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Abstract: Luminescent Ln-MOFs (Eu0.075Tb0.925-MOF) were successfully synthesised through the
solvothermal reaction of Tb(NO3)3·6H2O, Eu(NO3)3·6H2O, and the ligand pyromellitic acid. The
product was characterised by X-ray diffraction (XRD), TG analysis, EM, X-ray photoelectron spec-
troscopy (XPS), and luminescence properties, and results show that the synthesised material Eu0.075

Tb0.925-MOF has a selective ratio-based fluorescence response to Fe3+ or Cr2O7
2−. On the basis

of the internal filtering effect, the fluorescence detection experiment shows that as the concentra-
tion of Fe3+ or Cr2O7

2− increases, the intensity of the characteristic emission peak at 544 nm of
Tb3+ decreases, and the intensity of the characteristic emission peak at 653 nm of Eu3+ increases in
Eu0.075Tb0.925-MOF. The fluorescence intensity ratio (I653/I544) has a good linear relationship with
the target concentration. The detection linear range for Fe3+ or Cr2O7

2− is 10–100 µM/L, and the
detection limits are 2.71 × 10−7 and 8.72 × 10−7 M, respectively. Compared with the sensor material
with a single fluorescence emission, the synthesised material has a higher anti-interference ability.
The synthesised Eu0.075Tb0.925-MOF can be used as a highly selective and recyclable sensing material
for Fe3+ or Cr2O7

2−. This material should be an excellent candidate for multifunctional sensors.

Keywords: Ln-MOFs; luminous sensing; Fe3+; Cr2O7
2−

1. Introduction

Heavy metals and inorganic anion pollutants in water pose hidden dangers to human
health [1]. The United Nations Sustainable Development Goals set in September 2015
indicated that countries are expected to greatly improve human water quality by 2030.
Thus, the detection of pollutants in water has become increasingly important. Fe3+ is one
of the basic trace elements in humans. The lack or excess of this element can cause many
physiological disorders, such as nausea, abdominal pain, anaemia, liver cirrhosis, and
organ failure [2–4]. Salonen et al. [2] confirmed that elevated iron content is an important
risk factor for acute myocardial infarction, Bijeh et al. [3] confirmed that the increased risk
of cardiovascular disease is related to elevated iron content, and Jehn et al. [4] confirmed
that elevated iron could lead to abnormal baseline metabolism. In addition, Cr2O7

2− is
an important oxidant in laboratories and industry [5], and it is highly carcinogenic in
the environment and harmful to the ecology, environment, and biological system [6–9].
Mansi et al. [6] confirmed that it is the second most abundant inorganic groundwater
pollutant due to its wide application in many industrial fields, such as electroplating
chrome, dyes, and leather tanning. Costa [7] confirmed that it is mutagenic and carcinogenic
to organisms’ sexual function. Therefore, the selective sensing of Fe3+ and Cr2O7

2− in
water quality has attracted growing attention from scholars. Many methods are used for
the determination of Fe3+ and Cr2O7

2−, such as atomic emission spectrometry, atomic
absorption spectrometry, inductively coupled plasma mass spectrometry, electrochemical
methods, and ion chromatography. However, these methods are complicated to operate,
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costly, and have a long detection time. Therefore, developing a simple and efficient
method to determine Fe3+ and Cr2O7

2− is of practical significance. Fluorescence sensing
technology can meet the requirements of new analysis and detection technology due
to its high sensitivity, fast analysis speed, strong selectivity, simple operation, and low
experimental cost. In recent years, it has received extensive attention [10].

Ln-MOFs materials refer to the self-assembly connection of metal ions and organic
ligands by coordination bonds to form network complexes. Ln-MOFs materials have
outstanding luminescence characteristics; that is, they have the advantages of large Stokes
shift, high quantum yield and luminescence intensity, narrow emission spectrum range,
flexible coordination mode, and long luminescence life. MOFs fluorescent probes are com-
monly used as sensors [11–27]. Hna et al. [26] synthesised Ce-MOF to detect Fe3+, and Gai
et al. [27] synthesised dual-sensor Eu-MOF to detect Fe3+ and Cr2O7

2−. The ratio fluores-
cent probe is based on measuring the ratio of the fluorescence intensity of two independent
fluorescence emission peaks for quantitative analysis, which can effectively reduce the
influence of excitation light, environment, and probe concentration changes, and greatly
improve the accuracy of the method. At present, the usual design method of the Ln-MOFs
ratio probe is to select two kinds of Ln3+ to synthesise by different molar ratios [28–30] or to
combine Ln-MOFs with one or two substances with different fluorescence emission wave-
lengths, including carbon dots (CDs), quantum dots, and fluorescent dyes [31–35]. Zhang
et al. [30] used two different molar ratios of Tb and Eu as the metal centre. 2,2′-bipyridine-
6,6′-dicarboxylate acid (H2bpdc) is a ligand to synthesise Eu0.6059Tb0.3941-ZMOF, which can
realise the selective detection of haemolysed phosphate (lysophosphatidic acid or LPA) in
human plasma. Xu et al. [31] reported that CDs with strong fluorescence activity and Eu3+

were encapsulated in MOF-253, and the dual-emission ratio probe Eu3+/CDs@MOF-253
was synthesised to detect Hg2+. Therefore, the development of ratio fluorescent probe
Ln-MOFs to detect Fe3+ and Cr2O7

2− has great application prospects.
The selective fluorescence detection of Fe3+ and Cr2O7

2− using ratio fluorescent probe
Ln-MOFs is rarely reported in the literature. In this paper, luminescent Eu0.075Tb0.925-MOF
was successfully synthesised by the solvothermal reaction of Tb(NO3)3·6H2O, Eu(NO3)3·
6H2O, and ligand pyromellitic acid. Eu0.075Tb0.925-MOF was comprehensively charac-
terised by XRD, thermogravimetric analysis (TG), elemental analysis, Fourier transform
infrared spectroscopy (FTIR), transmission electron microscope (TEM), scanning electron
microscope (SEM), and XPS. Eu0.075Tb0.925-MOF has excellent stability in aqueous solution,
and it can detect Fe3+ and Cr2O7

2− in aqueous solution by dual-emission ratio fluorescence
sensing, which provides a new idea for the fluorescence detection of Fe3+ and Cr2O7

2−.

2. Materials and Methods

Commercially available reagents and solvents were used. XRD characterisation was
performed to determine the regular arrangement of atoms or ions in the Eu0.075Tb0.925-
MOF, which is one of the commonly used methods to explore the structure of matter. An
elemental analyser was used for elemental analysis. FTIR was used to scan and analyse
the range of 4000–400 cm−1 to determine the functional groups and chemical bonds of
Eu0.075Tb0.925-MOF. The thermal stability of Eu0.075Tb0.925-MOF was analysed by TG, which
was performed under N2 protection. TEM and SEM were used to observe the specific
morphology of Eu0.075Tb0.925-MOF. The FL/FS900 fluorescence spectrometer was used
to record the steady-state luminescence performance of Eu0.075Tb0.925-MOF. XPS and UV
spectrophotometers were used to investigate the reaction mechanism.

Synthesis of Eu0.075Tb0.925-MOF: Product preparation was the first step. Eu0.075Tb0.925-
MOF with Tb and Eu were prepared as the metal centre, and pyromellitic acid was prepared
as the organic ligand as follows: Dissolved Tb(NO3)3·6H2O + Eu(NO3)3·6H2O (0.2 mmol),
pyromellitic acid (0.2 mmol), DMF (8 mL), distilled water (4 mL), and CH3CH2OH (4 mL)
were transferred to an autoclave (volume: 25 mL). The product was then sealed and heated
in a 120 ◦C vacuum drying oven for 48 h and gradually cooled to ambient temperature.
After the autoclave was opened, the product was collected after centrifugation, washed
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thoroughly with DMF and ethanol, paralleled three times, and dried. Thus, the target
product Eu0.075Tb0.925-MOF was obtained.

3. Results and Discussion
3.1. XRD Characterisation

Eu-MOF, Tb-MOF, and Eu0.075Tb0.925-MOF combined with lanthanide nitrate and
pyromellitic acid were prepared by the solvothermal method. Figure 1 shows the XRD
patterns of Ln-MOFs. As shown in the figure, the 2θ diffraction angle peak positions of the
simulated XRD pattern and the synthesised samples Eu-MOF, Tb-MOF, and Eu0.075Tb0.925-
MOF are the same, and there are sharp peaks at the diffraction angles from 9 to 10. At the
same time, the diffraction peaks 9 to 10 of the crystal synthesised by Silva et al. [36] are
basically the same, indicating that the synthesised Eu0.075Tb0.925-MOF has high purity and
good crystallinity [36–39].
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Figure 1. (a) XRD patterns of Ln-MOFs. (b) Enlarged version.

3.2. TG Analysis

Figure 2 shows the TG analysis results of Ln-MOFs. The weight loss of Ln-MOFs
is mainly divided into two stages. Before 340 ◦C, Eu0.075Tb0.925-MOF has good thermal
stability.
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Figure 2. TG of Ln-MOFs.

3.3. FTIR Analysis

Figure 3 shows the FTIR spectrum of Ln-MOFs. Compared with the FTIR spectrum of
pyromellitic acid, the main characteristic peaks in the FTIR spectrum of Eu0.075Tb0.925-MOF
are similar to those of pyromellitic acid, but the C=O stretching vibration peak disappeared
at 1720 cm−1 in the original pyromellitic acid spectrum (significantly weakened), thereby
indicating that the carboxyl oxygen is coordinated with Tb and Eu atoms in the ligand.
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Figure 3. FTIR spectra of Benzene-1,2,4,5-tetracarboxylic acid and Ln-MOFs.

3.4. Elemental Analysis and XPS

A comparison of elemental (Table 1) and XPS (Figure 4) analyses shows that, corre-
sponding to the content of the element, the distribution ratio of Eu to Tb in Eu0.075Tb0.925-
MOF is 0.075:0.925. The specific loadings of Tb(NO3)3 and Eu(NO3)3 are 42.74% and 3.46%
respectively, and the cooling rate is 0.017 K/s.

Table 1. Element analysis table.

Ln-MOFs C H N O Eu/Tb

Eu-MOF 30.37% 1.87% 1.87% 26.64% 39.25%
Tb-MOF 22.01% 1.84% 1.13% 26.11% 48.91%

Eu0.075Tb0.925-MOF 23.53% 1.85% 1.56% 26.85% 46.21%
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Figure 4. XPS of Eu0.075Tb0.925-MOF before and after Fe3+ addition: (a) Tb 3d, (b) Eu 3d, and (c) O 1s.

3.5. EM Characterisation

Figure 5 shows the TEM and SEM images of Eu0.075Tb0.925-MOF, which indicate that
the prepared Eu0.075Tb0.925-MOF has a regular external morphology, a nanocolumn shape,
and a diameter of about 500 nm.
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Figure 5. (a) TEM and (b) SEM of Eu0.075Tb0.925-MOF.

3.6. Adsorption Characteristics of Eu0.075Tb0.925-MOF

Figure 6 shows the N2 adsorption desorption isotherms of Eu0.075Tb0.925-MOF. The
adsorption capacity increases slowly with the increase of pressure at the middle–high-
pressure stage, indicating that Eu0.075Tb0.925-MOF is a porous material with an average
pore size of 3.38 nm, a BJH average pore diameter of 20.99 nm, and a BET specific surface
area of 12.9542 m2/g.
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3.7. Photoluminescence Characteristics

Figure 7a shows the fluorescence emission spectrum of Eu0.075Tb0.925-MOF measured
at ambient temperature. The figure shows that Eu0.075Tb0.925-MOF exhibits characteristic
transitions of Tb3+ and Eu3+ under the excitation of 310 nm light, located at 544 and 653 nm
respectively, showing the same intensity of fluorescence emission. This finding indicates
that the ligand can effectively transfer energy to Tb3+ and Eu3+ at the same time [40–44].

As shown in the CIE diagram in Figure 7c,d, Eu-MOF shows red fluorescence, and
Tb-MOF shows green fluorescence. When Eu3+ and Tb3+ synthesise Eu0.075Tb0.925-MOF
at a ratio of 0.075:0.925, Eu0.075Tb0.925-MOF shows the intermediate colour of the two,
which is a yellow-green fluorescence sensitive to the human eye. This material has po-
tential application as a luminescent material and a light-sensitive material for naked-eye
detection [45].
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Figure 7. (a) Emission spectra of Eu0.075Tb0.925-MOF, (b) CIE of Eu0.075Tb0.925-MOF, (c) CIE of
Eu-MOF, and (d) CIE of Tb-MOF.

3.8. Fluorescence Sensing of Fe3+

Gao and Ma [46,47] prepared Tb-MOF and used it for sensitive fluorescence sensing of
Fe3+ and Cr2O7

2−. On this basis, this paper designs a ratio fluorescent probe, Eu0.075Tb0.925-
MOF, for the fluorescence sensing of Fe3+ and Cr2O7

2− to improve the measurement
accuracy and expand the linear range of the test. To determine the fluorescence performance
of Eu0.075Tb0.925-MOF to Fe3+, the fluorescence response of Eu0.075Tb0.925-MOF to Fe3+ was
investigated, and the results are shown in Figure 8.

Figure 8a shows that with the increase of the Fe3+ concentration, the characteristic
emission peak intensity of Tb3+ decreases at 544 nm, and the characteristic emission peak
intensity of Eu3+ increases at 653 nm. The intensity at IEu = 653 nm and ITb = 544 nm is
used to calculate the intensity change I0/I, where I0 (IEu0/ITb0) is the initial fluorescence
intensity before fluorescence, and I (IEu/ITb) is the fluorescence intensity in the presence of
Fe3+. Figure 8b shows that I0/I and Fe3+ present a linear relationship in the concentration
range of 10–100 µM/L, and the linear regression equation is:

I0/I = 0.71 − 7948.64x. (1)

The limit of detection (LOD) of Fe3+ is evaluated by the equation 3Sb/S, where Sb is
the standard deviation of repeated detection of the original solution, and S is the slope
of the linear fit. The LOD is calculated as 2.71 × 10−7 M. Figure 8c shows that the colour
change trend of Eu0.075Tb0.925-MOF is yellow green–yellow–orange–red with the increase
in Fe3+ concentration. This material is expected to achieve naked-eye detection of Fe3+.

The prepared Eu0.075Tb0.925-MOF was subjected to a cyclic application experiment,
and KNO3 solution was used to wash the used materials. Figure 8d,e shows that the ratio
of the luminous intensity of the material and the XRD did not change considerably, even
after five cycles. Eu0.075Tb0.925-MOF is very stable in the sensing experiment.
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Figure 8. (a) The emission spectra of Eu0.075Tb0.925-MOF dispersions with different Fe3+ concentra-
tions under 310 nm excitation light. (b) Calibration line with Fe3+(in the range of 10–100 µM/L),
(c) CIE, (d) cycles of Eu0.075Tb0.925-MOF, (e) XRD pattern of Eu0.075Tb0.925-MOF after five cycles, and
(f) IEu/ITb histogram of Eu0.075Tb0.925-MOF dispersion containing metallic cations.

The fluorescence sensing selectivity of Eu0.075Tb0.925-MOF to Fe3+ was investigated
through the anti-interference experiment. The Eu0.075Tb0.925-MOF sample was immersed
in NaX solution (Mg2+, K+, Pb2+, Al3+, Na+, Cd2+, Mn2+, Zn2+, Ni2+, Fe2+, Cu2+, Hg2+) at
a concentration of 1 × 10−4 M. The results are shown in Figure 8f. Except for Fe3+, the
luminous intensity ratio of Eu0.075Tb0.925-MOF exhibits almost no change after the addition
of metal ions. However, when the same amount of Fe3+ was added to the Mg2+, K+, Pb2+,
Al3+, Na+, Cd2+, Mn2+, Zn2+, Ni2+, Fe2+, Cu2+, and Hg2+ solution containing Eu0.075Tb0.925-
MOF, the luminous intensity ratio of IEu/ITb was significantly higher. This result shows
that the sensing ability of Eu0.075Tb0.925-MOF on Fe3+ will not be interfered with by the
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presence of other metal ions. Therefore, Eu0.075Tb0.925-MOF has a high selectivity for Fe3+

in an aqueous solution.

3.9. Fluorescence Sensing of Cr2O7
2−

To determine the fluorescence performance of Eu0.075Tb0.925-MOF to Cr2O7
2−, the

fluorescence response of Eu0.075Tb0.925-MOF to Cr2O7
2− was investigated, and the results

are shown in Figure 9.
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Figure 9. (a) The emission spectra of Eu0.075Tb0.925-MOF dispersions with different Cr2O7
2− con-

centrations under 310 nm excitation light. (b) Calibration line with Cr2O7
2−(in the range of 10–

100 µM/L), (c) CIE, (d) cycles of Eu0.075Tb0.925-MOF, and (e) IEu/ITb histogram of Eu0.075Tb0.925-MOF
dispersion containing anions.

Figure 9a shows that with the increase in Cr2O7
2− concentration, the characteristic

emission peak intensity of Tb3+ decreases at 544 nm, and the characteristic emission peak
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intensity of Eu3+ increases at 653 nm. At the same time, I0/I and Cr2O7
2− showed a linear

correlation in the concentration range of 10–100 µM/L, the linear regression equation is:

I0/I = 0.81 − 9660.83x, (2)

and the LOD was 8.72 × 10−7 M. The CIE diagram in Figure 9c shows that with the
increase in Cr2O7

2− concentration, the colour change trend of Eu0.075Tb0.925-MOF is yellow
green–yellow–orange–red, which is expected to realise the naked-eye detection of Cr2O7

2−.
A cyclic application experiment was performed on Eu0.075Tb0.925-MOF. Figure 9d

shows that the luminous intensity ratio of Eu0.075Tb0.925-MOF does not change much after
five cycles. Eu0.075Tb0.925-MOF was very stable in the sensing experiment.

Similarly, the fluorescence sensing selectivity of Eu0.075Tb0.925-MOF to Cr2O7
2− was

investigated through the anti-interference experiment. Eu0.075Tb0.925-MOF was dispersed
into a solution containing F−, Cl−, I−, Br−, NO3

−, CrO4
2−, SCN−, IO3

−, CO3
2−, and

Cr2O7
2− with the same concentration. The results are shown in Figure 9e. Except for

Cr2O7
2−, the luminous intensity ratio of Eu0.075Tb0.925-MOF is almost unchanged after the

addition of anions. However, when the same amount of Cr2O7
2− was added to the F−, Cl−,

I−, Br−, NO3
−, CrO4

2−, SCN−, IO3
−, and CO3

2− solution containing Eu0.075Tb0.925-MOF,
the luminous intensity ratio of IEu/ITb was significantly higher. This result shows that
the sensing ability of Eu0.075Tb0.925-MOF on Cr2O7

2− will not be interfered with by the
presence of other anions. Therefore, Eu0.075Tb0.925-MOF has a high selectivity for Cr2O7

2−

in an aqueous solution.

3.10. Comparison with Other Sensors That Detect Fe3+ and Cr2O7
2− Ions

Compared with the Fe3+ and Cr2O7
2− detection methods used in other studies, as

shown in Table 2, the prepared Eu0.075Tb0.925-MOF can reduce the effects of interference
caused by excitation light, the environment, and probe concentration changes, and it has
improved the detection accuracy relative to other methods.

Table 2. Comparison of the reported methods for Fe3+ and Cr2O7
2− using Ln-MOFs.

Ln-MOFs Detect Ion LOD (M) Ratio Fluorescent
Probe Linear Range References

Eu0.075Tb0.925-MOF Fe3+ 2.71 × 10−7
Dual emission

10–100 µM
(R2 = 0.99919, R2 = 0.99937) This workCr2O7

2− 8.72 × 10−7

Fe3+ 1 × 10−5

Single emission 0–1.0 mM
(R2 = 0.9021, R2 = 0.9752) [47]

Eu-MOF; Tb-MOF
[Eu/Tb, 4,4′-(((5-

carboxy-1,3-
phenylene)bis(azanediyl))bis(carbonyl))

dibenzoic acid]
Cr2O7

2− 8.94 × 10−5

Fe3+ 5.7 × 10−7

Single emission 0–50 µM
(R2 = 0.9948, R2 = 0.9979) [48]

Eu-MOF
[Eu, 5-(2′,5′-dicarboxylphenyl) picolinic

acid ligand] Cr2O7
2− 4.2 × 10−7

Tb-MOF [Tb,H3BTB] Fe3+ 1 × 10−5 Single emission - [49]
Eu-MOF [Eu, 2-aminoterephthalic acid

1,10-phenanthroline] Fe3+ 4.5 × 10−5 Single emission 0–0.25 mM
(R2 = 0.992) [50]

Tb-MOF [Tb,
2-(2-carboxyphenoxy)terephthalic acid] Fe3+ 2.0 × 10−4 Single emission 10−4–10−3 M

(R2 = 0.978)
[51]

Fe3+ 1.32 × 10−5

Single emission 0–10−5 M
(R2 = 0.9885, R2 = 0.9927)

[52]
Eu-MOF [Eu,

2-(3′,4′-dicarboxylphenoxy)isophthalic
acid, 4,4′-bis(imidazolyl) biphenyl Cr2O7

2− 1.01 × 10−5

3.11. Mechanism Study

The mechanism of Fe3+ and Cr2O7
2− on Eu0.075Tb0.925-MOF fluorescence sensing is

examined. Figure 10a shows that the UV absorption spectrum of Fe3+ overlaps with the ex-
citation spectrum of Eu0.075Tb0.925-MOF, which indicates that Fe3+ and Eu0.075Tb0.925-MOF
are competitively adsorbed. At the same time, Figure 4 shows that Fe3+ is attached to the
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surface of Eu0.075Tb0.925-MOF and that the interaction between Fe3+ and the uncoordinated
O atom in the ligand is weak. Eu0.075Tb0.925-MOF reduces the energy transfer from the
ligand to Tb3+, and Tb3+ is quenched. As a result, the energy transfer from the ligand to
Eu3+ is increased, and the characteristic red fluorescence of Eu3+ is displayed. Figure 10b
shows that the UV absorption spectrum of Cr2O7

2− overlaps with the excitation spectrum
of Eu0.075Tb0.925-MOF, which indicates that Cr2O7

2− and Eu0.075Tb0.925-MOF are competi-
tively adsorbed. It will also cause the energy transfer from the ligand to Eu3+ to increase
and show the characteristic red fluorescence of Eu3+.
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Figure 10. (a) Fluorescence excitation spectra of Eu0.075Tb0.925-MOF and UV-Vis absorption spectra of Fe3+. (b) Fluorescence
excitation spectra of Eu0.075Tb0.925-MOF and UV-Vis absorption spectra of Cr2O7

2−. (c) The mechanism of Fe3+ and Cr2O7
2−

on Eu0.075Tb0.925-MOF fluorescence sensing.

3.12. Application in Actual Water Sample Analysis

The ratio fluorescent probe Eu0.075Tb0.925-MOF was used for Fe3+ and Cr2O7
2− in tap

water. The results are shown in Table 3. The sample recovery rate is 101–114%, thereby
showing that the established method has high accuracy and precision for the determination
of Fe3+ and Cr2O7

2− content in actual samples.

Table 3. Determination of Fe3+ and Cr2O7
2− in real samples (n = 3).

Sample Spiked (nM) Found (nM) Recovery (%)

Tap water (Fe3+)

20.0 22.1 110.5
40.0 45.7 114.3
60.0 61.6 102.7
800 88.7 110.9

Tap water (Cr2O7
2−)

20.0 20.9 104.5
40.0 41.3 103.3
60.0 60.9 101.5
80.0 80.8 101.0



Sensors 2021, 21, 7355 11 of 13

4. Conclusions

The ratio fluorescent probe Eu0.075Tb0.925-MOF was synthesised in this experiment by
using the solvothermal method and was used for Fe3+ and Cr2O7

2− determination. Mainly
on the basis of the internal filtering effect, the characteristic fluorescence emission peak
intensity of Tb3+ decreased, and the characteristic emission peak intensity of Eu3+ increased
on Eu0.075Tb0.925-MOF as the concentration of Fe3+ and Cr2O7

2− increased. The ratio of
the emission fluorescence intensity at the two wavelengths has a linear relationship with
the target concentration, which realises the selective detection of Fe3+ and Cr2O7

2−. The
linear detection range was 10–100 µM, and the LOD was 2.71 × 10−7 and 8.72 × 10−7 M,
respectively. The synthesised material was used as a ratio fluorescent probe, which can
effectively eliminate background fluorescence interference in the detection process and
improve the detection accuracy. The trend of the fluorescence colour change of the synthe-
sised material during the detection process indicates that the material is expected to realise
naked-eye detection of Fe3+ and Cr2O7

2−.
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