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We previously synthesized several series of compounds, based on the 5-aryl-2-aminoimidazole scaffold, that showed activity prevent-
ing the formation of Salmonella enterica serovar Typhimurium and Pseudomonas aeruginosa biofilms. Here, we further studied
the activity spectrum of a number of the most active N1- and 2N-substituted 5-aryl-2-aminoimidazoles against a broad panel of
biofilms formed by monospecies and mixed species of bacteria and fungi. An N1-substituted compound showed very strong ac-
tivity against the biofilms formed by Gram-negative and Gram-positive bacteria and the fungus Candida albicans but was previ-
ously shown to be toxic against various eukaryotic cell lines. In contrast, 2N-substituted compounds were nontoxic and active
against biofilms formed by Gram-negative bacteria and C. albicans but had reduced activity against biofilms formed by Gram-
positive bacteria. In an attempt to develop nontoxic compounds with potent activity against biofilms formed by Gram-positive
bacteria for application in antibiofilm coatings for medical implants, we synthesized novel compounds with substituents at both
the N1 and 2N positions and tested these compounds for antibiofilm activity and toxicity. Interestingly, most of these N1-,2N-
disubstituted 5-aryl-2-aminoimidazoles showed very strong activity against biofilms formed by Gram-positive bacteria and C.
albicans in various setups with biofilms formed by monospecies and mixed species but lost activity against biofilms formed by
Gram-negative bacteria. In light of application of these compounds as anti-infective coatings on orthopedic implants, toxicity
against two bone cell lines and the functionality of these cells were tested. The N1-,2N-disubstituted 5-aryl-2-aminoimidazoles in
general did not affect the viability of bone cells and even induced calcium deposition. This indicates that modulating the substi-
tution pattern on positions N1 and 2N of the 5-aryl-2-aminoimidazole scaffold allows fine-tuning of both the antibiofilm activity
spectrum and toxicity.

Biofilms are complex, condition-dependent, surface-associated
communities of microorganisms embedded in a self-produced

matrix (1–4). The bacteria within biofilms are up to 1,000 times more
tolerant of antibiotics, disinfectants, and other stress factors, and this
tolerance strongly impedes antimicrobial treatment (5). Hence, per-
sistent biofilm infections and contaminations often occur and cause a
tremendous amount of problems in various sectors, including the
medical, food industry, household, and agricultural sectors (6–8). In
the medical sector, biofilms are often associated with implantable
devices (9–12). Staphylococci are the principal microorganisms that
colonize these devices. They comprise up to two-third of all patho-
gens in orthopedic implant infections, where they can cause septic
arthritis and osteomyelitis, resulting in the inflammatory destruction
of bones and joints (13). The dimorphic fungus Candida albicans,
the most frequent cause of candidiasis, is also often associated
with the formation of biofilms on the surface of medical devices
and tissues in general (14).

Given the extent of problems caused by biofilms, there has
been a strong effort to develop novel antibiofilm strategies (15–
19). One of the most promising approaches is the use of com-
pounds able to prevent or eradicate biofilms without affecting the
planktonic growth of the microorganisms (20, 21). These specific
antibiofilm compounds are believed to be less prone to resistance

development. They could be used in several applications, one of
which is as antibiofilm coatings on the surface of implantable
medical devices, such as orthopedic implants or dental implants
(22–25).

We have previously reported on several series of specific anti-
biofilm compounds based on the 2-aminoimidazole (2-AI) scaf-
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fold. As illustrated in Fig. 1, these series include the monosubsti-
tuted 5-aryl-2-AIs (5-Ar-2-AIs) (26), N1-substituted 5-Ar-2-AIs
(26), 2N-substituted 5-Ar-2-AIs (27), 4,5-disubstituted 2-AIs
(26), 1,4,5-trisubstituted 2-AIs (28), and 2-AI–triazole conjugates
(29). These compounds were shown to display activity preventing
the formation of biofilms of Salmonella enterica serovar Typhimu-
rium, one of the most important causes of foodborne infections
worldwide and a notorious biofilm former both inside and outside
the host, and of Pseudomonas aeruginosa, an opportunistic Gram-
negative bacterial pathogen that can infect immunocompromised
people, such as cystic fibrosis patients, and cause life-threatening
chronic lung infections (30). Moreover, P. aeruginosa biofilms can
occur on a variety of medical devices, such as intravascular and
urinary catheters. The molecular mechanism of the antibiofilm
activity of 5-phenyl-2-aminoimidazole was studied in S. Typhi-
murium (31). It was shown that this compound reduces the tran-
scription of CsgD, the master regulator of biofilm formation, and
its regulon genes, csgB and adrA (involved in curli and cellulose
production, respectively [32]), during the first 24 h of biofilm
formation. This indicates that under the influence of the com-
pound, Salmonella forms fewer biofilm matrix components,
thereby at least partly explaining the inhibitory mode of action of
the 2-aminoimidazoles.

During the past decade, several synthetic methodologies lead-
ing to diversely substituted 2-AIs have been published (28, 29,
33–35). Our research group has developed a diversely oriented
approach toward 2-AIs from 2-aminopyrimidines and �-bro-
moketones, as shown in Fig. 2. By switching reaction conditions,
the selective synthesis of either N1-substituted 2-AIs or 2N-sub-
stituted 2-AIs can be achieved.

In the search for new antibiofilm compounds, most attention
has been focused on monospecies biofilms. However, it has be-
come clear that in nature biofilms often consist of more than one
microbial species (36–41). For instance, it is estimated that 27% of
nosocomial C. albicans bloodstream infections are polymicrobial,
with Staphylococcus aureus being the third most common organ-
ism isolated in conjunction with C. albicans (42, 43). Within
mixed biofilms, bacteria preferably interact with hyphal C. albi-
cans cells (44, 45). Mixed-species biofilms are often more resilient

than single-species biofilms, which has further implications for
their control and manipulation in a variety of applications (36, 37,
46–53). In mixed biofilms of S. aureus and C. albicans cells, for
instance, the S. aureus cells show enhanced resistance to vancomy-
cin, an effect which is in part mediated by the C. albicans matrix
(47, 54). Therefore, nowadays multispecies biofilms are included
in many more preclinical research activities.

In the current study, we further explored the activity spectrum
of a number of the most active previously reported 2-AIs against a
broad panel of monospecies and mixed-species biofilms consist-
ing of bacteria and fungi. Our microbial test panel included S.
aureus and Staphylococcus epidermidis (Gram-positive cocci),
which can colonize different types of implantable devices (9),
chronic wounds (4), and catheters (55, 56); Porphyromonas gingi-
valis (a Gram-negative bacteroidetes), an important constituent
in dental plaque biofilms involved in periodontal diseases (57);
Escherichia coli (a Gram-negative gammaproteobacterium) known
to form biofilms on inter alia urinary catheters (4), plant material
(58), and food (contact) surfaces (59); Serratia liquefaciens (a
Gram-negative gammaproteobacterium), capable of colonizing a
wide variety of surfaces in water, soil, the digestive tracts of ro-
dents, plants, insects, fish, and humans (nosocomial infections)
(60); Burkholderia cepacia (a Gram-negative betaproteobacte-
rium), involved in biofilm infections in the lungs of cystic fibrosis
patients (61); and C. albicans, an opportunistic fungal pathogen

FIG 1 Classes of 5-aryl-substituted 2-AIs with antibiofilm activity reported by our group (26–29). OMe, methoxy group, SMe, methylthio group; Ph, phenyl group.

FIG 2 Diversely oriented approach toward 2-AIs developed by our research
group (34, 94). R1 � alkyl, c-alkyl, aryl; R2 � H, aryl; R3 � aryl.
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capable of invading any site of the human host, from deep tissues
and organs to superficial sites, implants, and catheters (62), along
with the previously tested bacteria S. Typhimurium and P. aerugi-
nosa (Gram-negative gammaproteobacteria).

We show that the N1-substituted compounds have broad ac-
tivity but are toxic, whereas the 2N-substituted compounds are
nontoxic but lack a broad spectrum of activity against Gram-pos-
itive bacteria. We hypothesized that 5-Ar-2-AIs substituted at
both the N1 and 2N positions might combine the broad-spectrum
activity of the N1-substituted compounds (or at least the activity
against Gram-positive bacteria) with the low toxicity of the 2N-
substituted compounds. A series of eight N1-,2N-disubstituted
5-Ar-2-AIs was synthesized and tested for antibiofilm activity and
toxicity against bone cells. A first motivation for evaluation of
toxicity against bone cells is that the expected antibiofilm activity
profile of these compounds makes them well suited for applica-
tion in antibiofilm coatings for implants, such as orthopedic im-
plants (11, 13). The second motivation is that it allows an easy
comparison with the toxicity of the previously described 5-Ar-2-
AIs, which has been evaluated using the same assays used in the
present study (36). The novel compounds were indeed shown to
be nontoxic and have a broad spectrum of activity against Gram-
positive bacteria; however, this broad spectrum of activity was at
the cost of the loss of their antibiofilm activity against Gram-
negative bacteria.

MATERIALS AND METHODS
Chemistry. All solvents and reagents were purchased from commercial
sources and were used without prior purification. This-layer chromatog-
raphy analysis was performed on aluminum-backed plates. The products
were purified by silica gel (200- to 300-mesh) column chromatography.
All nuclear magnetic resonance (NMR) spectra were recorded on a Bruker
Avance 300 spectrometer at 300 MHz (1H) and at 75 MHz (13C). The 1H
and 13C chemical shifts are reported in parts per million relative to the
signal for tetramethylsilane using the residual solvent signal as the internal
reference. The following abbreviations were used to designate chemical
shift multiplicities: s, singlet; d, doublet; dd, doublet of doublets; t, triplet;
dt, doublet of triplets; q, quartet; p, pentet; and m, multiplet. The 13C
NMR spectra are proton decoupled. 2-Aminoimidazole compounds 1 to
7 were synthesized according to established literature procedures (27–
29, 34).

General procedure for the synthesis of N-substituted 2-aminoimi-
dazole compound 8. To a solution of 2-aminoimidazole in toluene was
added isobutyraldehyde or cylcopentanon (1.2 equivalents). The mixture
was stirred at 120°C for 3 h. After cooling to room temperature, the sol-
vent was reduced in vacuo. The crude intermediate was dissolved in meth-
anol and cooled to 0°C. NaBH4 (4 equivalents) was added portion wise.
The reaction was stirred for 16 h at room temperature. The solvent was
reduced in vacuo, and the crude product was taken up in water and ex-
tracted with ethyl acetate. The resulting organic phases were washed with
brine, dried over sodium sulfate, filtered, and concentrated in vacuo. The
products were purified by chromatography over silica gel with ethyl ace-
tate-heptane (7:3) as the eluent.

NMR spectra are provided in the supplemental material.
Strains and growth media. The strains P. aeruginosa PA14 (63), Esch-

erichia coli TG1 (64), E. coli MG1655 (65), S. enterica serovar Typhimu-
rium ATCC 14028 (66), Porphyromonas gingivalis ATCC 33277 (67), Ser-
ratia liquefaciens MG44 (68), Burkholderia cepacia LMG1222T (69), C.
albicans SC5314 (70), Staphylococcus aureus ATCC 6538, S. aureus
SH1000 (71, 72), and Staphylococcus epidermidis (73) were used in this
study. Overnight cultures of C. albicans SC5314 were grown with aeration
in 1% yeast extract, 2% peptone, and 2% dextrose (YPD) at 30°C. Over-
night cultures of E. coli TG1, S. Typhimurium ATCC 14028, S. liquefaciens

MG44, B. cepacia LMG1222T, S. aureus ATCC 6538, S. aureus SH1000,
and S. epidermidis were grown with aeration in lysogeny broth (LB) at
37°C (64). Overnight cultures of P. gingivalis ATCC 33277 were grown
anaerobically (Anoxomat, AN20°; Mart Microbiology, Drachten, the
Netherlands) in LB at 37°C. Overnight cultures of P. aeruginosa PA14
were grown with aeration in LB or in tryptic soy broth (TSB) at 37°C.
Overnight cultures of E. coli MG1655 were grown with aeration in TSB at
37°C. Phosphate-buffered saline (PBS) was prepared by combining 8.8 g
liter�1 NaCl, 1.24 g liter�1 K2HPO4, and 0.39 g liter�1 KH2PO4 (pH 7.4).
RPMI 1640 medium with L-glutamine and without sodium bicarbonate
was purchased from Sigma and buffered to pH 7.0 with MOPS (morpho-
linepropanesulfonic acid; Sigma, St. Louis, MO) (final concentration,
165 mM).

Monospecies antibiofilm assays. (i) Inhibition of bacterial biofilms.
A static peg assay, described previously (27, 74), was used for bacterial
biofilm formation. The Calgary biofilm device consists of a platform car-
rying 96 polystyrene pegs (Nunc no. 445497) that fits as a microtiter plate
lid, with 1 peg hanging into each microtiter plate well (Nunc no. 269789).
Twofold serial dilutions of the compounds (dissolved in 100% dimethyl
sulfoxide [DMSO] or ethanol) in 100 �l liquid broth (TSB diluted 1/20)
per well were prepared in the microtiter plate in duplicate or triplicate
with a maximum concentration of 1,600 �M and a minimum concentra-
tion of 0.8 �M. Subsequently, an overnight culture of S. Typhimurium
ATCC 14028, P. aeruginosa PA14, E. coli TG1, S. epidermidis, S. aureus
SH1000, or S. aureus ATCC 6538 (all grown in LB) was diluted 1:100 into
TSB diluted 1/20 (or TSB for S. epidermidis, S. aureus SH1000, and S.
aureus ATCC 6538), whereas overnight cultures of S. liquefaciens MG44
and B. cepacia LMG1222T were diluted 1:50 into TSB diluted 1/20. P.
gingivalis ATCC 33277 cultures were diluted in TSB diluted 1/20 to have a
final concentration of 1 � 108 cells/ml. Next, 100 �l was added to each
well of the microtiter plate, resulting in a total volume of 200 �l medium
per well (final concentration range of compounds, 800 �M [2% DMSO or
ethanol] to 0.4 �M [0.001% DMSO or ethanol]). In the next step, the
pegged lid was placed on the microtiter plate and the plate was incubated
for 24 h or 48 h at 25°C or 37°C without shaking. At 37°C, the plates were
placed in a sealed container with wet towels on the bottom to prevent
evaporation of the growth medium. Biofilms of P. gingivalis ATCC 33277
were grown anaerobically at 37°C for 72 h. During this incubation period,
biofilms were formed on the surface of the pegs. After incubation, the
optical density at 600 nm (OD600) for the planktonic cells in the microtiter
plate was measured using a Synergy MX multimode reader (BioTek, Win-
ooski, VT). This gives a first indication of the effect of the compounds on
planktonic growth. For quantification of biofilm formation, the pegs were
washed once in 200 �l PBS. The remaining attached bacteria were stained
for 30 min with 200 �l 0.1% (wt/vol) crystal violet in an isopropanol-
methanol-PBS solution (1:1:18, vol/vol). Excess stain was rinsed off by
placing the pegs in a 96-well plate filled with 200 �l distilled water per well.
After air drying of the pegs (30 min), the dye bound to the adherent
biofilm was extracted with 30% glacial acetic acid (200 �l per well of a
96-well plate). The optical density at 570 nm (OD570) of each well was
measured using a Synergy MX multimode reader (BioTek, Winooski,
VT). The concentration of each compound needed to inhibit biofilm for-
mation by 50% (BIC50) and the concentration of each compound needed
to inhibit planktonic growth by 50% (IC50) were determined from the
concentration gradient by using nonlinear curve fitting (GraphPad Prism
software, version 5; GraphPad Software, Inc., La Jolla, CA). In the same
assay, the effect on planktonic growth was evaluated. The activity was
considered biofilm specific if the BIC50 was at least two times lower than
the IC50. Data represent the means from at least 3 technical repeats with
the corresponding 95% confidence intervals (provided in the supplemen-
tal material).

(ii) Inhibition of C. albicans biofilms. The potential of the com-
pounds to prevent C. albicans SC5314 biofilm formation was assessed
using the CellTiter-Blue (CTB) quantification method (75). For the CTB
method, an overnight culture of C. albicans SC5314 was washed with PBS
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and a suspension of 106 cells/ml (OD600 � 0.1) was prepared in RPMI
1640 medium (pH 7.0). Twofold serial dilutions of the compounds (dis-
solved in 100% DMSO or ethanol) in 100 �l RPMI 1640 medium per well
were prepared in a round-bottom polystyrene 96-well microtiter plate
(TPP; Trasadingen, Switzerland) in duplicate or triplicate with a maxi-
mum concentration of 1,600 �M and a minimum concentration of 0.8
�M. One hundred microliters of the cell suspension was added to each
well of the microtiter plate, resulting in a total volume of 200 �l medium
per well (final concentration range of compounds, 800 �M [2% DMSO or
ethanol] to 0.4 �M [0.001% DMSO or ethanol]). After 16 h of static
incubation at 37°C, the biofilms were washed and quantified by the CTB
method as described previously (73).

Mixed-species antibiofilm assays. (i) E. coli-P. aeruginosa biofilms.
Overnight cultures of E. coli TG1 and P. aeruginosa PA14 were diluted
1/100 in the same vial of TSB diluted 1/20 to form a mixed-culture sus-
pension. Next, 2-fold serial dilutions of the compounds (dissolved in
100% DMSO or ethanol) in 100 �l liquid broth (TSB diluted 1/20) per
well were prepared in the microtiter plate of the Calgary biofilm device
(Nunc no. 269789) in duplicate or triplicate with a maximum concentra-
tion of 1,600 �M and a minimum concentration of 0.8 �M. One hundred
microliters of the mixed-culture suspension was added to each well of the
microtiter plate, resulting in a total volume of 200 �l medium per well
(final concentration range of compounds, 800 �M [2% DMSO or etha-
nol] to 0.4 �M [0.001% DMSO or ethanol]). The pegged lid was placed on
the microtiter plate, and the plate was incubated for 72 h at 37°C, which
allowed biofilm formation on the pegs (Nunc no. 269789) of the Calgary
biofilm device. After 72 h, the biofilm was colored with crystal violet as
described above (74). The OD570 (biofilm cells) and OD600 (planktonic
cells) were measured, and the BIC50 and the IC50, respectively, were cal-
culated.

(ii) S. aureus-S. epidermidis biofilms. Overnight cultures of S. aureus
ATCC 6538 and S. epidermidis were grown in LB medium and were di-
luted 1/200 in the same vial of TSB to form a mixed-culture suspension.
Next, 2-fold serial dilutions of the compounds (dissolved in 100% DMSO
or ethanol) in 100 �l TSB medium per well were prepared in the micro-
titer plate (Nunc no. 269789) in duplicate or triplicate with a maximum
concentration of 1,600 �M and a minimum concentration of 0.8 �M.
One hundred microliters of the mixed-culture suspension was added to
each well of the microtiter plate, resulting in a total volume of 200 �l
medium per well (final concentration range of compounds, 800 �M [2%
DMSO or ethanol] to 0.4 �M [0.001% DMSO or ethanol]). The cells were
then incubated for 48 h at 37°C, which allowed biofilm formation on the
pegs (Nunc no. 269789) of the Calgary biofilm device. After 24 h, fresh
medium with compounds was added to the wells, and after 48 h, the
biofilm was colored with crystal violet as described above (74). The OD570

(biofilm) and OD600 (planktonic) were measured, and the BIC50 and the
IC50, respectively, were calculated.

(iii) C. albicans-E. coli biofilms. Overnight cultures of C. albicans
SC5314 (YPD) and E. coli MG1655 (TSB) were washed three times with
PBS, after which they were diluted in RPMI 1640 medium to OD600s of 1
and 0.01, respectively. Equal volumes of these cell suspensions were
mixed, and 100 �l of this mixed cell suspension together with compound
was added to the wells of a microtiter plate in triplicate. Concentrations of
25 �M (0.0625% DMSO or ethanol) and 100 �M (0.25% DMSO or eth-
anol) were tested. After 24 h of incubation at 37°C, the medium was
removed and the biofilm was washed with PBS. Next, the cells were resus-
pended in 100 �l of PBS by scraping them off, sonicated (1 min, 45 kHz;
USC300-T; VWR, Radnor, PA, USA), and vigorously pipetted up and
down. Finally, dilution series were made, and quantification of the E. coli
MG1655 and C. albicans SC5314 populations was performed using selec-
tive plating on tryptic soy agar (TSA) plates containing 25 mg/liter am-
photericin B and YPD plates containing 100 �g/ml tetracycline, respec-
tively. The percentage of C. albicans SC5314 and E. coli MG1655 cells
relative to the number of cells after DMSO or ethanol control treatment
was determined.

(iv) C. albicans-S. epidermidis biofilms. Overnight cultures of C.
albicans SC5314 (YPD) and S. epidermidis (TSB) were diluted in RPMI
1640 medium to OD600s of 0.05 and 0.01, respectively. Equal volumes of
the cell suspensions of each organism were mixed before use. One hun-
dred microliters of this mixed cell suspension together with compound
was added to the wells of a round-bottom microtiter plate (TPP; Trasa-
dingen, Switzerland) in triplicate. Concentrations of 25 �M (0.0625%
DMSO or ethanol) and 100 �M (0.25% DMSO or ethanol) were tested.
After 24 h of incubation at 37°C, the biofilms were washed with PBS and
fresh medium with or without compounds was added. After a further
incubation for 48 h at 37°C, the biofilms were washed with PBS, after
which the cells were resuspended in 100 �l of PBS by scraping them off,
sonicated (1 min, 45 kHz; USC300-T; VWR, Radnor, PA, USA), and
vigorously pipetted up and down. Finally, the biofilm cells were diluted in
PBS and plated on YPD agar plates containing 100 mg/liter ampicillin and
TSA plates containing 25 mg/liter amphotericin B to determine the num-
ber of fungal and bacterial CFU, respectively, after 2 days of incubation at
37°C. The percentage of C. albicans SC5314 and S. epidermidis cells rela-
tive to the number of cells after DMSO or ethanol control treatment was
determined.

(v) C. albicans-S. aureus biofilms. Overnight cultures of C. albicans
SC5314 (YPD, 30°C) and S. aureus SH1000 (LB, 37°C) were washed with
PBS, after which they were diluted in RPMI 1640 medium to obtain cell
suspensions of 106 cells/ml for fungal cells and 108 cells/ml for bacteria.
Equal volumes of these cell suspensions were mixed, and 100 �l of this
mixed cell suspension together with compound was added to the wells of
a microtiter plate in triplicate. Concentrations of 25 �M (0.0625% DMSO
or ethanol) and 100 �M (0.25% DMSO or ethanol) were tested. The plates
were incubated at 37°C for 90 min. After incubation, the wells were
washed twice with PBS, and 200 �l of fresh RPMI 1640 medium with or
without compounds was added in triplicate to the wells. After 24 h of
incubation at 37°C, the medium was removed and the biofilm was washed
with PBS. Next, the cells were resuspended in 100 �l of PBS by scraping
them off, sonicated (1 min, 45 kHz; USC300-T; VWR, Radnor, PA, USA),
and vigorously pipetted up and down. Finally, dilution series were made,
and quantification of the S. aureus SH1000 and C. albicans SC5314 pop-
ulations was performed using selective plating on TSA plates containing
25 mg/liter amphotericin B and YPD plates containing 100 �g/ml tetra-
cycline, respectively. The percentage of C. albicans SC5314 and S. aureus
SH1000 cells relative to the number of cells after DMSO or ethanol control
treatment was determined.

Mammalian cell viability assay. The viability of two human primary
cell types, namely, osteoblasts (OB) and bone marrow-derived mesenchy-
mal stem cells (MSC), was tested according to the ISO 10993-5 standard,
as previously described (76). Briefly, cells were seeded in 96-well tissue
culture test plates (TPP; Trasadingen, Switzerland) at 5 � 103 cells/cm2 in
cell culture medium (advanced Dulbecco modified Eagle’s medium
[DMEM]) supplemented with 10% serum, 1� GlutaMAX, and 0.05
mg/ml gentamicin and were allowed to attach overnight. On the next day,
the cells were exposed to (i) cell culture medium and medium with the
corresponding control (0.5% ethanol or DMSO; negative controls), (ii)
medium with 0.05% phenol (cytotoxic control), and (iii) medium with
compounds (12.5 �M) and incubated for 2 h, 48 h, and 6 days (8 repeats
for each condition). At each time point, the numbers of viable and dead
cells were determined directly by trypan blue staining and indirectly by
measuring metabolic activity with 3-(4,5-dimethylthiazol-2-yl)-2,5-di-
phenyltetrazolium bromide (MTT) staining.

(i) Trypan blue staining. The medium was removed from the wells,
1/3 trypan blue in DMEM was added to the cells, and the cells were incu-
bated for 3 min, after which the trypan blue was removed and DMEM was
added to the wells. In each of four wells, two microscopy fields were
counted for viable (transparent) and dead (blue) cells.

(ii) MTT staining. The medium was removed from the wells, and 100
�l of medium supplemented with 10% serum and 0.5 mg/ml MTT was
added to the cells. The cells were incubated overnight at 37°C in 5% CO2.
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On the next day, the medium with MTT was removed and 100 �l acidic
isopropanol was added. The cells were then centrifuged at 2,300 � g, and
50 �l of the supernatant was transferred to a new 96-well plate. The ab-
sorbance at 570 nm was measured, and the background at 660 nm was
measured. Four wells per condition were examined.

Osteogenic differentiation. The effects of the substances on the os-
teogenic differentiation potential were assessed as previously described
(76). Only the substances that allowed survival of the cells for more than 3
weeks, which is the time needed for mature osteogenic differentiation,
were tested. Briefly, osteoblasts and bone marrow-derived mesenchymal
stem cells were cultured in a positive solvent control (osteogenic medium
with 0.5% DMSO or ethanol background), a negative control (medium
without osteogenic supplements), and treated samples (osteogenic me-
dium, 0.5% DMSO or ethanol background, and 12.5 �M test compound)
with four repeats per condition. The cells in the mesenchymal stem cell
and osteoblast cultures were harvested after 3 or 5 weeks, respectively, for
the calcium and DNA assay.

Calcium and DNA assay. The calcium deposition of osteoblasts and
mesenchymal stem cells was measured with the calcium CPC LiquiColor
test (Stanbio Laboratory, Boerne, TX) as previously described (76).
Briefly, cell cultures were extracted with 5% trichloroacetic acid (500 �l
per sample), o-cresolphthalein complex was added, and the calcium con-
tent was determined spectrophotometrically at 550 nm. The DNA content
was determined as previously described (76). DNA values were used to
normalize the calcium content. Four wells per condition were examined,
and two samples from each well were taken for each assay.

RESULTS AND DISCUSSION
Benchmarking of antibiofilm potency based on BIC50 values. In
order to classify the antibiofilm potency of the 5-aryl-2-amino-
imidazoles (5-Ar-2-AIs) against bacterial and fungal biofilms, we
compared their antibiofilm activity to the activities of three refer-
ence compounds, baicalein, nifuroxazide, and tannic acid (Table
1), to those of various antibiofilm compounds identified via in-
house screenings of compound libraries (77), and to those of an-
tibiofilm compounds previously reported in the literature (74,
78–81).

The three reference compounds were chosen on the basis of
their previously reported preventive, biofilm-specific activity, tox-
icity, and commercial availability: (i) baicalein at 20 �M inhibits
biofilm formation of P. aeruginosa PAO1 (82), whereas biofilm
formation of C. albicans SC5314 is inhibited by 10 to 100 �M
baicalein (83); (ii) nifuroxazide inhibits P. aeruginosa PAO1 bio-
film formation at 70 �M (84); and (iii) tannic acid inhibits the
biofilm formation of S. aureus SH1000, E. coli VR50, and E. coli
F18 at 20 �M (85, 86).

In this study, we found these reference compounds to be inac-
tive or characterized by BIC50 values higher than 50 �M (Table 1)
against their target species mentioned above, emphasizing the
stringency of the thresholds used and the importance of the test
conditions and the specific strains used. Remarkably, however, all
three reference compounds displayed antibiofilm activities
against a number of other species. We found that baicalein dis-
played antibiofilm activity against E. coli (BIC50, 1.2 �M) and to a
lesser extent against B. cepacia (BIC50, 48.9 �M). Nifuroxazide
was characterized by antibiofilm activity against E. coli (BIC50,
12.2 �M) and in a non-biofilm-specific way (it was active against
both biofilm and planktonic cultures) against S. epidermidis
(BIC50, 46.9 �M). Tannic acid showed antibiofilm activity against
B. cepacia (BIC50, 1.9 �M), S. Typhimurium (BIC50, 18.8 �M),
and P. aeruginosa (BIC50, 27.7 �M).

Furthermore, an in-house screening of more than 20,000 small
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molecules indicated a hit rate of 0.7% for antibiofilm compounds
with BIC50s of �50 �M against S. Typhimurium (77), indicating that
compounds with potent antibiofilm activities are rare. In addition,
screening of a set of 48 in-house-developed antibiofilm compounds
(with diverse scaffolds) against a subset of the biofilm assays of the
current study indicated that 16 (33.3%), 2 (4.2%), 10 (20.8%), and 15
(31.3%) of these compounds had BIC50s of �50 �M against S. Ty-
phimurium, P. aeruginosa (37°C), P. aeruginosa (25°C), and E. coli,
respectively, whereas 11 (22.9%), 0 (0%), 9 (18.8%), and 4 (8.3%)
compounds had BIC50s of �10 �M, respectively.

Other reported antibiofilm compounds generally have activities
(BIC50s) ranging from 0.5 to 50 �M (80, 87). Moreover, Junker and
Clardy performed a high-throughput screening of 66,095 small mol-
ecules against P. aeruginosa biofilms, of which only 30 compounds
(0.05%) showed BIC50 values of �20 �M (81).

Hence, based on this knowledge, we classified 5-Ar-2-AIs with
BIC50 values of �50 �M as potent biofilm inhibitors and 5-Ar-2-
AIs with BIC50 values of �10 �M as very strong inhibitors.

Preventive activity of diverse 5-Ar-2-AIs against monospe-
cies bacterial and fungal biofilms. We selected six 5-Ar-2-AIs
(Fig. 3) with previously reported potent or very strong activity
against S. Typhimurium and P. aeruginosa (25°C) biofilms and
tested their preventive antibiofilm activity against our broad panel
of bacterial and fungal pathogens in a monospecies biofilm setup,
by using a crystal violet-based assay and a CTB-based assay, re-
spectively (Table 2).

Compounds 1 and 2 are substituted at the N1 position of the
2-aminoimidazole moiety (26) with an alkyl group of intermedi-
ate length (Fig. 3) (26). As indicated in Table 2, compound 2 was
found to be very active against the formation of biofilms by Gram-
positive bacteria (S. aureus ATCC 6538, S. aureus SH1000, and S.
epidermidis), with BIC50 values being between 2 and 6 �M. Com-
pound 1 also had antibiofilm activity against these bacteria; how-
ever, its antibiofilm activity was more moderate. Furthermore,
both compounds showed potent and specific antibiofilm activity
against the Gram-negative bacteria P. gingivalis, P. aeruginosa
(25°C), and S. Typhimurium, with BIC50 values being between 2
and 50 �M. Both compounds also inhibited the formation of bio-
films by E. coli and P. aeruginosa at 37°C (BIC50 range, 6 to 120

�M); however, it was in a non-biofilm-specific way. Compound 2
but not compound 1 had potent biofilm-specific activity against S.
liquefaciens biofilms (BIC50, 18.8 �M; IC50, 38.0 �M). Both com-
pounds moderately affected the formation of biofilms by B. cepa-
cia, with BIC50 values being between 145 and 400 �M. Finally,
compound 2 had a very strong capacity to inhibit biofilm forma-
tion by the fungus C. albicans (BIC50, 6.2 �M), while compound 1
was only moderately active.

The 2N-substituted 2-aminoimidazoles (compounds 3 to 5)
(27) in general showed only moderate, non-biofilm-specific activ-
ity against the Gram-positive bacteria S. aureus ATCC 6538 and S.
aureus SH1000 (BIC50 range, 12.3 to 200.3 �M), while the com-
pounds were not active against S. epidermidis. With respect to the
Gram-negative bacterial species, high levels of activity were ob-
served against P. gingivalis, P. aeruginosa (25°C), S. Typhimurium,
and S. liquefaciens biofilms (BIC50 range, 1 to 15 �M), lower levels
of activity were observed against E. coli and B. cepacia (BIC50

range, 45 to 331 �M), and no activity was observed against P.
aeruginosa at 37°C. Only moderate activities against the fungus C.
albicans were measured.

Finally, the 2-aminoimidazole–triazole conjugate (compound
6) (29) displayed potent, though non-biofilm-specific, activity
against P. gingivalis and S. Typhimurium (BIC50s, 18.1 and 2.0
�M respectively) and moderate, biofilm-specific activity against S.
aureus ATCC 6538, P. aeruginosa (25°C), and S. liquefaciens. No
activity against S. aureus SH1000, S. epidermidis, P. aeruginosa
(37°C), B. cepacia, and C. albicans was observed.

Preventive activity of diverse 5-Ar-2-AIs against mixed-spe-
cies bacterial biofilms. Recent reports have indicated that mixed-
species bacterial biofilms can be more resistant to antimicrobial
agents than single-species biofilms (37, 46–48, 51, 52, 88, 89). The
community-level resilience can, for example, be provided by one
resistant species able to protect the whole community (46). There-
fore, we evaluated compounds 1 to 6 (Fig. 3) for their preventive
activity against a mixture of the Gram-negative bacteria E. coli and
P. aeruginosa (which often co-occur in urinary tract infections)
(90) and a mixture of the Gram-positive bacteria S. aureus ATCC
6538 and S. epidermidis, by using a crystal violet based assay (91).

As indicated in Table 3, all compounds tested showed potent

FIG 3 Structures of 5-Ar-2-AI-based compounds whose activities against a broad panel of monospecies and mixed-species biofilm models were tested in this study.
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preventive activity against both the mixture of Gram-negative
bacteria and the mixture of Gram-positive bacteria, with BIC50

values being between 0.5 and 74.3 �M. Remarkably, the activity of
the 2N-substituted compounds against the mixed-species bio-
films was higher than that against monospecies biofilms of the
constituent species.

Preventive activity of diverse 5-Ar-2-AIs against mixed bac-
terial-fungal biofilms. There is clear evidence that C. albicans in-
teractions with bacteria play an important role in several human
diseases (92, 93). An overview of bacterium-Candida interactions
and their effect on fungal development is provided elsewhere (44,
45). Moreover, bacterial-fungal interactions can change the sus-
ceptibility to antimicrobial treatment (47, 54). Therefore, we eval-
uated compounds 2, 3, and 5 (Fig. 3) for their preventive activity
against a panel of mixed bacterial-fungal biofilms, consisting of
pairwise combinations of C. albicans and E. coli, S. epidermidis,
and S. aureus.

As indicated in Table 4, the N1-substituted 5-Ar-2-AI com-
pound 2 seems to be the compound best suited for the treatment
of mixed fungal-bacterial biofilms, since at a concentration of 100
�M it caused a strong reduction of each species in the mixed
biofilms tested. C. albicans-S. epidermidis biofilm formation was
even completely inhibited at 25 �M.

The 2N-substituted 5-Ar-2-AI compound 3 had moderate (in-
complete inhibition) activity against the C. albicans-E. coli com-
bination, against the C. albicans-S. epidermidis combination, and
against S. aureus within the C. albicans-S. aureus combination.
Finally, compound 5 had strong activity (complete inhibition at
100 �M) against S. epidermidis in the C. albicans-S. epidermidis
biofilm but only moderate activity against C. albicans in the C.
albicans-E. coli combination and S. aureus in the C. albicans-S.
aureus combination.

Comparison of antibiofilm activity and toxicity of diverse
5-Ar-2-AIs. Overall, it can be concluded from the results pre-
sented above that the N1-substituted 5-Ar-2-AI compound 2
showed the broadest activity spectrum, with strong activity
against most monospecies bacterial biofilms, the monospecies C.
albicans biofilm, both the mixture of Gram-negative bacteria and
the mixture of Gram-positive bacteria, and all mixed bacterial-
fungal biofilms. Also, the other N1-substituted compound, com-
pound 1, showed activity against most of these biofilms, although
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TABLE 3 Effect of 5-Ar-2-AIs on a panel of mixed E. coli-P. aeruginosa
and S. aureus-S. epidermidis biofilmsd

Compound

E. coli TG1 
 P. aeruginosa
PA14 (37°C)

S. aureus ATCC 6538 
 S.
epidermidis (37°C)

BIC50
a (�M) IC50

b (�M) BIC50 (�M) IC50 (�M)

1 74.3 60.7 44.2 �356.5
2 36.8 19.9 �7.2c �9.9
3 7.4 �400.0 �26.3 �140.5
4 17.8 �400.0 6.8 �117.7
5 0.5 �400.0 �66.6 �91.7
6 34.6 �400.0 33.9 �391.6
a BIC50, concentration of inhibitor needed to inhibit biofilm formation by 50%.
b IC50, concentration of inhibitor needed to inhibit planktonic growth by 50%.
c �, the BIC50 and IC50 values could not be accurately calculated due to the steepness of
the curve.
d Results for compounds that have biofilm-specific activity (2� BIC50 	 IC50) are
shaded in gray. The 95% confidence intervals are provided in Table S3 in the
supplemental material.
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at higher doses. Unfortunately, as previously reported, compound
2 and the N1-subsituted 5-Ar-2-AIs in general showed strong tox-
icity against eukaryotic tumor cell lines, bone cells, and the nem-
atode Caenorhabditis elegans. Indeed, the N1-subsituted 5-Ar-2-
AIs generally have a therapeutic index (TI) of less than 1 with
regard to biofilm inhibition (76). TI is calculated as the ratio of the
compound concentration producing toxicity against tumor cell
lines (IC50) to the concentration needed to exert the desired thera-
peutic effect on biofilms (BIC50). The higher that the therapeutic
index is, the broader that the safety window of the compound is. The
2N-substituted 2-aminoimidazoles compounds 3 to 5, on the other

hand, had good activity against most monospecies and mixed-species
biofilms of Gram-negative bacteria but had more moderate activity
against the monospecies biofilms of the Gram-positive bacteria and
C. albicans and against their mixed biofilms. However, the 2N-
substituted 5-Ar-2-AIs generally have a much lower toxicity, with
the TI being far greater than 1 (76). The 2-aminoimidazole–tria-
zole conjugate (compound 6) generally has a higher level of tox-
icity (76) and a narrow activity spectrum against monospecies
bacterial biofilms. From this analysis, it is clear that a class of
nontoxic compounds with a broad spectrum of preventive activity
against Gram-positive bacteria (in both monospecies and mixed-

FIG 4 Synthesis and structures of eight novel N1-,2N-disubstituted 5-Ar-2-AIs tested against monospecies and mixed-species biofilms. MeOH, methanol; rt,
room temperature. Percentages indicate compound yield.

TABLE 4 Effect of 5-Ar-2-AIs on a panel of mixed bacterial-fungal biofilmsa

Compound

% CFU survival

C. albicans SC5314 
 E. coli MG1655
(37°C) C. albicans SC5314 
 S. epidermidis (37°C)

C. albicans SC5314 
 S. aureus SH1000
(37°C)

25 �M 100 �M 25 �M 100 �M 25 �M 100 �M

C. albicans E. coli C. albicans E. coli C. albicans S. epidermidis C. albicans S. epidermidis C. albicans S. aureus C. albicans S. aureus

2 104.9 158.6 0.0 0.1 	0.6 0.0 	0.2 0.0 183.8 87.7 0.9 0.2
3 143.4 138.5 59.6 63.0 58.3 64.6 235.1 13.2 165.7 124.6 141.3 51.8
5 100.8 100.6 38.3 105.6 167.9 72.0 594.7 2.3 232.4 75.4 120.6 74.5
a Compounds with 	75% CFU survival are shaded in dark gray.
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species biofilms) is currently missing. This activity profile is espe-
cially interesting for application in antibiofilm coatings for ortho-
pedic implants, given the fact that staphylococci are most
frequently associated with implant infections (13). We hypothe-
sized that 5-Ar-2-AIs substituted at both the N1 and 2N positions
might combine the broad-spectrum activity (or at least the activity
against Gram-positive bacteria) of the N1-substituted com-
pounds with the low toxicity of the 2N-substituted compounds.
To test this hypothesis, a series of eight N1-,2N-disubstituted
5-Ar-2-AIs was synthesized and tested for activity against a broad
panel of bacterial and fungal biofilms and for toxicity against bone
cells.

Chemical synthesis of novel compounds: N1-,2N-disubsti-
tuted 5-Ar-2-AIs. As depicted in Fig. 4, the previously developed
2-AIs consisting of compounds 7 (26) were further functionalized
by reductive amination of the 2N position of the 2-AIs with isobu-
tyraldehyde and cyclopentanone. The desired N1-,2N-disubsti-
tuted 5-Ar-2-AIs consisting of compounds 8 were obtained in
moderate yields. These compounds combine the N1-octyl substit-
uent of compound 2 with the 2N-isobutyl or 2N-cyclopentyl sub-
stituent of compounds 3 and 5, respectively.

Preventive activity of novel compounds against monospecies
bacterial and fungal biofilms. The preventive activity of the novel
N1-,2N-disubstituted 5-Ar-2-AIs was first evaluated against a
panel of monospecies bacterial and fungal biofilms. Interestingly,
as indicated in Table 5, all compounds inhibited biofilm forma-
tion by the Gram-positive bacterium S. aureus ATCC 6538 (37°C)
at low concentrations (BIC50 range, 1.0 to 41.0 �M), except for
compound 8d, which had a higher BIC50 of 116.0 �M. Hence,
these novel compounds are characterized by increased antibiofilm
activity compared to that of the 5-Ar-2-AIs compounds 3 and 5,
which are substituted only at the 2N position. Bacterial growth
was not affected by these compounds at concentrations equal to
the BIC50, except in the case of compound 8a, pointing to biofilm-
specific activity.

However, none of the compounds was active against P. aerugi-
nosa biofilms at 25°C or 37°C, whereas the effect on E. coli biofilm
formation was strongly dependent on the substitution pattern of
the 5-aryl ring. Only compounds 8a, 8b, 8e, and 8f, bearing an
unsubstituted phenyl ring or para-chlorophenyl at the 5 position
of the 2-aminoimidazole ring, had potent activity against E. coli
biofilm cells at 25°C, and only compounds 8a and 8e with an

unsubstituted 5-phenyl ring showed activity at 37°C. The activities
at 25°C were biofilm specific (except in the case of compound 8a),
while at 37°C the planktonic growth was also affected. Most of the
novel compounds showed a potent preventive activity against C.
albicans biofilm formation, with BIC50 values being between 9 and
22 �M. Only compounds 8c, 8d, and 8h were not active at the
highest concentration tested (100 �M). In conclusion, whereas
these novel compounds had increased activity against the Gram-
positive bacterium S. aureus compared to the activity of the pre-
viously described 2N-subsituted compounds, their activity against
the Gram-negative bacteria P. aeruginosa and E. coli was reduced.

Preventive activity of novel compounds against mixed-spe-
cies biofilms. Finally, the preventive activity of the novel N1-,2N-
disubstituted 5-Ar-2-AIs was evaluated against a panel of mixed-
species bacterial biofilms and mixed bacterial-fungal biofilms
(Table 6). Most compounds strongly inhibited both S. epidermidis
and C. albicans in the C. albicans-S. epidermidis mixture, except
for compounds 8c and 8d, which reduced only C. albicans. All the
novel compounds also showed a very strong, biofilm-specific ef-
fect on the S. aureus-S. epidermidis mixed biofilm, except for com-
pound 8d. The mixed biofilm of the Gram-negative bacteria P.
aeruginosa and E. coli, on the other hand, was strongly inhibited
only by compound 8a and at higher concentrations by com-
pounds 8e and 8f. In agreement with the results of the monospe-
cies biofilm assays, these novel compounds generally showed very
strong activity against the Gram-positive bacteria and C. albicans
in the mixed biofilms; however, they had only poor activity against
the Gram-negative bacteria.

Effect of novel compounds on viability and functional be-
havior of bone cells. The novel compounds have an interesting ac-
tivity profile for application in antibiofilm coatings for orthopedic
implants. Moreover, preliminary experiments indicated that these
compounds retain their activity after covalent attachment to a sur-
face, making them suitable for incorporation in both covalent antib-
iofilm coatings and slow-release coatings. In light of the application of
these compounds as anti-infective coatings on orthopedic implants,
we determined their effect on the viability and functional behavior of
bone cells. Additionally, this allowed an easy comparison with the
toxicity of the previously described 5-Ar-2-AIs, which was evaluated
using the same assays described here (76).

The effect of the novel compounds on the viability (i.e., the
percentage of viable cells in treated sample compared to the total

TABLE 5 Effect of novel 5-Ar-2-AIs on a panel of monospecies biofilms of bacteria and fungid

Compound

S. aureus ATCC 6538
(37°C)

P. aeruginosa PA14 E. coli TG1

BIC50 (�M)
for C. albicans
SC5314 (37°C)

25°C 37°C 25°C 37°C

BIC50
a (�M) IC50

b (�M) BIC50 (�M) IC50 (�M) BIC50 (�M) IC50 (�M) BIC50 (�M) IC50 (�M) BIC50 (�M) IC50 (�M)

8a �22.9c 17.9 �400.0 75.3 �400.0 66.0 �47.2 51.2 41.2 10.2 9.3
8b 5.8 9.3 �400.0 222.5 �400.0 115.1 29.5 91.9 329.9 6.1 11.0
8c 41.0 172.7 �400.0 �400.0 �400.0 344.7 �400.0 150.0 �400.0 74.1 �100.0
8d 116.0 �400.0 �400.0 �400.0 �400.0 �400.0 �400.0 255.2 �400.0 46.3 �100.0
8e 1.0 46.5 �400.0 62.9 �400.0 167.3 �26.7 188.9 �27.6 10.5 �11.9
8f 6.7 �24.1 �400.0 �400.0 �400.0 �400.0 29.1 �400.0 305.9 370.2 8.9
8g 8.5 19.1 �400.0 �400.0 �400.0 �400.0 43.0 �400.0 �400.0 236.6 21.1
8h 3.8 19.5 �400.0 �400.0 �400.0 �400.0 �400.0 �400.0 �400.0 �400.0 �100.0
a BIC50, concentration of inhibitor needed to inhibit biofilm formation by 50%.
b IC50, concentration of inhibitor needed to inhibit planktonic growth by 50%.
c �, the BIC50 and IC50 values could not be accurately calculated due to the steepness of the curve.
d Results for compounds that have biofilm-specific activity (2� BIC50 	 IC50) are shaded in gray. The 95% confidence intervals are provided in Table S4 in the supplemental material.
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number [viable and nonviable] of cells in the treated sample) of
osteoblasts (OB) and mesenchymal stem cells (MSC) as a function
of time was first tested. For each compound, a dose of 12.5 �M,
which is well above the BIC50 value of most compounds for S.
aureus and S. aureus-S. epidermidis biofilm inhibition, was used.

As shown in Fig. 5, cell viability, measured by trypan blue staining,
was only very slightly reduced (	10%) early in the treatment with
a limited number of compounds. After 6 days of exposure, none of
the compounds altered the viability of the two cell types, except for
compound 8c, which very slightly reduced the viability of OB.

FIG 5 Effects of selected compounds (12.5 �M) on the proliferation and viability of OB and MSC after 2 h, 48 h, and 6 days (6d) of exposure, as determined by trypan
blue staining. Bars and error bars represent the means and standard errors from eight repeats, respectively. The negative control was cell culture medium with a 0.5%
ethanol solvent background, and the positive control was 0.05% phenol to show a cytotoxic effect. Percent proliferation is defined as (total number of viable cells in
treated sample/total number of viable cells in solvent control) � 100. Percent viability is defined as (total number of viable cells [unstained]/total number of cells [stained
and unstained]) � 100. Significant differences (*, P 	 0.05; **, P 	 0.01; ***, P 	 0.001) from the results for the negative control are indicated.

TABLE 6 Effect of novel 5-Ar-2-AIs on a panel of mixed species biofilmsd

Compound

CFU % survival for C. albicans SC5314 
 S. epidermidis

Mixed-species biofilm inhibitory activity

S. aureus ATCC 6538 

S. epidermidis (37°C)

E. coli TG1 

P. aeruginosa PA14 (37°C)

25 �M 100 �M

BIC50
a (�M) IC50

b (�M) BIC50 (�M) IC50 (�M)C. albicans S. epidermidis C. albicans S. epidermidis

8a 62.4 1,541.7 1.0 1.0 0.0 �26.1c 6.6 �400.0
8b 2.0 6.1 18.2 0.7 1.1 �22.2 �400.0 �400.0
8c 3.2 637.0 8.4 965.7 5.0 �400.0 �400.0 �400.0
8d 2.5 1,763.9 1.4 1,277.8 �400.0 �400.0 �400.0 �400.0
8e 10.0 93.1 2.5 0.0 �3.0 �23.6 100.7 �400.0
8f 2.9 2.5 7.2 0.3 2.0 �22.5 399.6 �400.0
8g 3.3 0.0 5.9 0.0 �5.6 15.5 �400.0 �400.0
8h 6.7 2.0 3.5 2.2 4.9 �25.1 �400.0 �400.0
a BIC50, concentration of inhibitor needed to inhibit biofilm formation by 50%.
b IC50, concentration of inhibitor needed to inhibit planktonic growth by 50%.
c �, the BIC50 and IC50 values could not be accurately calculated due to the steepness of the curve.
d Results for compounds that have biofilm-specific activity (2� BIC50 	 IC50) are shaded in light gray, and results for compounds with 	75% CFU survival are shaded in dark
gray. The 95% confidence intervals are provided in Table S5 in the supplemental material.
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MTT staining indicated that the metabolic activity of both cell
types was even increased compared to that of the solvent control
after 6 days of treatment with compounds 8c, 8d, 8g, and 8h (Fig.
6), all of which bore a para-bromophenyl or 3,4-dichlorophenyl
substituent at the 5 position of the imidazole ring. Interestingly, an
increase in proliferation (Fig. 5) was also observed after 6 days of
exposure to compounds 8c, 8d, 8g, and 8h (OB) and compound
8d (MSC). The proliferation of MSC and OB was, however,
slightly reduced after 6 days treatment with compounds 8a, 8e, 8f,
and 8g and with compounds 8a and 8e, respectively.

Next, compounds 8b, 8c, 8d, 8g, and 8h, which allowed sur-
vival of MSC and OB for more than 3 weeks, were tested for their
osteogenic differentiation potential, as those two cell types are
responsible for the production of new bone matrix within bone
tissue. Calcium deposition was chosen as an indicator of the os-
teogenic phenotype, as it is the final and functional marker of
osteoblast differentiation. As shown in Fig. 7, none of the com-
pounds at 12.5 �M negatively affected the calcium deposition of
either of the two cell types. Interestingly, all compounds except
compound 8d significantly (P 	 0.05 for compound 8c with OB,
P 	 0.001 for the rest of the compounds) induced the calcium
deposition of both cell types. This indicates that antibiofilm coat-

ing of orthopedic implants with these compounds might even
stimulate the osseointegrative potential.

Conclusions. In the present study, we evaluated the activities of a
selection of our previously reported 5-aryl-2-aminoimidazoles (5-
Ar-2-AIs) (Fig. 3) against a broad panel of monospecies and mixed-
species biofilm models. The N1-substituted 5-Ar-2-AI compound 2
showed the broadest activity spectrum, with very strong activity
against Gram-negative and Gram-positive bacteria and the fungus C.
albicans both in monospecies and in mixed-species biofilm mod-
els. Unfortunately, this compound and N1-substituted 5-Ar-2-
AIs in general have high levels of toxicity against eukaryotic tumor
cell lines, bone cells, and the nematode Caenorhabditis elegans
(76). The 2N-substituted 2-aminoimidazoles compounds 3 to 5,
on the other hand, are not toxic (76) and showed good activity
against most monospecies and mixed-species biofilms of Gram-
negative bacteria, but in general, they had only moderate activity
against the biofilms formed by monospecies of Gram-positive
bacteria and C. albicans as well as their mixed biofilms. The 2-ami-
noimidazole–triazole conjugate compound 6 had a higher level of
toxicity (76) and a narrow spectrum of activity against monospe-
cies bacterial biofilms. In an attempt to develop nontoxic com-
pounds with broad activity at least against Gram-positive bacteria

FIG 6 Effect of selected compounds (12.5 �M) on the metabolic activity of OB and MSC after 6 days of exposure, as determined by MTT staining. Bars and error
bars represent the means and standard errors from four repeats, respectively. The negative control was cell culture medium with 0.5% ethanol solvent
background, and the positive control was 0.05% phenol to show a cytotoxic effect. Significant differences (*, P 	 0.05; **, P 	 0.01; ***, P 	 0.001) from the
results for the negative control are indicated.

FIG 7 Effect of selected compounds (12.5 �M) on the osteogenic differentiation potential of MSC (left) and OB (right) after 5 and 3 weeks of exposure,
respectively, as determined by measuring the calcium content, which was normalized by the amount of DNA. Bars and error bars represent the means and
standard errors from at least four repeats, respectively. The negative control contains no osteogenic supplements. The solvent (positive) control contains
osteogenic supplements and a 0.5% ethanol background. Significant differences (*, P 	 0.05; **, P 	 0.01; ***, P 	 0.001) from the results for the solvent control
are indicated. pos., positive; neg., negative.
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in monospecies and mixed-species biofilms, we synthesized a se-
ries of eight novel 5-Ar-2-AIs with substituents at both the N1 and
2N positions (Fig. 4). This activity profile is especially interesting
for application in antibiofilm coatings for medical implants, such
as orthopedic prostheses, given the fact that staphylococci are
most frequently associated with implant infections. As desired,
most of these novel compounds showed very strong activity
against the Gram-positive bacteria (S. aureus and S. epidermidis)
and C. albicans in all monospecies and mixed-species biofilms
tested, albeit at the cost of a loss of activity against the Gram-
negative species P. aeruginosa and E. coli. None of the novel com-
pounds strongly affected the viability or proliferation of osteo-
blasts and bone marrow-derived stem cells, and remarkably, most
of the compounds even induced the calcium deposition of both
cell types, suggesting that an antibiofilm coating of orthopedic
implants with these compounds might even stimulate the os-
seointegrative potential. In conclusion, our data show that mod-
ulation of the substitution pattern of the 5-Ar-2-AI scaffold allows
fine-tuning of both the antibiofilm activity spectrum and toxicity.
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