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Alzheimer’s disease (AD) is an age-associated neurodegenerative disorder characterized by
progressive impairment of memory, thinking, behavior, and dementia. Based on ample
evidence showing neurotoxicity of amyloid-β (Aβ) aggregates in AD, proteolytically derived
from amyloid precursor protein (APP), it has been assumed that misfolding of Aβ plays a
crucial role in the AD pathogenesis. Additionally, extra copies of the APP gene caused by
chromosomal duplication in patients with Down syndrome can promote AD pathogenesis,
indicating the pathological involvement of the APP gene dose in AD. Furthermore, increased
APP expression due to locus duplication and promoter mutation of APP has been found in
familial AD. Given this background, we aimed to summarize the mechanism underlying the
upregulation ofAPP expression levels from a cutting-edge perspective.We first reviewed the
literature relevant to this issue, specifically focusing on the transcriptional regulation of APP
by transcription factors that bind to the promoter/enhancer regions. APP expression is also
regulated by growth factors, cytokines, and hormone, such as androgen. We further
evaluated the possible involvement of post-transcriptional regulators of APP in AD
pathogenesis, such as RNA splicing factors. Indeed, alternative splicing isoforms of APP
are proposed to be involved in the increased production of Aβ. Moreover, non-codingRNAs,
including microRNAs, post-transcriptionally regulate the APP expression. Collectively,
elucidation of the novel mechanisms underlying the upregulation of APP would lead to
the development of clinical diagnosis and treatment of AD.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common form of age-related dementia and a complex
neurodegenerative disorder, phenotypically featured with progressive impairment of memory,
thinking, and behavior as along with cognitive decline (Bateman et al., 2012; Mucke and Selkoe,
2012; Kirova et al., 2015; Hashimoto et al., 2018). AD is pathologically characterized by the
deposition of senile plaques and neurofibrillary tangles (NTFs) in the brain (DeTure and
Dickson, 2019). Senile plaques are mainly composed of soluble amyloid-β (Aβ) peptides (Panza
et al., 2019), which form aberrant aggregates exhibiting neurotoxicity in the brain; therefore, the
crucial role in the AD pathogenesis is assumed to be played by misfolded Aβ, namely amyloid
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hypothesis. Notably, NTFs is mainly comprised of a
hyperphosphorylated TAU protein, which has been implicated
in major neurodegenerative diseases including AD, termed
Tauopathy (Panza et al., 2019). Aβ is produced through
sequential proteolytic processing of a transmembrane protein,
Aβ precursor protein (APP) by the β-site APP-cleaving enzyme 1
(BACE1) and γ-secretase (Panza et al., 2019), through the
amyloidogenic pathway. In addition to the amyloidogenic
pathway, the majority of APP undergoes non-pathogenic
processing mediated by sequential cleavage of α-secretase and
γ-secretase (Nguyen, 2019). In this pathway, an N-terminal
secreted form of APP (sAPPα) is generated that plays
numerous roles in normal physiological functions in the brain,
such as neuronal proliferation, differentiation, migration, and
synaptic function (Nguyen, 2019; Dar and Glazner, 2020).

To decipher the pathogenesis of AD, several studies have
addressed the populations in which genetic variations are
known to cause AD. In humans, the APP gene is located on
chromosome 21 with 18 exons and is alternatively spliced into
multiple isoforms, of which three isoforms, APP695, APP751,
and APP770 are primarily generated. APP695 is predominantly
expressed in neurons, whereas the remainders are expressed
rather ubiquitously (Dai et al., 2018). Almost all adults with
Down syndrome (DS) display neuropathological changes of AD
over 40 years of age due to extra copies of APP attributed to the
trisomy of chromosome 21 (Wiseman et al., 2015; Antonarakis,
2017; Lott and Head, 2019). Furthermore, a genetic variation
observed in individuals with small internal duplications within
chromosome 21 can result in three APP copies in a rare familial
trait known as duplication of APP and can lead to an early-onset
AD (Rovelet-Lecrux et al., 2006; Sleegers et al., 2006; Kasuga et al.,
2009; Thonberg et al., 2011; Hooli et al., 2012; Swaminathan et al.,
2012). In contrast, partial trisomy of chromosome 21 lacking an
extra copy of the APP gene does not promote AD (Prasher et al.,
1998; Korbel et al., 2009). The APP copy number is also
mosaically amplified in the neurons of late-onset sporadic AD
brains (Bushman et al., 2015). Additionally, genomic variations
within APP promoter can upregulate its expression thereby
increasing the risk of AD (Prasher et al., 1998; Guyant-
Maréchal et al., 2007). This implies that the genetic variations
involving an increase inAPPmRNA levels are associated with AD
pathophysiology. Moreover, increasedAPP expression levels have
been detected in the brain, particularly in the entorhinal cortex
neurons containing neurofibrillary tangles in AD patients (Cohen
et al., 1988; Higgins et al., 1988; Guttula et al., 2012). Together,
APP expression levels can impact the pathological processes in
AD. Here, we summarized the literature relevant to this issue,
specifically focusing on both transcriptional and post-
transcriptional regulation of APP mRNA, and examined their
roles in AD pathogenesis.

TRANSCRIPTIONAL REGULATION OF APP

In this section, we summarized the annotated genomic features of
the human APP promoter/enhancer and its transcriptional
regulators.

APP Promoter/Enhancer Activity
The promoter of the human APP lacks TATA and CAAT boxes
upstream of the transcription start site but contains a high GC
region with five GGGCGC boxes (Lahiri and Robakis, 1991)
(Figure 1A), which adapts to the typical characteristics of a
housekeeping gene (Smale and Kadonaga, 2003). The proximal
region of the promoter from –150 to –10 base pairs (bp) contains
the minimum essential elements for APP promoter activity (Lahiri
and Robakis, 1991; Lahiri and Nall, 1995). The region from − 600
to − 460 bp acts as a transcriptionally positive regulator; in
particular, a 26 bp positioned between –489 and –462 bp acts
as a strong enhancer. In contrast, the region from –450 to –150 bp
works as a negative regulator. Additionally, the downstream region
of the APP promoter does not match the consensus sequences for
any of the downstream core promoter sequences, such as the
downstream promoter element (DPE), which is generally required
for efficient transcription (Vostrov et al., 2010). However, the
region from + 72 to + 115 has an unknown nuclear factor-binding
domain termed as DNase I protected domain (DAPB), which is
required for APP promoter activity in HeLa cells.

Stimulating Protein 1 (SP-1)
SP-1 belongs to the Sp/KLF family of transcription factors and
directly binds to the DNA sequence by its own zinc finger motif to
enhance gene transcription in response to oxidative stress and
hypoxia (Yeh et al., 2011). Indeed, SP-1 binds to the APP
promoter (Figure 1A and Table 1) and accelerates the
production of APP transcripts (Pollwein, 1993; Hattori et al.,
1997; Basha et al., 2005). The SP-1 binding site partially overlaps
with the APP promoter binding α (APBα) domain (Figure 1A),
an intact nuclear factor-binding site essential for APP
transcription. Additionally, the upstream transcription factor
(USF), a basic helix-loop-helix transcription factor, also binds
to the APBα domain Vostrov et al. (1995) and contributes to an
increased APP expression in neurons (Yang et al., 1999).

Activator Protein-1 (AP-1)
AP-1 is a heterodimer composed of proteins belonging to the c-Fos,
c-Jun, activating transcription factors (ATFs), and Jun dimerization
protein (JDP) families (Shaulian and Karin, 2002). AP-1 regulates
gene expression in response to numerous stimuli, including
cytokines, growth factors, and stress (Shaulian and Karin, 2002;
Hess et al., 2004). Although two putative AP-1 recognition sites are
located at the APP promoter, the distal AP-1 recognition site alone
is sufficient for transcriptional activation by AP-1, such as c-Fos/-
Jun heterodimer, rather than the proximal site (Trejo et al., 1994;
Lahiri and Ge, 2004) (Figure 1A and Table 1).

CCCTC-Binding Factor (CTCF) and
Transforming Growth Factor-β (TGF-β)
CTCF is generally a multifunctional positive or negative regulator
of various target genes and plays a key role in transcriptional
insulation (Quitschke et al., 2000). CTCF contains tandem 11
zinc finger motifs, of which five to seven zinc fingers are required
for binding to positions –98 and –83 bp of the human APP
promoter, which was formerly designated as APBβ, another intact
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nuclear factor-binding site essential for APP transcription
(Quitschke and Goldgaber, 1992; Quitschke, 1994; Quitschke
et al., 2000) (Figure 1A and Table 1). APBβ is also responsive
to TGF-β, a multifunctional cytokine, in which two TGF-β
signaling mediators, mothers against decapentaplegic homolog
3 (SMAD3) and SMAD4, associate with CTCF on the APBβ and
promote APP transcription in cooperation with SP-1 (Burton
et al., 2002; Docagne et al., 2004).

TGF-β is also implicated in the post-transcriptional regulation
of APP. A TGF-β-responsive protein forms a 68 kDa RNA-protein
complex and is proposed to stabilize the APP transcript by binding
to the 81 nt sequence within the APP 3′UTR, increasing its
translation (Amara et al., 1999; Westmark and Malter, 2012).

Heat Shock Transcription Factor 1 (HSF-1)
The transcription of APP is stimulated by various stress factors
such as heat shock and treatment with ethanol and arsenite
(Dewji et al., 1995). The HSF1 binds to the heat shock
element (HSE) of the APP promoter (Dewji and Do, 1996)

(Figure 1A and Table 1). It acts as a primary mediator of
stress-responsive transcription of pro-survival genes, including
heat shock proteins (Akerfelt et al., 2010). Under normal
conditions, HSF1 is predominantly localized in the cytoplasm
in a repressed monomeric form. Upon stress, HSF1 trimerizes
and accumulates in the nucleus, where it binds to HSE.

Nuclear Factor (NF)-κB/Rel
The NF-κB transcription factor forms a dimer composed of NF-κB/
Rel family subunits including NF-κB1/p50 and regulates
transcription of genes involved in immune and inflammatory
responses in response to stimuli such as inflammation and
disease (Dresselhaus and Meffert, 2019). NF-κB1/p50-containing
complex, widely expressed in neurons and glial cells in the human
brain, is activated through the canonical NF-κB pathway
extracellularly stimulated by cytokines and neurotransmitter in
neurons, where it plays important roles for neuroprotective
functions including anti-apoptosis under the neurodegenerative
condition, but not well-defined in glial cells. To activate APP

FIGURE 1 | Schematic representation of the transcriptional and post-transcriptional regulation of APP. (A). The promoter structure and regulating factors for the
APP transcription. (B). cis-regulatory elements and trans-acting factors for the post-transcriptional regulation. APP, amyloid-β precursor protein; SP-1, putative SP-1
binding site; AP-1, putative AP-1 binding site; HSP, heat shock element; DAPB, DNase I protected domain; ARE, androgen response element; AR, androgen receptor.
IRES, internal ribosome entry site; IRE, iron responsive element; ITEE, interleukin-1 translation enhancer element; IRP1, iron response protein 1; 52 nt, 52 nt
element; 29 nt, 29 nt element; 80 nt, 80 nt element.

Frontiers in Aging | www.frontiersin.org August 2021 | Volume 2 | Article 7215793

Sato et al. Regulatory Mechanisms for APP mRNA

https://www.frontiersin.org/journals/aging
www.frontiersin.org
https://www.frontiersin.org/journals/aging#articles


transcription, the NF-κB1/p50-containing complex specifically
recognize APPκB sites in the distal APP promoter, where IL-1
and glutamate enhance its binding activity (Grilli et al., 1995; Grilli
et al., 1996) (Figure 1A and Table 1).

Androgen
Androgens are natural steroid hormones that regulate various
physiological phenomena taking place in several tissues and
organs, including the brain, by binding to the androgen
receptor (AR), a member of the nuclear receptor superfamily
(Chang et al., 2013; Takayama and Inoue, 2013). After ligand

binding, the AR homodimer translocates into the nucleus, where
it binds to the androgen-responsive element (ARE), and
subsequently activates gene expression often with epigenetic
changes in the chromatin state (Tewari et al., 2012;
Nevedomskaya et al., 2016; Nadal et al., 2017; Stelloo et al.,
2019). APP is a primary androgen-regulated gene in human
neuronal and prostate cancer cells (Takayama et al., 2009;
Takayama et al., 2019). In neurons, AR directly binds to the
ARE located within the genomic regions corresponding to the
15th intron of the APP gene (Takayama et al., 2019) (Figure 1A
and Table 1). Notably, the chromatin binding level of histone H3

TABLE 1 | List of transcriptional and post-transcriptional regulators for the APP expression.

Name Mechanism APP
level

References

Transcription
SP-1 Activate APP transcription through binding to the SP-1 element within the APP

promoter
Up Lahiri and Robakis, (1991)

Pollwein, (1993)
Lahiri and Nall, (1995)
Hattori et al. (1997)

AP-1 Activate APP transcription through binding to the AP-1 element within the APP
promoter

Up Trejo et al. (1994)
Lahiri and Ge, (2004)

CTCF Activate APP transcription through binding to the APBβ domain within the APP
promoter

Up Quitschke and Goldgaber,
(1992)
Quitschke, (1994)
Quitschke et al. (2000)

HSF1 In response to stress, activate APP transcription through binding to the HSE within
the APP promoter

Up Dewji et al. (1995)
Dewji and Do, (1996)

NF-κB/Rel Activate APP transcription through binding to two binding motifs at the distal APP
promoter

Up Grilli et al. (1995)
Grilli et al. (1996)

USF Activate APP transcription through binding to the APBα domain within the APP
promoter

Up Vostrov et al. (1995)
Yang et al. (1999)

Androgen Activate APP transcription through binding to ARE within the APP intron Up Takayama et al. (2009)
Takayama et al. (2019)

ApoE Activate MAP kinase signal and c-Fos phosphorylation (AP-1) Up Huang et al. (2017)

Post-transcription
Iron Dissociate IRP1 from IRE by binding, eliciting the APP translation Down Rogers et al. (2008)

Cho et al. (2010)
IL-1 Bind to the IL-1 translational enhancer element at the APP 5′UTR, increasing its

stability
Up Rogers et al. (1999)

TGF-β Modulate the 81 nt element-mediated stabilization of APP mRNA Up Amara et al. (1999)
FMRP Bind to the G-rich motif, inhibiting the APP translation Down Westmark and Malter, (2007)

Inhibit eIF4E with CYFIP1 Napoli et al. (2008)
hnRNP C Bind to the G-rich motif and the 29 nt element, increasing the APP mRNA stability Up Rajagopalan et al. (1998)
Rck/p54 Bind to the 52 nt element, increasing the APP mRNA stability Up Broytman et al. (2009)
PSF/SFPQ Stabilize APP mRNA through interaction Up Takayama et al. (2019)
miR-106a (*) Bind to 3′UTR of APP transcript, and lead the miRNA-mediated repression Down Patel et al. (2008)
miR-520c (*) Hébert et al. (2009)
miR-20a family (miR-20a, miR-17, miR-
106b) (*)

Vilardo et al. (2010)

miR-101 (*) Delay et al. (2011)
miR-135 (*) Long and Lahiri, (2011)
miR-200b (*) Liang et al. (2012)
miR-193 (*) Long et al. (2012)
miR-298 (*) Barbato et al. (2014)
miR-16 Liu et al. (2014a)
miR-153 Liu et al. (2014b)
miR-147 Galimberti et al. (2014)
miR-323-3p Zhang et al. (2015)
miR-644 Liu et al. (2019)
miR-655 Chopra et al. (2020)
miR-15b-5p
miR-346 (*) Bind to IRE in the APP 5′UTR and upregulate its translation Up Long et al. (2019)

Asterisk (*) indicates miRNA of which functional involvement has been investigated using human brain tissue or neuronal cells.
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acetylated at lysine 9 (H3K9ac), a transcriptionally active histone
mark, at the APP promoter is enhanced with overexpression of
AR. Importantly, the androgen concentration declines with age in
serum and brain (Rosario et al., 2011; Grimm et al., 2016;
Gaignard et al., 2017) and is likely associated with AD
development (Gouras et al., 2000; Wahjoepramono et al.,
2008; César et al., 2016; Jayadevappa et al., 2019).

Apolipoprotein E (ApoE)
ApoE is a major component of low-density lipoprotein (LDL) and
very-low-density lipoprotein (VLDL). It acts on the metabolism
of fats, including the transportation of lipids, fat-soluble vitamins,
and cholesterol into the lymph and blood by binding to the LDL
receptor (LDLR) (Goldstein and Brown, 2015). Although it is
largely synthesized in the liver, the elevated expression has also
been characterized in the brain, primarily in the astrocytes
(Holtzman et al., 2012; Wang and Eckel, 2014). Humans
harbor three major ApoE alleles: ApoE-ε2, ApoE-ε3, and
ApoE-ε4 (Ghebranious et al., 2005; Eisenberg et al., 2010).
Importantly, ApoE-ε4 is a well-known genetic risk factor for
atherosclerosis and AD in the brain, unlike ApoE-ε2 and ApoE-
ε3 (Strittmatter et al., 1993; Farrer et al., 1997; Huang et al., 2017).
In the human brain, ApoE proteins secreted from the glia
stimulate APP transcription and Aβ production with different
efficacy in the neurons (Huang et al., 2017; Vogrinc et al., 2021).
In this pathway, secreted ApoE protein binds to the LDLR on the
neuron surfaces and activates a non-canonical MAP kinase
signaling pathway mediated by DLK, MKK7, and ERK1/2
(Figure 1A and Table 1). Subsequently, c-Fos, a subunit of
AP-1, is phosphorylated (Shaulian and Karin, 2002), in turn
enhances AP-1–dependent APP transcription (Huang et al.,
2017). Notably, ApoE-ε4 is also involved in the recognition
and engulfing of Aβ in the brain (Strittmatter et al., 1993;
Farrer et al., 1997).

POST-TRANSCRIPTIONAL REGULATION
OF APP

Wehave reviewed the cis-regulatory elements of theAPP transcript
and trans-acting factors for the post-transcriptional regulation
of APP.

Iron
The APP 5′untranslated region (UTR) contains an internal
ribosome entry site (IRES), an iron-responsive element (IRE),
and an interleukin-1 (IL-1) translation enhancer element
(Figure 1B and Table 1). The IRES is a specialized RNA
element that allows the recruitment of eukaryotic ribosomes to
mRNA, regardless of the presence of the 5′cap (Hellen and
Sarnow, 2001; López-Lastra et al., 2005); therefore,
endogenous APP is translated in a cap-independent manner
(Beaudoin et al., 2008). In the absence of iron, iron response
protein 1 (IRP1), an iron-dependent translational repressor, is
presumed to bind to the IRE of the APP transcript. This prevents
the recruitment of the 40 S ribosome at the 5’cap, subsequently
repressing the translation (Rogers et al., 2008; Cho et al., 2010).

Interleukin-1 (IL-1)
An IL-1 translation enhancer element (ITEE), also known as IL-1
acute box, is present close to IRE, (Rogers et al., 2002; Rogers
et al., 2008; Ruberti et al., 2010; Bandyopadhyay et al., 2013)
(Figure 1B and Table 1). IL-1α and IL-1β, are a group of IL-1
cytokines that play a crucial role in regulating immune and
inflammatory responses to not only infections but also in all
inflammatory, physiological or pathological phenomena
(Dinarello, 2018; Kaneko et al., 2019). It is also known to be
increased in the brains of AD patients (Cacabelos et al., 1994;
Shaftel et al., 2008; Italiani et al., 2018). Using CAT assay, a 90 nt
element in the APP 5′UTR, which includes the enhancer element,
was found to enhance its translation without changing the steady-
state mRNA level (Rogers et al., 1999; Westmark and Malter,
2012), indicating that IL-1 post-transcriptionally upregulates
APP translation.

Fragile X Mental Retardation Protein
(FMRP)
The protein-coding region of APP contains a G-rich motif that
interacts with the FMRP (Figure 1B and Table 1) which is highly
expressed in the brain. Loss of FMRP causes fragile X syndrome,
largely characterized by cognitive impairment (O’Donnell and
Warren, 2002). FMRP associates with the APP transcript via its
own multiple RNA-binding motifs such as KH motif and RGG
box to repress the translation of APP in a type 1 metabotropic
glutamate receptor (mGluR)-dependent manner; thus,
stimulation of mGluR elicits an increase in the APP
translation (Westmark and Malter, 2007). In addition, FMRP
interacts with cytoplasmic FMR1–interacting protein 1
(CYFIP1), thereby inhibiting APP translation by sequestering
eukaryotic initiation factor 4E (eIF4E) (Napoli et al., 2008).
Notably, loss of FMRP results in the production of excess
soluble APP, which contributes to a deficiency in dendrite
maturation (Pasciuto et al., 2015). Normalizing APP levels in
Fmrp-knockout mice can rescue the fragile X phenotypes
(Westmark et al., 2011), indicating the importance of APP
homeostasis in the development of this disorder.

Heterogeneous Nuclear Ribonucleoprotein
C (hnRNP C)
It has been reported that hnRNP C, a ubiquitous RNA regulatory
protein, competitively binds to the same G-rich motif as FMRP
(Figure 1B and Table 1). It harbors an RNA recognition motif
(RRM) and is associated with pre-mRNAs to regulate RNA
processing, metabolism, and transport (Piñol-Roma and
Dreyfuss, 1993; Han et al., 2010). In contrast to FMRP,
hnRNP C enhances APP translation by binding to the G-rich
motif. Additionally, hnRNP C also binds to the repressive 29 nt
element in the APP 3′UTR, thereby increasing its stability
(Rajagopalan et al., 1998).

Rck/p54
Rck/p54, a member of the DEAD-box family of RNA helicases is
also known as DEAD-box helicase 6 (DDX6). Rck/p54 modulates
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mRNA secondary structures Akao et al. (1995) by binding to the
52 nt elements downstream of the stop codon and increasingAPP
mRNA stability (Broytman et al., 2009) (Figure 1B and Table 1).
Indeed, the helicase activity of Rck/p54 is required for APP
mRNA stability.

Polypyrimidine Tract-Binding Protein-
Associated Splicing Factor/Splicing Factor
Proline- and Glutamine-Rich (PSF/SFPQ)
PSF, also known as SFPQ, is a ubiquitously expressed nuclear
RNA-binding protein (RBP) (Knott et al., 2016). PSF/SFPQ is
mainly localized at the nucleus, in particular to the
membraneless condensates known as paraspeckles, in which
nuclear enriched abundant transcript 1 (NEAT1), an
architectural long non-coding RNA, is bound to core
proteins, including PSF/SFPQ. The latter regulates various
cellular mechanisms such as alternative splicing and nuclear
retention of mRNAs (Nakagawa et al., 2018; Lim et al., 2020).
Importantly, PSF/SFPQ plays a critical role in neural
development as well as in neurodegenerative diseases,
including AD (Ke et al., 2012; Lu et al., 2018; Younas et al.,
2020). It directly binds to the primary APP transcripts in human
neuronal cells, leading to APP mRNA stabilization (Takayama
et al., 2019) (Figure 1B and Table 1).

microRNA (miRNA)
RNA silencing is a nucleotide-sequence-specific regulation of
gene expression mediated by small non-coding RNAs such as
miRNAs (Ghildiyal and Zamore, 2009; Kim et al., 2009; Czech
and Hannon, 2011). In most cases, miRNAs interact with the
3′UTR of target mRNAs to induce their degradation by mRNA
decay or inhibit their translation. In recent years, several
miRNAs have been identified to participate in AD
pathogenesis by regulating the expression of multiple target
genes, including APP. miR-106a and miR-520c were the first
miRNAs experimentally demonstrated to downregulate APP
levels post-transcriptionally (Patel et al., 2008). In subsequent
studies, further 15 miRNAs, as listed in Table 1, have been
identified to bind directly to the 3′UTR of the human APP
transcript and downregulate its expression at the post-
transcriptional level. Unlike most miRNAs, miR-346 interacts
with the APP 5′UTR to promote translation (Long et al., 2019)
(Figure 1B). ThemiR-346 target site overlaps with the IRE at the
APP 5′UTR, where miR-346 would displace IRP1 even at low
iron levels, eliciting APP translation, suggesting that miR-346

may maintain APP homeostasis and prevent the pathogenic
APP cascade in AD.

CONCLUSION

Here, we summarized multiple regulatory mechanisms of APP
mRNA at the transcriptional and post-transcriptional levels,
particularly in the human brain. An imbalance in APP levels
caused by aberrancy of these mechanisms can trigger increased
AD development, as mentioned above.

PERSPECTIVE

Immunotherapy against ApoE improves amyloid-associated
phenotypes rather than Aβ (Xiong et al., 2021), suggesting
elucidation of the regulatory mechanisms of APP expression
can provide effective therapeutic strategies to interrupt the
development or further progression of AD. Moreover, recent
advances in high-throughput sequencing technologies have
facilitated the reconstruction of the entire transcriptional
landscape and RNA–RBP networks in human diseases. In
addition, more recently, RBPs such as transactive response
DNA-binding protein 43 (TDP-43) and fused in sarcoma
(FUS) related to neurodegenerative diseases have been shown
to undergo liquid-liquid phase separation (LLPS). Aberrant
phase transitions of these RBPs in the brain lead to the
disorder (Patel et al., 2015; Wolozin and Ivanov, 2019; Boyko
et al., 2020), suggesting a possible role of LLPS in AD-related
RBPs in APP homeostasis.
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