same data set. Here, we ask to which extent domain

experts agree with the model-predicted CAFPAs and whether potential

disagreement can be understood in terms of patient characteristics. To these

aims, an expert survey was designed and applied to two highly-experienced

audiology specialists. They were asked to evaluate model-predicted CAFPAs

and estimate audiological findings of the given audiological information about

the patients that they were presented with simultaneously. The results revealed

strong relative agreement between the two experts and importantly between

experts and the prediction for all CAFPAs, except for the neural processing

and binaural hearing-related ones. It turned out, however, that experts tend

to score CAFPAs in a larger value range, but, on average, across patients

with smaller scores as compared with the machine learning models. For the

hearing threshold-associated CAFPA in frequencies smaller than 0.75 kHz and

the cognitive CAFPA, not only the relative agreement but also the absolute

agreement between machine and experts was very high. For those CAFPAs
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with an average di�erence between the model- and expert-estimated values,

patient characteristics were predictive of the disagreement. The findings are

discussed in terms of how they can help toward further improvement of

model-predicted CAFPAs to be incorporated in a CDSS for audiology.

KEYWORDS

precision audiology, CDSS, expert validation, audiological diagnostics, expert

knowledge, machine learning, CAFPAs

Introduction

Audiological diagnostics mostly relies on test batteries

of audiological measures conducted on a patient in need.

Experts in audiology characterize patients’ hearing impairment

by combining the knowledge derived from those audiological

measures and additional information from anamnesis as

well as their subjective impression of the respective patient.

However, experts’ experience differs depending on the number

of previously treated patients and the range of seen cases (1).

On the other hand, large amounts of diverse patient data are

available in clinical databases which originate from different

audiological tests. Thus, theoretically, the knowledge saved in

different databases could be made available to any audiologist

with different levels of expertise. This is one long-term goal of

the current research.

Toward precision audiology, the clinical decision-support

system (CDSS) provides the potential to improve the objectivity

of audiological diagnostics by supporting experts with

information about probabilities for different audiological

findings or treatment recommendations, such as the usage of

hearing devices (2). Thereby, less experienced professionals

could be supported by a CDSS with an expanded basis of

diagnostic knowledge. However, more experienced experts

could benefit from the statistical knowledge fed into a CDSS,

which exploits a large amount of data and derives knowledge

about base rates and association patterns between features that

are relevant for audiological recommendations (2, 3).

Currently, CDSSs are not widely adopted in audiology. This

is due to a couple of challenges to be solved, such as the

integration of different data sources for the same audiological

finding (4), the integration of CDSS into the clinical decision-

making process of experts (5), and the accomplishment of

interpretability of algorithms implemented into a CDSS by

clinicians (3). To overcome the latter challenge, it has been

recommended to develop CDSS in collaboration with domain

experts in the respective medical field (6–8). Expert knowledge

can be incorporated into the developmental process in different

regards: First, when planning a CDSS, concepts and definitions

need to be discussed with domain experts (2). Second, highly-

experienced experts can be asked to provide insights into

their decision-making process or can be asked to gain insights

into the decision-making process of a trained algorithm to be

implemented in a CDSS (3). Furthermore, domain experts are

needed to provide labels, i.e., to estimate audiological findings, if

those are not yet available in a certain database (unlabeled data)

[e.g., (9, 10)]. Finally, whenever algorithms were trained on an

existing database (3, 11), domain experts can be asked to validate

machine-predicted labels (10, 12, 13), and the concordance

between experts’ and algorithmic decisions can be statistically

evaluated (9).

In audiology, some CDSS approaches exist for different

decision types of the field. For example, a CDSS has been

designed for tinnitus diagnosis and therapy (14) and another

one for diagnosing idiopathic sudden hearing loss (15), and for

the selection of a suitable hearing aid device type (16). However,

these approaches do not rely on test batteries containing a

combination of audiological measurements to comprehensively

characterize patients. For such a purpose, Sanchez-Lopez et al.

(17, 18) performed a classification of hearing-impaired patients

based on published research data. Their auditory profiles classify

patients along the dimensions of audibility- and non-audibility-

related distortions. Importantly, their approach combines data-

driven knowledge with audiological model assumptions (17).

Aiming to further ameliorate clinical applicability, Buhl et al.

(19–22) and Saak et al. (23) rendered a series of development

steps toward a CDSS for audiology, which strongly relies on

expert knowledge and is targeted toward future interpretability

and integration across different data sources. The CDSS should

operate on diverse clinical databases, and it aims at covering

the complete audiological decision-making process, including

the classification of audiological findings for given patients,

as well as suggesting appropriate treatment recommendations

(summarized as diagnostic cases). In the proposed CDSS,

Common Audiological Functional Parameters (CAFPAs; 19)

were employed as an interpretable intermediate layer between

audiological tests and diagnostic cases (cf. Figure 1B). CAFPAs

were thus introduced as abstract parameters that aim to cover all

relevant functional aspects of the human auditory system, while

not depending on the exact choice of audiological measures

applied to a patient (19). Figure 1A provides an overview of

the defined CAFPAs which represent an abstract and common

data format based on which different audiological test batteries

can be combined and compared, given that a link from
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a respective measurement to CAFPAs has been established.

Buhl et al. (19) introduced the choice of 10 CAFPAs and

established the first link to audiological measures and diagnostic

cases by means of an expert survey in the inverse direction

of the audiological diagnostic process. Thus, 11 audiological

experts estimated CAFPAs and distributions of audiological

measurement outcomes for given diagnostic cases. This study

provided a proof of concept and demonstrated the feasibility of

the CAFPA approach.

Aiming to establish a link to individual patients which can

be used as training data for machine learning approaches, by

means of a second expert survey conducted with 12 experts,

Buhl et al. (20) collected CAFPA labels and diagnostic cases for

the given measurement outcomes of an existing audiological

database. The respective database of individuals with mild-to-

moderate hearing impairment contained patients’ results on

the audiogram, one speech test, and loudness scaling. The

audiological measures were visually summarized on result sheets

for every patient. The patient data was sorted into categories

corresponding to expert-estimated diagnostic cases (labels), and

probability density functions were derived for each category

and each measurement parameter as well as CAFPA. Thereby,

plausible distributions that can be used as training data for

classifying diagnostic cases were obtained.

Furthermore, Buhl et al. (21) investigated if CAFPAs

provide similar information as included in the audiological

measurements and, consequently, if the classification

in a CDSS can be performed based on the CAFPAs as

intermediate representation instead of directly based on the

measurements. For this purpose, classification was performed

based on measurements and CAFPAs, employing the training

distributions from Buhl et al. (20), including cross-validation.

These analyses revealed that, in most cases, approximately

the same classification performance in terms of sensitivity

and specificity was achieved by CAFPAs as with direct

measurements. This means that they contain all the relevant

information that is important for classification.

In the above-summarized studies, the relationships between

audiological measurements and CAFPAs were established based

on expert knowledge only. Thus, the link was not quantified by

prediction models and therefore the association pattern could

not be used as envisaged in the use case of a CDSS, where

CAFPAs for individual, new patients need to be automatically

predicted. Aiming to establish an automatic prediction of

CAFPAs, Saak et al. (23) statistically derived CAFPAs based

on the CAFPA expert labels (collected for 240 out of 595

patients included in the database) and the corresponding

outcomes of audiological measures from Buhl et al. (20).

This was done by means of regularized regression models

(with lasso and elastic net penalties) and random forests. The

trained prediction models were shown to have an adequate

to good performance, with coefficients of determination (R²)

between 0.6 and 0.7 for the CAFPAs related to the hearing

threshold. However, the neural CAFPA CN showed insufficient

predictive performance (0.17). As compared with the expert

labels, the statistical models tended to predict fewer extreme

values for CAFPAs (23). Saak et al. (23) also analyzed the

importance of different audiological measures (features) for

the prediction and demonstrated that the models indicated

audiologically plausible relationships between the measurement

outcomes and the CAFPAs. Finally, Saak et al. (23) applied

the trained models to predict CAFPAs for the unlabeled part

of the database and provided the first consistency check of

the model-derived CAFPAs by means of an unsupervised

learning approach. More specifically, cluster analysis identified

five plausible groups of individuals which were in line with

the audiological findings. However, no comparison with “true”

labels for audiological findings was possible as expert-estimated

diagnostic cases (assumed as ground truth) were not available

for the unlabeled patients.

Aiming for further validation of statistically derived CAFPA

values, to connect all components, and to finally build a CDSS

operable for individual patients (based on labeled data), Buhl

(22) applied the classification approach from Buhl et al. (21) to

technically evaluate the predictions in the use case of a CDSS

(Figure 1B, lower left part). The classification was performed

on expert-estimated CAFPAs and model-predicted CAFPAs.

It has then been investigated which CAFPAs were relevant

for high classification performance in different diagnostic

decisions. Furthermore, the interpretability of the system was

assessed. It was shown that predicted CAFPAs lead to a

similar classification of patients into the different diagnostic

cases [prediction accuracy of 0.64–0.78 (depending on the

investigated audiological parameter) for optimal weighting of

CAFPAs]. The predicted CAFPAs can in general already be

used in the classification, but some misclassifications occur that

can both be related to the fact that less extreme CAFPAs are

predicted by the regression models (23), and to the properties

of the data set. However, for a definitive validation of the

statistically derived CAFPAs, especially for unlabeled patients,

their evaluation by independent experts remains indispensable.

For the purpose of investigating if the current CAFPA

prediction can plausibly be applied to unlabeled patients (and

consequently to new individual patients in the use case of a

CDSS) and to further investigate the properties of the prediction

models, the present study aims at an expert validation of the

statistically derived CAFPAs [blue and green (dashed) arrows

in Figure 1B, right part]. Two highly-experienced audiological

experts were asked to assess model-predicted CAFPAs given

the measurement outcomes of individual patients and to

update the values if they considered a given model-derived

CAFPA to be inappropriate. The deviations between model-

predicted and expert-validated CAFPAs are statistically analyzed

to investigate how disagreements between the model and

experts might depend on audiological measurements and

to understand how the CAFPA prediction could further be
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FIGURE 1

(A) Definition of Common Audiological Functional Parameters (CAFPAs). From left to right, the functional aspects CA1-CA4 and CU1-CU2 are

frequency-dependent, and from top to bottom, the functional aspects range from peripheral to central. The CAFPAs are defined on a

continuum ranging on the interval [0 1], with 0 representing “normal” and 1 representing “maximally impaired”. Panel (A) of the figure was taken

from Buhl (22). (B) Schematic representation of the clinical decision-support system (CDSS) by Buhl (22) (left part, based on labeled data) and

relationships to the current study (right, based on unlabeled data). Labeled and unlabeled measurement data originate from the same database

(light brown box). Light green arrows depict expert knowledge and blue arrows depict statistical predictions of CAFPAs. Numbered arrows

represent contributions of previous studies: collection of expert knowledge in the opposite direction of audiological diagnostics (19); collection

of expert knowledge based on individual patients from the currently used database (20); comparison of classification based on audiological

measures vs. expert-estimated CAFPAs (21); comparison of classification based on expert-estimated CAFPAs vs. model-predicted CAFPAs. The

prediction models were developed by Saak et al. (23) based on the expert-estimated CAFPAs from Buhl et al. (20). The prediction models were

derived based on labeled patients (left) and applied to unlabeled patients (right). The experts’ task in the current study was to validate the

model-predicted CAFPAs (dashed light green arrow) and to estimate audiological findings for unlabeled patients.

improved. In addition, experts were asked to also estimate

audiological findings based on the given measurement data (for

the purpose of collecting corresponding labels for diagnostic

cases, cf. Figure 1B, lower right part) and to fill out a short

questionnaire asking about how they approached the CAFPA

evaluation task.

Specifically, the study aimed to provide an answer to the

following research questions (RQs):

1. What is the magnitude of relative and absolute agreement of

experts with model-predicted CAFPAs? Whereas the relative

agreement indicates whether experts and statistical models

provide CAFPAs leading to equivalent rank orders of the

evaluated patients, the absolute agreement indicates average

deviations from the opinion of experts and models across

all patients. Both are relevant criteria to understand the

overlap between automatic and expertise-based audiological

decision-making based on CAFPAs.

2. If a disagreement between model-predicted and expert-

validated CAFPAs exists, does it depend on certain

characteristics of the patients’ test data?

3. Are the estimated audiological findings consistent with expert

labels from previous studies collected from patients in the

same database?

4. Is the applied expert validation approach a reliable check of

the model-predicted CAFPAs?

Materials and methods

Data set and audiological experts

For the present study, patients’ data displayed to the experts

along with model-predicted CAFPAs [as estimated by Saak

et al. (23)] were provided by the Hörzentrum Oldenburg

gGmbH. The dataset contained N = 595 cases for which

data were available on medical history, speech recognition in

noise performance [Goettingen sentence test, GOESA (24)], two

audiological measurements [audiogram and adaptive categorical

loudness scaling (25)], and performance on two cognitive

tests [German vocabulary test, WST (26); and DemTect (27)].

Patients varied with respect to their degree of hearing loss. A

detailed description of the database can be found in Gieseler

et al. (28). For n = 240 patients, expert labels for CAFPAs and

audiological findings were collected by Buhl et al. (20).

The model-predicted CAFPAs for unlabeled patients were

taken from Saak et al. (23), where three statistical learning

models (lasso regression, elastic net, and random forests) were
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trained based on 80% of the labeled patients of Buhl et al. (20)

and evaluated based on the remaining 20%. The prediction for

the 355 existing unlabeled patients was performed using these

trained models. Thus, for each statistical learning algorithm, the

predictions were obtained by averaging the predicted CAFPAs

across 20 models derived from 20 different missing imputed

data sets. The code running the predictionmodels was published

along with Saak et al. (23), and it has been applied without

any changes. All models performed well, but they were slightly

different in their performance accuracy. To account for variation

in model performance for the CAFPAs to be evaluated by the

experts enrolled in the present study, 50% of the evaluated

cases were displayed with estimated CAFPAs based on the best

performing model for the respective CAFPA. For the second

half of the cases, CAFPAs were taken from the respective worst-

performing models.

Two highly-experienced experts (authors AR and UE)

evaluated the model-predicted CAFPAs. Both have substantial

scientific and clinical experience of more than 20 years (with

more than 7,500 seen patients), including all degrees of hearing

loss and treatment options. The experts are familiar with

the measurements presented in the expert validation survey

as well as with measurements performed in clinical practice

and their combined interpretation with additional information

about patients.

Due to their elaborated experience, two experts were

estimated to be sufficient for the purpose of this study. In

addition, the experts involved here did not participate in the

previous surveys (19, 20) and thereby their expert knowledge

was not yet depicted in the current prediction models. This

allows for an independent view on the predicted CAFPAs.

Moreover, the statistical analysis of differences between the

model-predicted and expert-validated CAFPAs (cf. Section

Statistical analyses) is better interpretable if the comparison

between statistical and expertise-based prediction is performed

by individual experts.

Expert survey design

The original survey design from Buhl et al. (20) was adopted

and implemented as an electronic survey on PsychoPy 3 Builder

(29). Same as in Buhl et al. (20), the information sheet of a

given patient was presented to the expert on the left side of

FIGURE 2

Patient data and CAFPA evaluation sheet as implemented in the electronic version of the expert survey. Patient cases were displayed one at a

time. The survey sheet is shown in German as the survey was conducted in Germany. For the main terms, a translation is given in the following.

Upper row: Patient ID, gender, and age. Measurements: Audiogram (right and left), LL: air conduction, KL: bone conduction, and hearing loss

plotted over frequency. Goettingen sentence test (GOESA) in noise, intelligibility plotted over SRT. Loudness scaling (Adaptive CAtegorical

LOudness Scaling (ACALOS); right and left), loudness plotted over level, and black line: normal-hearing reference. Native language. Tinnitus

according to the home questionnaire (right and left). Hearing problems in quiet and in noise (scale from none to very much). Verbal intelligence

test: z-score (negative scores: below average, positive scores: above average). Socio-economic status: lower class, middle class, and upper

class. DemTect: suspicion of dementia, mild cognitive impairment, and age-specific normal cognitive abilities. CAFPAs: the meaning of the

di�erent parameters is given in Figure 1A.
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the screen (see Figure 2), one patient at a time. On the right

side of the screen, statistically predicted CAFPAs for the given

patient were presented on the range highlighted by the traffic-

light color. A visual analog scale of the same range was displayed

below. Experts were requested to use this scale and indicate their

estimate for all 10 CAFPAs using the respective slider. They were

instructed that their slider setting could be perfectly overlapping

with the bar indicating the model estimate, or it could deviate

from it. The experts were clearly informed about the meaning of

the displayed CAFPAs. They thus knew that these were estimates

originating from trained statistical algorithms by Saak et al. (23).

After placing the slider for all CAFPAs, the experts were able

to proceed to the next page by pressing the button displayed

at the lower right corner of the screen. On the next page, the

same patient’s data were displayed again, but on the right side

of the screen, audiological findings were now listed, asking

the experts to select those that they considered appropriate

(multiple answers were allowed). Audiological findings were as

follows: 1. normal hearing; 2. cochlear hearing loss (with the

options high-frequency, middle-frequency, low-frequency, or

broadband hearing loss); 3. conductive hearing loss; 4. central

hearing loss. After indicating the appropriate audiological

finding(s), experts could proceed with evaluating the next

patient. There were separate blocks of 15 patients each, such

that experts could interrupt their evaluation for shorter or longer

breaks. It was possible to restart the survey on another day and

continue with the block of patients who were not yet evaluated

before. Experts were not informed about the repeated patients.

These were just displayed randomly to them in between new

patient cases. Expert 1 evaluated CAFPAs predicted for 150 cases

which were randomly selected out of the 355 existing unlabeled

patient cases. The cases were chosen to equally correspond to the

five clusters of Saak et al. (23) to represent different hearing loss

degrees as uniformly as possible. Half of them were predicted

with the best and worst performing models, respectively. For

evaluating the within-expert agreement, 15 of these cases were

presented two times to Expert 1. Expert 2 evaluated 15 patient

cases repeatedly, 12 out of those were also evaluated by Expert 1.

Expert 2 only received patient cases associated with the CAFPAs

predicted by the models with the best performance accuracy.

After each session of 15 cases, a form was displayed, and

experts were asked to indicate their confidence in deciding on

the CAFPAs’ values and the suggested audiological findings.

Furthermore, at the end of the survey, they were requested

to reveal their expert validation approach and to indicate

which measurement information they used while updating

each CAFPA. More specifically, we asked whether experts

have evaluated the displayed measurements or the statistically

estimated CAFPAs first and whether they considered the

predicted CAFPAs at all. Furthermore, for each measurement,

a list of all CAFPAs was displayed to the experts one by one,

and they were asked to mark whether a certain CAFPA was

relevant for a given measurement. If none of the CAFPAs was

considered to be related to a specific measurement, experts were

asked to choose the reason from the options, “The measurement

is not known to me,” “The measurement is not important for

the characterization of patients,” or “Not possible to decode or

represent in CAFPAs.” In addition, the expert’s approach to the

expert validation task was assessed by amultiple-choice question

where different potential approaches or components of those

were suggested (Supplementary Tables A1, A2 for details).

Statistical analyses

All analyses were conducted with the R Software for

Statistical Computing (30). To estimate the stability of the

CAFPA ratings within and relative agreement across experts,

as well as the relative agreement between the model-predicted

and expert-validated CAFPA, intraclass correlation coefficients

(ICCs) were computed along with their 95% confidence intervals

(CIs). The ICC is a widely used tool for measuring inter-

rater agreement. It indicates a correlation within the same class

of data (here repeated measurements of CAFPAs by different

sources: Statistical model, Expert 1, and Expert 2). Whereas

the correlation coefficient refers to different variables, the ICC

is a correlation of the same variable measured in different

conditions. The psych package (31) has been used for this

purpose by applying a two-way mixed-effects model [ICC3k

(32)]. The relative agreement between experts, as well as between

statistical models and experts, indicates whether the raters

were ranking the patient cases in terms of CAFPAs in an

approximately equivalent order. If the patients’ rank orders were

approximately overlapping between raters, the ICC would take

on a value close to 1. Within-expert stability and cross-expert

agreement were taken as necessary preconditions (reliability) for

estimating the relative overlap between experts’ ratings vs. those

of the statistical models.

Not only rank order agreement but also absolute agreement

was relevant to understand the overlap betweenmodel-predicted

and expert-validated CAFPAs. To estimate absolute agreement,

a series of linear mixed effect regression (LMER) models

were fitted by means of the package lme4 (33), separately for

each CAFPA as an outcome variable. The condition model-

predicted vs. expert-validated was dummy coded (0= statistical

model). Random intercepts were included when regressing a

CAFPA onto the within-patient condition factor to estimate

the absolute difference between CAFPA ratings of Expert 1 vs.

the statistical models. Given the dummy coded within-patient

factor, a negative β-weight (fixed effect) will indicate higher

CAFPA values provided by the statistical models on average

across patients as compared with the expert. In analogy, a

positive β-weight indicates the expert to rate a certain CAFPA

higher than the model. These analyses were only based on data

from Expert 1, because Expert 2 evaluated only a few patients,
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TABLE 1 Agreement between experts and stability of experts’ ratings.

E1–E2 (agreement; N = 15;

rated first time by both

experts)

E1–E1 (stability; N = 15;

rated 2 times)

E2–E2 (stability; N = 15;

rated 12 times)

CAFPAs ICC [CI] p-Value ICC [CI] p-Value ICC [CI] p-Value

CA1 0.90 [0.72; 0.97] 0.00 0.49 [−0.53; 0.83] 0.11 0.99 [0.99; 1.00] 0.00

CA2 0.96 [0.87; 0.98] 0.00 0.97 [0.92; 0.99] 0.00 0.99 [0.98; 1.00] 0.00

CA3 0.95 [0.86; 0.98] 0.00 0.99 [0.97; 1.00] 0.00 0.99 [0.98; 1.00] 0.00

CA4 0.92 [0.75; 0.97] 0.00 0.84 [0.53; 0.95] 0.00 0.98 [0.96; 0.99] 0.00

CU1 0.52 [−0.43; 0.84] 0.09 0.89 [0.68; 0.96] 0.00 0.96 [0.92; 0.98] 0.00

CU2 0.94 [0.81; 0.98] 0.00 0.90 [0.71; 0.97] 0.00 0.98 [0.96; 0.99] 0.00

CB singular 0.00 0.85 [0.54; 0.95] 0.00 0.92 [0.84; 0.97] 0.00

CN 0.00 [−1.98; 0.66] 0.00 0.82 [0.47; 0.94] 0.00 0.96 [0.91; 0.98] 0.00

CC 0.71 [0.15; 0.90] 0.01 0.96 [0.88; 0.99] 0.00 0.94 [0.88; 0.98] 0.00

CE 0.86 [0.58; 0.95] 0.00 0.97 [0.91; 0.99] 0.00 0.96 [0.92; 0.98] 0.00

CA1–CA4, hearing threshold-related CAFPAs; CU1–CU2, Suprathreshold-deficits related CAFPAs; CB, binaural hearing; CN, neural processing; CC, cognitive components of hearing;

CE, socio-economic status; E1, Expert 1 who rated 15 patient cases two times; E2, Expert 2 who rated 15 patient cases 12 times; ICC, intra-class correlation; CI, confidence interval.

Bold numbers indicate estimated agreements with a lower than acceptable effect size.

but repeatedly multiple times. Per design, the data from Expert

2 were collected for reliability estimates with many repetitions.

Last, we aim to test whether the measured audiological

data of the patients can explain potentially observed differences

between the model-predicted and expert-validated CAFPAs.

Thus, patients’ audiological measures were included as

additional predictors in the above described within-patient

factor models, estimated separately for each CAFPA. Cross-

level interactions between the within-patient condition

variable and measurements tested whether the difference

between the expert and the statistical model depended on the

audiological measurements.

After performing the described statistical analyses, a post-

survey interview with the experts was conducted. In a semi-

structured discussion with all coauthors (from which two acted

as experts), all results and links among the results were discussed,

while especially focusing on the experts’ perspective.

Results

Stability of experts’ ratings and
agreement between experts

Prior to assessing the agreement between statistical CAFPA

predictions vs. experts’ evaluations, the reliability of experts’

ratings needs to be quantified. Table 1 provides a comprehensive

summary of these reliability analyses for the 10 CAFPAs

(displayed as columns). Within-expert agreements were very

high as indicated by the ICC values close to 1. The ICCs

expressing very high stability within Expert 2, who rated the

CAFPAs many times repeatedly, are all above 0.90, with a very

narrowCI. Thus, learning effects during the first round of ratings

were adjusted by multiple repetitions in this case. The ICCs

indicating stability within Expert 1 are somewhat lower, but

satisfactory (all above 0.80), except for the CA1. However, CA1

was the CAFPA to be rated first, and the 15 patients used for

stability estimates were presented as the first cases to the expert

and repeated later. Thus, the low ICC of this first CAFPA can be

explained by the fact that the expert had to familiarize himself

with the task at the beginning of the survey. This was probably

the case for the second expert as well; however, by analyzing

“12 repetitions in that case,” the agreements were adjusted, and

one run of ratings will not have such a substantial effect on the

agreement estimates across 12 columns of 15 patients’ ratings.

Experts 1 and 2 were in high agreement with respect to all

but three CAFPAs (refer to the first column of Table 1). The

outlier CAFPAs were CU1, CB, and CN. In the case of CB and

CN, the two experts did not agree with each other at all, such

that the model returned a hint toward singularity. By exploring

the distribution of the CB estimates within Expert 1 and Expert

2, it became obvious that the first expert evaluated all 15 patient

cases used for reliability estimates with an approximately zero

CB value and a very narrow value range slightly above zero

in the case of CN. This was not the case for Expert 2 who

used a somewhat broader but also restricted value range for

these two CAFPAs. A post-survey interview with both experts

provided further insights into the experts’ reasoning on these

patient cases with respect to CB and CN. These qualitative

reports are outlined below in the discussion section and used

for interpreting the quantitative findings summarized in Table 1.

Overall, we can conclude that, for most of the CAFPAs, the

experts’ evaluations were reliable in terms of stability within

experts and agreement of two different experts with different

experience backgrounds.
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Relative agreement between CAFPAs
predicted by statistical models vs. experts
(RQ 1)

Table 2 provides a comprehensive summary of the ICC

estimates indicating an agreement between the statistically

predicted CAFPAs and the two experts based on 15 cases rated

by all. The second column of the table indicates an agreement of

CAFPA predictions between the statistical model and Expert 1

TABLE 2 Relative agreement between statistically predicted CAFPAs

and experts’ opinion.

M-E1-E2 M-E1

CAFPAs ICC [CI] p-Value ICC [CI] p-Value

CA1 0.94 [0.85; 0.98] 0.00 0.94 [0.92; 0.96] 0.00

CA2 0.98 [0.94; 0.99] 0.00 0.96 [0.94; 0.97] 0.00

CA3 0.97 [0.93; 0.99] 0.00 0.96 [0.95; 0.97] 0.00

CA4 0.94 [0.87; 0.98] 0.00 0.94 [0.91; 0.95] 0.00

CU1 0.73 [0.36; 0.90] 0.00 0.86 [0.80; 0.90] 0.00

CU2 0.94 [0.86; 0.98] 0.00 0.90 [0.86; 0.93] 0.00

CB 0.63 [0.13; 0.87] 0.01 0.56 [0.39; 0.68] 0.00

CN 0.39 [−0.43; 0.78] 0.13 0.43 [0.21; 0.59] 0.00

CC 0.88 [0.72; 0.96] 0.00 0.75 [0.65; 0.82] 0.00

CE 0.91 [0.79; 0.97] 0.00 0.82 [0.75; 0.87] 0.00

CA1–CA4, hearing threshold-related CAFPAs; CU1–CU2, Suprathreshold-deficits

related CAFPAs; CB, binaural hearing; CN, neural processing; CC, cognitive components

of hearing; CE, socio-economic status; M, model = statistical model-predicted CAFPA,

refer to Saak et al. (23); E1, Expert 1 who rated 15 patient cases two times and in total 150

different patients (used in second columnM-E1); E2, Expert 2 who rated 15 patient cases

12 times; ICC, intra-class correlation; CI: confidence interval.

Bold numbers indicate estimated agreements with a lower than acceptable effect size.

on the basis of 150 patients. These relative agreements between

the models and Expert 1 are also displayed as scatterplots

in Figure 3, separately for each CAFPA. The table and the

scatterplots clearly reveal high agreement rates of experts with

the statistically predicted CAFPAs, except for CB and CN. We

can thus conclude that 8 out of 10 CAFPAs are valid and can

be readily used in a CDSS for audiological decision-making.

Reasons for the low validity of the statistically predicted CB and

CN, as well as potential measures for improving the prediction

of these two CAFPAs in the future, are discussed below.

Absolute agreement between CAFPAs
predicted by statistical models vs. experts
(RQ 1)

We next investigated the absolute agreement between

CAFPAs predicted by statistical models vs. experts. Despite

proximal rank order equivalence of patients between experts

and statistical decisions on the CAFPAs, the question remains

whether, on average, across patients, experts, and the models

agree. Table 3 provides a numeric summary of the results

(see above for explanations of the modeling approach). As

indicated by the first column of the table (β-weights), all but

two differences were negative. This means that the CAFPAs

CA1–CA4, CU1–CU2, CB, and CN were on average corrected

across patients to lower values by Expert 1 as compared with

the predictions of statistical models. On a scale between 0 and

100 (rescaled CAFPAs to range between 0 to 100, instead of 0

to 1), these negative differences ranged between 2.09 and 17.79

scale point units. Thus, most of the average differences between

the expert’s vs. the statistical models’ CAFPA estimates were very

FIGURE 3

Scatterplots visualizing the relative agreement between statistically predicted CAFPAs and the expert’s opinion (for Expert 1, N = 150 patients;

corresponding to the second column of Table 2).

Frontiers inNeurology 08 frontiersin.org

https://doi.org/10.3389/fneur.2022.960012
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Buhl et al. 10.3389/fneur.2022.960012

TABLE 3 Main e�ect of evaluator in the linear mixed e�ects regression

(LMER) models with evaluators (M and E1) nested within patients.

CAFPAs β (SE) CI p-Value

CA1 −2.09 (0.70) −3.48;−0.71 0.00

CA2 −2.33 (0.64) −3.60;−1.06 0.00

CA3 −3.20 (0.64) −4.46;−1.94 0.00

CA4 −3.37 (0.85) −5.05;−1.68 0.00

CU1 −5.14 (1.07) −7.24;−3.04 0.00

CU2 −6.95 (0.83) −8.60;−5.31 0.00

CB −17.79 (1.43) −20.61;−14.98 0.00

CN −10.71 (1.24) −13.61;−8.27 0.00

CC 0.27 (1.04) −1.79; 2.33 0.79

CE 7.21 (1.05) 5.15; 9.27 0.00

CA1–CA4, hearing threshold-related CAFPAs; CU1–CU2, Suprathreshold-deficits

related CAFPAs; CB, binaural hearing; CN, neural processing; CC, cognitive components

of hearing; CE, socio-economic status.

Evaluator was dummy coded with 0=machine learningmodel, 1= expert (1). Npatients =

150. β: regression weight (fixed effect) of CAFPAs depending on the within-patient factor

(machine learning model vs. expert); it indicates the difference between experts’ ratings

across patients on average as compared with the statistical model; SE, standard error of

the regression weight estimate; CI, confidence interval.

small but significant. Larger deviations only occurred for CB and

CN, for which statistical predictions turned out to be currently

still insufficiently valid in terms of relative agreements as well.

The cognitive processing and socio-economic CAFPAs (CC and

CE) were rated on average across patients slightly higher by the

expert as compared with the statistical models. However, the

difference was not significant for CC.

On the dependency of the disagreement
between statistical models and the expert
from patients’ characteristics (RQ 2)

Given that expert and statistical predictions slightly but

significantly differed on average, we explored whether patient

characteristics (their audiological measurements) explain these

differences. Themodeling approach has been outlined above and

the results are summarized in Table 4. For better readability, only

significant effects are provided in the table. However, note that

all listed interactions were estimated as explained above and in

the note of the table.

The difference for CA4 does not depend on any patient

characteristics, and for none of the CAFPAs, the difference

between the expert and the model was associated with the

age of the patients. In the post-survey interview (see also

discussion below), experts also confirmed not to have considered

the age when concluding about any of the CAFPAs. The

difference between the statistical model and expert evaluation

of the socio-economic CAFPA depended on the biological

sex of the patients, which is plausible, given sex differences

in status evaluations in society in general. Patient differences

in pure tone average (PTA) explained the difference between

the expert and the model on CA1-CA3. PTA also explained

differences in the neural processing CAFPA; however, in

general, the results of this CAFPA need to be interpreted with

caution. The speech recognition in noise performance (see

above GOESA) was relevant for the observed differences on

CU1–CU2, CB, and CN. These results were also discussed

with the experts in the post-survey interview and were in line

with the experts’ reports with respect to which measurements

they considered when intending to correct the displayed

model’s estimated value for a given CAFPA. Finally, Adaptive

Categorical Loudness Scaling (ACALOS) further contributed

to accounting for the difference between the expert and the

statistical model.

Questionnaire about experts’ approach
and relationships between
measurements and CAFPAs (RQ 4)

The general questionnaire part of the survey provided

additional subjective information to be linked with the analysis

outcomes. The answers (by Expert 1) about the expert

validation approach revealed that the expert considered patient

characteristics as a complete picture. In addition, specific links

between measurements and CAFPAs were considered from

both directions, that is, thinking about which measurement

information was important for a certain CAFPA, as well as

to which CAFPAs a certain measurement contributed. The

exact choice and formulation of answers are provided in the

Supplementary Table A1.

Related to that, the questions about associations between

CAFPAs and a respective measurement provided more detailed

information about the links indicated by the expert. The

CAFPAs CA1–CA4 were clearly related to the audiogram; the

cognitive CAFPA CC to the verbal intelligence test (WST) and

to DemTect; and the socio-economic CAFPA CE to the SWI.

In contrast, CU1–CU2 and CN were related to a combination

of audiogram, ACALOS, GOESA, native language, and verbal

intelligence test. The binaural CAFPA was not linked to any

measurement, meaning that the expert found no information

about this aspect in the patient characteristics. These links are

plausible and comparable to the results of the statistical analyses

as described above, as well as to the variable importance analysis

by (23).

CAFPA distributions for given
audiological findings (RQ 3)

Finally, we investigated the differences between

model-predicted and expert-validated CAFPAs sorted

to audiological findings as estimated by the experts, for
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TABLE 4 β-weights (of the cross-level interaction) indicating whether the di�erence between the expert and statistical model depends on the patients’ audiological measures.

1CA1 1CA2 1CA3 1CA4 1CU1 1CU2 1CB 1CN 1CC 1CE

Predictors β p-Value β p-Value β p-Value β p-Value β p-Value β p-Value β p-Value β p-Value β p-Value β p-Value

Age

Sex 3.24 0.00 6.15 0.02 −4.31 0.02

PTA 0.10 0.01 0.17 0.00 0.17 0.00 −0.42 0.00

SES −2.70 0.00

GOESA 2.59 0.00 1.75 0.00 −2.03 0.00 4.18 0.00

WST

DemTect 1.05 0.03 −2.10 0.00

Tinnitusright −4.73 0.00

Tinnitusleft

ACALOS1.5L2.5 −0.10 0.00 −0.21 0.02

ACALOS1.5L50 0.11 0.00 0.22 0.04 −0.46 0.00

ACALOS4L2.5

Note that only significant results have been listed and an empty cell in the table indicates a null effect. Shaded rows or columns indicate that no significant results were obtained at all for the respective predictor or CAFPA.

CA1–CA4, hearing threshold-related CAFPAs; CU1–CU2, Suprathreshold-deficits related CAFPAs; CB, binaural hearing; CN, neural processing; CC, cognitive components of hearing; CE, socio-economic status.

1 indicates the difference between the expert and the statistical models. p-values indicate the probability of observing the respective prediction of the difference, or more extreme ones, assuming the null hypothesis of no difference is true. The coefficient

estimates originate from 10 different models, one model for each CAFPA. All predictors listed in the table were simultaneously included in the model, along with their interaction with the within-patient condition variable (model= 0; expert= 1). Thus,

β-weights indicate cross-level interaction effects (within-patient condition variable and between-patient predictors as listed in the first column of the table).
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FIGURE 4

CAFPA patterns for the four most frequent audiological findings (columns) as indicated by Expert 1. Model-predicted (first row) and

expert-validated CAFPAs (second row). The background color represents the median of the respective CAFPA for all patients associated to the

respective audiological finding. The horizontal color bar includes the interquartile range in addition to the median.

the purpose of performing a plausibility check in the

applied context toward a CDSS. From the 150 patient

cases evaluated by Expert 1, the combinations of four

audiological findings were mainly chosen: normal hearing,

high-frequency hearing loss, broadband hearing loss,

and the combination of high-frequency and broadband

hearing loss. Other findings were chosen very rarely (less

than six).

Figure 4 depicts model-predicted and expert-validated

CAFPAs for different audiological findings. Usually, only small

differences are visible by comparing the median (background

color) of model-predicted and expert-validated CAFPAs. Thus,

the differences as described above comprise a small influence

of CAFPAs as compared to the possible range and vary only

a little across audiological findings. Interquartile ranges of

CAFPAs within audiological findings are partly larger for expert-

validated CAFPAs, showing that the expert found slightly

more variability across patient cases than was covered by

the prediction models. For CB (binaural) and CN (neural),

the correction toward zero as described above influenced

all audiological findings in the same way, resulting in

median values close to zero and a very small interquartile

range. A more detailed view on interquartile ranges along

with distributions of the different CAFPAs is displayed in

Supplementary Figure A3.

Discussion

The present study aimed at an expert validation of model-

predicted CAFPAs to be used as an intermediate layer in

a CDSS for audiology. For this purpose, we performed an

expert survey with two highly-experienced audiological experts

and statistically analyzed differences between model-predicted

and expert-validated CAFPAs, as well as associations of the

observed differences with audiological measurements and

patient characteristics.

Expert validation of model-predicted
CAFPAs

The main finding was that experts agreed on most

model-predicted CAFPA values, except for the binaural

CAFPA CB, and the neural CAFPA CN (RQ 1). For these,

in a considerable number of patients, large corrections

were proposed by experts. This finding was consistently

revealed by different statistical analyses, i.e., the assessment

of relative and absolute agreement between experts and

prediction models, the questionnaire inquiring about the

experts’ validation approach and their understanding of the

relationships between audiological measurements and the
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different CAFPAs, and the evaluation of CAFPAs aligned to

expert-estimated audiological findings.

For all CAFPAs, except for CB and CN, experts proposed

only small corrections on the model-predicted CAFPAs given

the measurement data of a sample of patients. Therefore, we

conclude that the model-based prediction of these CAFPAs is

already well applicable to unlabeled patients. Slight potential

for improvement can however be inferred based on the results

obtained. The relative agreement between prediction models

and both experts was high, except for the supra-threshold

CAFPA CU1. The same was applied to the cognitive CAFPA

CC when assessing the agreement between model-predicted

CAFPAs and Expert 1. Consequently, the agreement among the

two experts was rather narrow, but still acceptable for CU1

and CC.

Interestingly, the main evaluator effect (absolute agreement)

assessed between prediction models and Expert 1 was significant

for all CAFPAs, but not CC. That is, the cognitive CAFPA was

on average across patients not corrected by the expert. This

could be due to the fact that the range of available patient data

is restricted especially in the case of CC where low CAFPA

values represent typical functioning. According to the variable

importance analyses by Saak et al. (23) and the experts’ reports,

the CCCAFPAwasmainly estimated and concluded on the basis

of the DemTect scores, which is a screening test for cognitive

impairment. DemTect scores in the present sample, however, are

rather in the typically functioning range.

Linear mixed effects regression models revealed that the

small, but statistically significant evaluator effects, reflecting

differences between the model-predicted and expert-validated

CAFPAs, on all remaining seven CAFPAs followed mostly

plausible associations with audiological measurements (RQ 2).

For instance, analyses indicated that patients’ GOESA scores

were significantly associated with four CAFPAs, namely CU1,

CU2, CB, and CN. This relationship is especially plausible for the

supra-threshold CAFPAs, CU1, and CU2, as well as the neural

CAFPA CN (see below). However, theoretically one would

expect that the binaural CAFPA would not be associated with

GOESA, which was measured in the S0N0 condition (speech

and noise from the frontal direction), i.e., binaural processing

should not be characterized by the given speech test outcome.

Furthermore, these empirical relationships were in line with the

experts’ responses in the questionnaire where they were asked to

indicate expected links between audiological measurements and

the different CAFPAs. This procedure is similar to the variable

importance analysis of Saak et al. (23), which illustrated the links

between audiological measurements (features) and the CAFPAs

by means of statistical associations learned from the labeled part

of the dataset.

In contrast, for the binaural CAFPA CB and the neural

CAFPA CN, the relative agreement between experts and the

prediction model was limited. The absolute agreement analyses

showed the largest differences between model-predicted and

expert-validated CAFPAs, for these among all other CAFPAs as

well (RQ 1). These findings can be interpreted in the light of all

analyses conducted in the present study. The difference between

the model-predicted vs. expert-validated binaural CAFPA CB

was associated with patients’ scores on GOESA and ACALOS,

while the expert indicated in the questionnaire that none of

the provided measurements allows for conclusions about this

CAFPA. In a post-survey interview with both experts, the

questionnaire statement was confirmed one more time. That is,

according to both experts, the available measurements displayed

in the expert survey and used for statistical predictions of

CAFPAs do not provide sufficient information about binaural

processing (RQ 2). This assessment is consistent with the

literature (34–39). Both experts agreed in the joint interview

that information from a localization task, as well as speech

intelligibility measured in a spatial condition, would be needed

for CB evaluation, whereas the displayed condition for GOESA

was S0N0. However, Expert 1 also reported being able to gain

an impression of the binaural hearing abilities of patients from

the available data. A potential decision strategy would be as

follows: One would adapt the CAFPA CB toward zero (green,

normal) if no binaural problem was expected in the light of

all other measurements provided. Therefore, in the case of CB,

the absolute agreement and relationships with the audiological

measurements need careful interpretation in line with these

reports of the expert. Nevertheless, the revealed associations

by the statistical analyses may also indicate experts’ implicit

assumptions about the measurements which are not explicated

in their decision-making process.

The evaluator effects for the neural CAFPA CN were

associated with several measurements, namely the audiogram

(PTA), GOESA, DemTect, and ACALOS. Out of these, GOESA

was most strongly associated with CN updates by the expert.

These associations are mainly consistent with the questionnaire

reports. However, in the post-survey interview, Expert 1

emphasized again his decision-making strategy and commented

on the importance of these measurements for the assessment

of the neural CAFPA CN. According to both experts, generally

in clinical practice, the challenge persists with evaluating neural

aspects of hearing loss. These can be characterized by certain

measurements such as brainstem-evoked response audiometry

or electrocochleography (31), but there is no common and

established selection of measurement approaches, and the

availability of such measures largely varies across patient cases.

Therefore, experts’ diagnostic decision-making process contains

several steps. They reported to first consider the audiogram and

a speech test in combination, and only if inconsistencies pop up,

additional measurements, such as brainstem-evoked response

audiometry or electrocochleography would be potentially

suggested. This diagnostic rationale explains the approach

explicated by Expert 1 on how he approached the validation task:

CN for patients with consistent results among the audiogram

and GOESA has been corrected toward zero. Thereby, the expert
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validation of CN relies on the partially explicated diagnostic

rationale only, given that no additional information on neural

sources of hearing loss was available in the studied patient

database. These aspects need improvement toward a reliable

CDSS algorithm in the domain of CN and also CB.

The audiological findings as estimated by the experts

provided further opportunities to assess how decisive differences

betweenmodel-predicted and expert-validated CAFPAs were for

the final diagnostic outcome (RQ 3). The CAFPA patterns of

patients sorted into distinct classes according to the experts’

labels for audiological findings were consistent with those

which were statistically derived by Saak et al. (23) when

clustering unlabeled cases based on model-predicted CAFPAs.

The most frequently occurring diagnostic findings (normal

hearing, high-frequency hearing loss, broadband hearing loss,

and a combination of high-frequency and broadband hearing

loss) are approximately equally distributed. This is a consistency

check, given that the patients for the current survey were

chosen to equally represent the clusters of Saak et al. (23).

By comparing the CAFPA distributions (median) of model-

predicted and expert-validated CAFPAs, we found in general

no noticeable changes in the CAFPA patterns for all CAFPAs

except for CB and CN. That is, the above-discussed approach

of the experts (correcting these CAFPAs toward zero if no

inconsistencies in the data were present) had a similar impact

on all audiological findings. This is plausible given that the

employed categories of audiological findings [as introduced in

Ref. (20)] mainly relate to audibility, and most of the patients

did not show extreme findings with regard to binaural hearing

or neural aspects of hearing loss. This is in general a property of

the database which contains mainly mild-to-moderate hearing

impairment collected in a pre-clinical context for the purpose of

hearing aid fitting.

In summary, the performed expert validation and

corresponding statistical analyses revealed that the CAFPA

prediction models as trained by Saak et al. (23) are applicable

to unlabeled patient cases. For all CAFPAs except for CB and

CN, the expert-validated CAFPAs as well as the audiological

findings collected in this study can be additionally used for

further training of the prediction models.

For CB and CN, the current prediction models need

improvement by considering additional measurements. In these

cases, with the measurement data at hand, experts indicated

the respective CAFPAs to be normal if no inconsistencies were

observed in the data. They both concluded that additional

information was necessary to evaluate CB and CN. It is thus

plausible that the expert’s diagnostic decision-making approach

for these two CAFPAs is not reflected by the models that learn

from the multivariate association pattern of the audiological test

battery taken as input and are by design not able to apply If-

Then rules in a similar way as experts do. However, the current

predictions are still useful as a starting point or the first best

guess for CB and CN. Future models need to be trained on

additional information for these two CAFPAs on a potentially

more comprehensive clinical sample.

On the importance of experts’ qualitative
reports on their decision-making
approach to improving statistical
predictions

The present study clearly demonstrated the importance

of combining expert knowledge and statistical learning in

the design of a CDSS for audiology. The expert validation

and corresponding statistical analyses to investigate agreement

between model-predicted and expert-derived CAFPAs provided

important insights into the current properties and the necessary

future improvement of the CDSS proposed by Buhl (22) and the

prediction models of CAFPAs (23). Furthermore, the collected

qualitative data on the experts’ decision-making process are

highly valuable to complement statistical conclusions.

Questionnaire reports revealed that the experts were

confident in evaluating model-predicted CAFPAs and

combining these statistical proposals with their views on the

respective audiological findings (RQ 4). First, this conclusion

is supported by plausible expert-validated CAFPAs, which are

consistent with the indicated links between measurements

and CAFPAs by experts in the questionnaire. Second, the

questionnaire also assessed the experts’ approach to the task.

These data confirmed that Expert 1 was comfortable with the

task of making diagnostic decisions on the basis of proposed

solutions achieved by statistical predictions. The concept

of CAFPAs was also valued by the expert. In summary, the

expert concluded a case based on an overall impression of

the patient in terms of measurements as well as CAFPAs and

additionally reflected upon the respective links between these

two information sources. As a limitation, it should be however

mentioned that only two audiological experts were involved in

this study, and future studies will need to validate a designed

CDSS on additional experts with different levels of experience.

The two experts involved in this study are highly experienced

and provided valuable insights and opinions in a post-survey

interview. Their suggestions are consistent with literature,

e.g., regarding their reported limitations, such as insufficient

available measurements for CB and CN hitherto considered for

deriving these CAFPAs. Future studies with more experts with

varying levels of experience could assess how the approach to

correcting CAFPAs and associations between measurements

and CAFPAs implied by the experts’ opinion depend on

experts’ experience. Also, it could be investigated which level

of experience is required to perform the expert validation task

accurately. It will be crucial that only experts are included who

are sufficiently familiar with the typical audiological diagnostic

process and are well acquainted with the CAFPA concept.

Frontiers inNeurology 13 frontiersin.org

https://doi.org/10.3389/fneur.2022.960012
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Buhl et al. 10.3389/fneur.2022.960012

Their knowledge may be structured differently depending on

the experience. Potentially, experts have more implicit links

between different aspects of the audiological diagnostic process

given higher levels of experience.

The current expert validation was highly informative for

the successful implementation of CAFPAs for designing a CDSS

for audiology (RQ 4): (1) The model-predicted CAFPAs were

validated here by experts, (2) the expert-validation data were

statistically analyzed, and (3) qualitative questionnaire and post-

survey interview reports of the experts provided a consistency

check and additional insights on the experts’ decision-making

process (9, 10, 13), as discussed above. Thereby, experts’

opinions collected here assure the use of CAFPAs in the context

of CDSS (2). It should be mentioned that the present expert

survey was closely related to the expert survey procedure of Buhl

et al. (20). This ensures comparability of the obtained experts’

labels and diagnostic conclusions. However, there was a crucial

difference. The present study employed an expert validation of

model-predicted CAFPAs for previously unlabeled cases instead

of simple labeling of CAFPAs. This has the advantage to provide

information on how experts accept diagnostic conclusions

suggested by a data-driven diagnostic approach.

In summary, the present study contributed to linking expert

knowledge and machine learning toward the development of

a CDSS for audiology. This link needs to be interpretable.

Interpretability was assured in several regards in the current

CDSS (22) as well as in the analysis applied in this

study. First, the CAFPAs themselves act as an interpretable

intermediate layer of a CDSS (19). Second, the variable

importance assessments in Saak et al. (23) provided a basis for

interpretability of the statistical learning models and allowed

insights into the underlying measurements for the different

CAFPAs. Third, in the present study, by means of linear mixed

effect models, we investigated how differences between model-

predicted and expert-validated CAFPAs depend on audiological

measurements of the patients. Thereby, we could learn about

the experts’ implicit approach and interpretation of the CAFPA

concept. Although the current version of the CDSS based on

CAFPAs was built upon only one audiological database, the

proposed methodological approach is generalizable to further

data of a similar structure.

Toward future application in the clinical
decision-support system and outlook

The outcomes of the present study provide insights into

how the CDSS of Buhl (22) could be further improved toward

applicability for new patients. For all CAFPAs except for the

binaural CAFPA CB and the neural CAFPA CN, the prediction

models of Saak et al. (23) can be improved by including the

expert-validated CAFPAs as additional labels in the training

process and thereby taking the proposed corrections of the

two experts involved in this study into account. In the future,

this could be done even more efficiently, for example, by

using a procedure as described by Baur et al. (13). There, an

iterative data annotation approach has been suggested. First,

a machine learning algorithm is trained based on a number

of available labeled data points, and then, expert labeling is

included iteratively by presenting experts with those respective

data points that show the most uncertain labels.

For CB and CN, the prediction models of Saak et al. (23)

are not yet accurate enough in their current version for use

in a CDSS. The automatic prediction of the binaural CAFPA

should be included in the future as soon as a database with

appropriate audiological measurements is available. The neural

CAFPA will require even more research to be included in

the decision-support system. This is because the diagnostic

process for neural aspects of hearing loss is not well-defined

by domain experts, not even with respect to the choice of

necessary measurements for a straightforward diagnostic. More

specifically, including CN, further discussions with clinicians

from different sites are needed to learn more about which

measurements are employed for which patients in the clinical

practice. Second, appropriate datasets need to be accessed that

contain consistent measurement outcomes across patients. This

stepmay include existing datasets, but it may also be necessary to

collect structured data for a new group of patients. Third, if data

are available, expert labels for CAFPAs can be collected, and/or

CAFPAs can be predicted, and a subsequent expert validation be

performed (see below for a discussion about expert validation

for including additional databases).

The integration of additional databases including more

balanced and more severe patient cases is required not only to

back up the CDSS with a larger number of patients but also

to cover the whole range of potential audiological findings and

treatment recommendations. Therefore, the CAFPAs provide

great potential, as they are defined as a measurement-

independent representation of audiological knowledge. The

applied expert-validation approach can be used in the future

to validate CAFPAs that were predicted on the basis of

different audiological measurements and variable amounts of

information available for different patients. This is relevant

because clinical practice is characterized by heterogeneity in

data availability for different patient cases. In this respect, the

expert validation approach could be included in two ways

in a hybrid ML-based CDSS combining machine learning

and expert knowledge. On the one hand, as explained above,

expert validation can be used to derive corrected CAFPAs

for additional measurement information in a to-be-connected

database. Thereby, it could also be beneficial if the specialization

of a respective expert corresponds to the new measurements

contained in a dataset. On the other hand, the expert validation

could be used on the basis of single patients during the operation

of the CDSS in clinical practice, i.e., if the uncertainty of
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the predicted CAFPAs (or classified audiological finding or

treatment recommendation) exceeds a certain threshold, the

system would ask for an expert validation of CAFPAs for the

respective patient [related to the approach of Ref. (13)]. In this

case, either the current physician could be asked to expert-

validate the CAFPAs, or the CDSS would not continue for

the current patient, but the patient’s data and CAFPAs would

be stored to later perform (offline) expert validation on such

stored cases.

In contrast to knowledge- or rule-based CDSS (40),

expert knowledge would not explicitly be modeled to be

incorporated in an ML-based CDSS. Instead, expert knowledge

is implicitly incorporated into the CDSS, as it is included

in the data (labels for CAFPAs or diagnostic cases) and the

relationships between different layers of the CDSS (audiological

measures, CAFPAs, and diagnostic cases) are derived from data

(supervised ML). With expert validation as performed in this

study, the data (CAFPAs) underlying these relationships can

be optimized to best fit to experts’ implicit understanding of

the relationships.

Overall, the present study demonstrated not only the need,

but also the potential to incorporate diverse information on

expert knowledge in the development (and application) of

a CDSS.

Conclusion

The present study provided important insights into the

advantages, limitations, and potential improvement of the

current prediction of CAFPAs.

The performed expert validation and corresponding

statistical analyses revealed that the current CAFPA prediction

models are applicable to unlabeled patient cases. For all

CAFPAs except for the binaural CAFPA CB and neural

CAFPA CN, the experts’ agreement with the model-

predicted CAFPAs was high, and only small corrections were

performed, which were associated with plausible underlying

audiological measures by the linear mixed effect models.

Therefore, the expert-validated CAFPAs can be employed as

additional labels for further training of the respective CAFPAs

‘prediction models.

In contrast, large corrections were performed for the

CAFPAs CB and CN. The expert’s approach of correcting

these CAFPAs toward zero if the overall impression of the

patient was normal was revealed by the post-interview, along

with the fact that appropriate measurement information was

missing in the database. The current predictions are useful as

a starting point or the first best guess for CB and CN, but

future models need to be trained on additional information

for these two CAFPAs on a potentially more comprehensive

clinical sample.

Audiological findings were found to be consistent with

previous expert labels on the same data set. Due to the

definition of these categories mainly in threshold-related terms,

the large corrections for CB and CN similarly affected all

audiological findings.

In summary, the present study contributed to linking expert

knowledge and machine learning toward the development of a

CDSS for audiology. By means of linear mixed effect models,

we investigated how differences between model-predicted and

expert-validated CAFPAs depend on audiological measurements

of the patients. Thereby, we could learn about the experts’

implicit approach and interpretation of the CAFPA concept.

Although the current version of the CDSS based on CAFPAs

was built upon only one audiological database, the proposed

methodological approach is generalizable to further data of a

similar structure.

In the future, the expert validation approach could also be

used to establish relationships with additional measurements

included in different databases. If a prediction is performed on

parts of a database, experts could be asked to validate and correct

the predicted CAFPAs based on a larger choice of measurements

presented within the expert validation survey.
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