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It has been shown that, in cultured neuronal networks on amultielectrode, pseudorandom-like sequences (codes) are detected, and
they flow with some spatial decay constant. Each cultured neuronal network is characterized by a specific spectrum curve. That is,
we may consider the spectrum curve as a “signature” of its associated neuronal network that is dependent on the characteristics of
neurons and network configuration, including the weight distribution. In the present study, we used an integrate-and-fire model
of neurons with intrinsic and instantaneous fluctuations of characteristics for performing a simulation of a code spectrum from
multielectrodes on a 2D mesh neural network. We showed that it is possible to estimate the characteristics of neurons such as the
distribution of number of neurons around each electrode and their refractory periods. Although this process is a reverse problem
and theoretically the solutions are not sufficiently guaranteed, the parameters seem to be consistent with those of neurons. That
is, the proposed neural network model may adequately reflect the behavior of a cultured neuronal network. Furthermore, such
prospect is discussed that code analysis will provide a base of communication within a neural network that will also create a base
of natural intelligence.

1. Introduction

Many generator models and analyzing methods of spike
trains fromneurons including artificialmodels, such as spike-
coding metrics [1], spatiotemporal coding models [2–8],
synchronous action models [9–13], and pseudorandom code
detection methods [14] have been proposed.

On the other hand, we identified the sequence “1101”
within the poststimulus time histogram (PSTH)/instanta-
neous firing rate (IFR) of a cultured neuronal network in
Baljon et al. [15] (Figure 1) as well as our own network
[16, 17] (Figure 2). The sequence “1101” is the core portion
of the reversal M-sequence “1101000” which is a typical
pseudorandom sequence [18–21]. Electric circuits generating
pseudorandom sequences are well known. Furthermore,
it has been shown that, in a cultured neuronal network

on a multielectrode, pseudorandom-like sequences (codes),
including “1101”, are detected, and they flowwith some spatial
decay curve [22].We call the chart of the appearance frequen-
cies of short code (e.g., length <8) versus various codes (in
number) “code spectrum.” Each cultured neuronal network
is characterized by a specific code spectrum curve. That is,
the curve shape seems to depend on the characteristics of
neurons and the network configuration, including the weight
distribution in the network.Therefore, wemay consider it as a
“signature” of the network. In the present study,we performed
a simulation of code spectrum from a multielectrode on
a 2D mesh neural network using neurons with fluctuating
characteristics of refractory period and output delay time
around each given intrinsic characteristic from time to
time; that is, parameters of each neuron varied intrinsically
and temporarily. Connection weights between neurons are
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Figure 1: First and second responses “1101” in the instantaneous
firing rate (IFR) of cultured neuronal tissue after two electrical stim-
ulations as shown in [15] with additional interpretation (courtesy of
Baljon et al.; reproduction permission provided by APS).
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Figure 2: Instantaneous firing rate (poststimulus time histogram)
where the sequence “1101” was observed. Since the timing becomes
dispersed within trials, the peak positions and shapes gradually
changed as time elapsed. Particularly, there was a tendency of risings
and peaks to become faster than the regular timing, which is led
by the fastest spike among the dispersed spikes as well as the
slowest spike to be cancelled by the succeeding fastest negative spike
(effectively supposed; pulling down the tail of peak), and lowering
the peak height [16, 17].

randomly generated on the basis of a given statistical prop-
erty. In this paper, expression “neuronal network” is mainly
used for natural one, and “neural network” is for artificial
one.

2. Simulation

2.1. Network Configuration. We performed a computer sim-
ulation to observe spike propagation on a 2D network with
a 33 × 33 2D mesh of neurons. Each neuron has connection
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Figure 3: Inputs to neuron 𝑗 in a 2D mesh neural network. Each
neuron 𝑗 (red) receives input spikes from eight neighboring neurons
(blue) such as 𝑖 through connection weights 𝑤

𝑖𝑗
∈ [−1, 1]. Neuron

𝑗 integrates such weighted spikes during its accepting period and
outputs a spike after a delay time if the integrated value exceeds zero.

weights to and from eight neighboring neurons, as shown in
Figure 3.

The weight of the network is given as follows:

𝑤
𝑖𝑗
= 𝐹 [(1 + 𝑐) 𝑢 − 𝑐] , 𝑤𝑖𝑗 ∈ [−1, 1] , 𝑤𝑖𝑗 ̸≡ 𝑤𝑗𝑖, (1)

where 𝑖 = (𝑖
𝑥
, 𝑖
𝑦
); 𝑗 = (𝑗

𝑥
, 𝑗
𝑦
); 𝑖
𝑥
, 𝑖
𝑦
, 𝑗
𝑥
, 𝑗
𝑦
∈ {1, 2, . . . , 33};

𝑖 ̸= 𝑗; max{|𝑖
𝑥
− 𝑗
𝑥
|, |𝑖
𝑦
− 𝑗
𝑦
|} = 1; and 𝐹[𝑥] is a truncation

function such that

𝐹 [𝑥] = 1 1 ≤ 𝑥

= 𝑥 − 1 < 𝑥 < 1

= −1 𝑥 ≤ −1,

(2)

𝑐 is positive parameter such that 0 < 𝑐 ≤ 3 controls weight
balance of positive and negative values and 𝑢 is a random
variable with uniform distribution such that 0 ≤ 𝑢 < 1.

In short, if 𝑐 increases, the number of negative weights
increases. For example, if 𝑐 = 1/3, weight 𝑤

𝑖𝑗
distributes

uniformly in [−1/3, 1]; that is, the ratio of positive to negative
weights is 3 : 1. This ratio is a typical one in real neu-
ronal networks. In 2D mesh artificial neural network model
with weights to and from every eight neighboring neurons,
however, weight distribution must be different because of
different network shape and every eight neighboringweight is
generated randomly, which usually does not result in zero. Of
course, suchmodels can be designed that first decide whether
or not the weight exists and then decide on the weight value if
it exists. For simplicity, we have designed that no connections
between adjacent neurons (i.e., not connected; weight zero)
are effectively realized by suppressions with negative weights.
If 𝑐 = 1, 𝑤

𝑖𝑗
distributes in [−1, 1] uniformly; that is, the ratio

of positive to negative weights is 1 : 1. If 𝑐 = 3, 𝑤
𝑖𝑗
distributes
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Figure 4: Integrate-and-firemodel without leakage but with fluctuation in the parameters of neuron 𝑛. Each neuron has an inherent accepting
period 𝑎

𝑛
and output delay time 𝑑

𝑛
. These parameters vary with time within certain ranges 𝑅

𝐴
(𝑎
𝑛
) and 𝑅

𝐷
(𝑑
𝑛
), respectively. Neuron 𝑛

integrates weighted input spikes during the accepting period 𝐴
𝑛𝑘
for the 𝑘th firing, and after the refractory period ends, it decides whether

the integrated value exceeds zero for firing at every time point. If so, it outputs the 𝑘th output spike with delay time𝐷
𝑛𝑘
.That is,𝐴

𝑛𝑘
∈ 𝑅
𝐴
(𝑎
𝑛
),

and likewise,𝐷
𝑛𝑘
∈ 𝑅
𝐷
(𝑑
𝑛
).

in [−1, 1] but not uniformly; that is, the ratio of positive to
negative weights is 1 : 4. Although the setting of weights was
simple, the result was not much different from that obtained
using separate settings of the weight values and their positive
or negative signs.

2.2. Characteristics of Neurons. The neuron model used here
is shown in Figure 4, which is a type of integrate-and-fire
model without leak [25]. Neuron 𝑛 accumulates weighted
inputs during the accepting period 𝐴

𝑛𝑘
. If the accumulated

weighted input becomes positive and the neuron is not in
its refractory period, the neuron 𝑛 outputs a spike after a
delay time𝐷

𝑛𝑘
as the 𝑘th firing. Some parameters used in the

simulation are given as examples below.
A basic accepting period 𝑎

𝑛
intrinsic to neuron 𝑛 is

randomly generated in each network within a range 𝑎
𝑛
∈

{𝑎
0
−2, 𝑎
0
−1, 𝑎
0
, 𝑎
0
+1, 𝑎
0
+2}with a probability of 1/5 for each,

where 𝑎
0
is a fixed common parameter value through the

network, and the unit time (bin) is 0.1ms. The actual instan-
taneous accepting period 𝐴

𝑛𝑘
of neuron 𝑛 at the 𝑘th firing is

further randomly given within the fluctuation range 𝑅
𝐴
(𝑎
𝑛
)

around 𝑎
𝑛
; that is,𝐴

𝑛𝑘
∈ 𝑅
𝐴
(𝑎
𝑛
).The instantaneous refractory

period is implicitly assumed as slightly smaller than 𝐴
𝑛𝑘
.

The accepting period can also be called input integration
or the accumulating period for firing. Roughly speaking,
the accepting and refractory periods can be regarded as the
same. The software can stimulate neurons with arbitrary
spatiotemporal patterns. Typically, a combination of three
neurons is simultaneously stimulated such that the states of
the neurons are set to “1” at time 1 (bin no. 1). The reason
why we stimulated three neurons simultaneously instead of
only one neuron is that, in wet experiments, many neurons
around an electrode seem to be simultaneously stimulated by
an electrical stimulation; and secondly, parallel stimulation
to multiple neurons seems to promote stable propagation of
excitation according to computer simulations.

Parameters used in the simulation are as follows.
Basic accepting period 𝑎

0
is a preassigned network

parameter such as 20, 30, . . . , 100, where unit time (bin
width) is 0.1ms. Instantaneous accepting period 𝐴

𝑛𝑘
∈

𝑅
𝐴
(𝑎
𝑛
) = {𝑎

𝑛
− 1, 𝑎

𝑛
, 𝑎
𝑛
+ 1} is randomly selected at the

𝑘th firing with the probability 𝑝
𝑎
, 1 − 2 × 𝑝

𝑎
, and 𝑝

𝑎
,

respectively, and 𝑝
𝑎
= 1/12. This value defines how much

the instantaneous accepting period fluctuates from time to
time. If we increase𝑝

𝑎
or expand the range𝑅

𝐴
(𝑎
𝑛
), the fidelity

of communication or information flow decreases. The above
value is determined by considering a trade-off between such
considerations and attaining 99% communication fidelity.
Details will be presented in our coming paper.

Similarly, the output delay is as follows.
Basic output delay time 𝑑

𝑛
is randomly selected from

{2, 3, . . . , 8} with a probability of 1/7 each. Instantaneous
output delay time 𝐷

𝑛𝑘
∈ 𝑅
𝐷
(𝑑
𝑛
) = {𝑑

𝑛
− 1, 𝑑

𝑛
, 𝑑
𝑛
+ 1}, and

𝑝
𝑑
= 1/12, similar to 𝑅

𝐴
(𝑎
𝑛
).

We have utilized an integrate-and-fire model without
leaks, but insteadwe used amodel incorporating a fluctuating
period of acceptance. Our model is more stringent than the
leaky integrate-and-fire model because our model randomly
neglects old spikes, while the leaky model neglects them
gradually. However, from our simulations, ignoring a portion
of the spikes in any type is not fatal and not essential but
only influences the quality of communication. This property
is a strong point of neural networks that are composed of
essentially fluctuating neurons. The fluctuating time param-
eters are concentrated in the two parameters—the accepting
period, preceding the fire deciding time and the output delay
time, following this time. These designs were determined by
balancing the degree of complication, essential precision of
results, and computation time.

Results of a preliminary experiment of stimulating a 9 ×
9 mesh neural network are shown in Figure 5, where three
neurons were stimulated at time 𝑡 = 0. We can observe “spike
waves” propagating from source stimulations, and the waves
often behave like Synfire [9, 10]. Further, the code flow may
be regarded as a component of such spike waves. It is possible
to acquire codes in wet experiments and compare them with
the simulation. In the present study, however, as a preliminary
step, we focused on simulating not only the entire spike waves
but also the flow of codes.

2.3. Arrangement of Multielectrode. Figure 6 shows the
arrangement of a multielectrode on a 33 × 33 2Dmesh neural
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Figure 5: Spike waves generated on a 2Dmesh neural network. Green spots indicate stimulation point. “0.1–0.5ms” means an accumulation
result of firing at 0.1ms, 0.2ms, . . . , 0.5ms. This suggests that the codes are a part of these “spike waves.”
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Figure 6: Arrangement of 8 × 8 multi-electrodes [(1, 1), (1, 2), . . . , (8, 8)] on a simulated 33 × 33 2D mesh neural network. Each electrode
acquires spikes of two to nine neurons. For example, “E9” showing 3 × 3 block of neurons (I) indicated with (1, 1) shows that electrode (1, 1)
collects spikes from nine neurons. In addition, “E3” and “E4” are likewise; “E2” and “E5”–“E8”are not shown. Spectrum, cross-correlation, or
probability distribution data obtained from electrode Em is expressed as “𝐸

𝑚
” in the text. Connections between eight neighboring neurons

are randomly generated with given stochastic characteristics.

network. Each neuron has directional connections with eight
neighboring neurons. Each electrode gathers spikes from
two to nine surrounding neurons. The major differences
from the wet experimental configuration [22] are as follows:
(1) there are no neurons and no connections outside the
explicit 1089 neurons, (2) neurons are placed on a regular
lattice, which is different from an irregularly shaped cultured
neuronal network, and (3) distances between electrodes are
smaller than those in the cultured neuronal network. It can
be said that difference (3) is a smaller scale of (1) and it
corresponds to the fact that we regard the spike data from
different electrodes as independent events. That is, in (1) and
(3), we neglect the behavior of neurons outside the noted
neurons.

2.4. Component Code Spectrum. By changing the basic
accepting period 𝑎

0
and the positive and negative weight

balance parameter 𝑐, we can generate spike trains for each
type of electrode Em catching from 𝑚 (𝑚 = 2, 3, . . . , 9)
surrounding neurons. We then decode the spike trains to
obtain code spectra for each 𝑚. We call such a spectrum
𝐸
𝑚

“component spectrum.” Figure 7 shows an example of
simulated spike trains caught by electrode Em.

Figure 8 shows examples of component code spectra of
simulated spike sequences of some 𝑎

0
(median of accepting

period 𝐴
𝑛𝑘
) and the connection weight parameter 𝑐. Practi-

cally, the number of neurons emitting spikes to each electrode
changes electrode by electrode according to its statistical
distribution. Therefore, the actual observed code spectra will
be mixed according to the probability distribution of the
number of neurons𝑚 around the electrodes.

2.5. Spectrum Fitting with Components. The blue curve in
Figure 9(a) shows the results of the average number of codes
detected in recorded spike trains of 9 trials for code numbers
1–21 (code spectrum) from 63 electrodes of Sample A during
200ms after stimulation expressed as 2000 times the bin data.
Sample A is the same as that presented in [22].

The orange curve in Figure 9(a) shows the best fit to the
number of codes detected in spike trains of 2000 time bins
of Sample A using code spectra 𝐸

𝑚
of artificially generated

spike sequences with different accepting periods 𝑎
0
and

connection weight parameters 𝑐 and probability distribution
of 𝐸
𝑚
. Although this is an inverse problem and imperfect,

the estimation of neuronal parameters 𝑎
0
, 𝑐, and probability

distribution of 𝐸
𝑚
is possible to some extent.

Table 1 shows the normalized squared error of a simulated
code spectrum to that of recorded data of Sample A with a
changing probability distribution of 𝐸

𝑚
, that is, a combina-

tion of component code spectra for various 𝑎
0
and 𝑐 values.
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Figure 7: An example of simulated spike trains caught by Em during 2.0–4.0ms after stimulation with 𝑎
0
= 8.0ms and 𝑐 = 2.5. Initial

stimulations were given to around electrodes (1, 1) at 0.1ms and (1, 5) at 0.5ms.

Some root mean square (RMS) error data are not shown
(shown as “—”) because the number of codes detected was
too small to calculate the component code spectrum as such
spikes disappeared within the given time. Tables 2 and 3 show
that of Sample B in Figure 9(b) and Sample C in Figure 9(c),
respectively.

2.6. Expansion of 𝐸
𝑚
. In some cases, the best estimation of

the probability distribution of 𝐸
𝑚
had a large value at 𝐸

9
,

suggesting that there are more than nine neurons around
the electrode. Therefore, we increased the number 𝑚 to 16.
Figure 10 shows the expanded code spectral components
up to 𝐸

16
. Although 𝐸

2
–𝐸
9
have various shapes, 𝐸

9
–𝐸
16

have a similar shape. When the best fit process included a
large number of parameters, the computation time was long.

Therefore, it may be reasonable to regard 𝐸
9
as the repre-

sentative component of 𝐸
9
–𝐸
16
to decrease the computation

time.

2.7. Maximum Cross-Correlations. Because the simulation
size was limited, the separation distances between the elec-
trodes were very small (1–4 times of the neuron pitch).
Nevertheless, using the same method as used in [22] for the
natural neuronal network, we calculated themaximum cross-
correlation Φ

𝑁
(𝐶) of a trial among eight and 20 neighbors

between a time frame difference of 0.5 (ms) for𝐸
2
–𝐸
16
and 14

major codes𝐶 (Figure 11). However, since the electrodes were
located relatively closer than in [22], and therefore cooccur-
rence probability of each code between two electrodes was
expected higher, normalization of cross-correlation by code
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Figure 8: Code spectrum components 𝐸
𝑚
for several parameters of accepting period 𝑎

0
and positive and negative weight balance 𝑐. The

horizontal line represents code numbers (1, 2, . . . , 21) whose number of “1”s in the code is 3. That is, code 1 = “111,” code 2 = “1011,” code 3 =
“1101,” code 4 = “10011,” code 5 = “10101,” . . . code 21 = “11000001” [22]. The vertical line represents the total number of codes detected during
the first 200ms after stimulation (2000 time bins of 0.1ms/bin) and from 63 electrodes.
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(a) Sample A (9 trials). Estimated 𝑎0 = 8ms, 𝑐 = 2.5, and proba-
bility distribution of 𝐸𝑚 (𝑚 = 2, 3, . . . , 9) is (0.3, 0.1, 0, 0, 0, 0.05, 0,
0.55), with a normalized RMS error of 0.179
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(b) Sample B (23 trials). Estimated𝑎0 = 9ms, 𝑐 = 2, and probability
distribution of 𝐸𝑚 (𝑚 = 2, 3, . . . , 9) is (0.3, 0.1, 0, 0, 0, 0.05, 0, 0.55),
with a normalized RMS error of 0.181

0
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4
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Detected from sample C
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(c) Sample C (26 trials). Estimated 𝑎0 = 9ms, 𝑐 = 2.5, and
probability distribution of 𝐸𝑚 (𝑚 = 2, 3, . . . , 9) is (0.263, 0.158,
0, 0.053, 0.053, 0.053, 0.421, 0), with a normalized RMS error of
0.180

Figure 9: Code spectra. The blue curve shows the average of trials of an experimental number of codes detected from 63 electrodes in spike
trains during 200ms after stimulation expressed with 2000 time bins of 0.1ms.The bit width of the code is 0.6–2.0ms (6–20 bins). Codes are
detected with 1% time accuracy, although practically several % because of the 0.1ms bit width.This curve can be considered as the “signature”
of spike trains. The orange curve is the best fit to code spectrum using a simulation spectrum.

Table 1: Normalized RMS error for various parameters of neurons
used to fit the data in Figure 9(a). Bold and italic values show the
first and second best fits, respectively. Typical 𝑎

0
and 𝑐 values were

estimated as 8.0ms and 2.5, respectively.

𝑐
𝑎
0
(ms)

5.5 6.0 7.0 8.0 9.0 10.0
0.1 0.464 0.315 0.565 — — —
0.3 0.442 0.283 0.581 0.904 — —
1.0 0.393 0.252 0.182 0.212 0.327 0.349
1.5 0.326 0.240 0.208 0.230 0.269 0.286
2.0 0.301 0.246 0.203 0.212 0.186 0.310
2.5 — 0.470 0.580 0.179 0.192 —
3.0 — 0.321 — 0.328 0.319 0.674

length was not applied. As shown in Figure 11(a), in case of
𝐸
4
and 𝐸

5
, the maximum cross-correlation is rather flat in

comparison with that of Sample A of the natural neuronal

Table 2: Normalized RMS errors for various parameters of neurons
used to fit the data in Figure 9(b).

𝑐
𝑎
0
(ms)

5.5 6.0 7.0 8.0 9.0 10.0
0.1 0.502 0.322 0.577 — — —
0.3 0.484 0.288 0.577 0.890 — —
1.0 0.438 0.259 0.197 0.233 0.335 0.340
1.5 0.361 0.243 0.210 0.248 0.271 0.283
2.0 0.320 0.256 0.188 0.241 0.1809 0.304
2.5 — 0.477 0.605 0.203 0.1814 —
3.0 — 0.325 — 0.317 0.332 0.680

network of [22]. The characteristics of 𝐸
6
–𝐸
11

(Figure 11(b))
decreased according to the code number, which roughly
represents the code length. Although not shown in figures,
𝐸
12
–𝐸
16
showed a more steep decreasing tendency.
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Figure 10: Expanded spectrum components up to 𝐸
16
. (a) Code spectrum components 𝐸

2
–𝐸
9
for 𝑎
0
= 7ms and 𝑐 = 2. (b) Expansion to

𝐸
9
–𝐸
16
of (a). (c) Code spectrum components 𝐸

2
–𝐸
9
for 𝑎
0
= 8ms and 𝑐 = 2.5. (d) Expansion to 𝐸

9
–𝐸
16
of (c).

Table 3: Normalized RMS errors for various parameters of neuron
used to fit the data in Figure 9(c).

𝑐
𝑎
0
(ms)

5.5 6.0 7.0 8.0 9.0 10.0
0.1 0.518 0.290 0.461 — — —
0.3 0.509 0.223 0.440 0.777 — —
1.0 0.515 0.291 0.252 0.204 0.222 0.223
1.5 0.430 0.275 0.253 0.196 0.197 0.187
2.0 0.399 0.257 0.263 0.256 0.186 0.215
2.5 — 0.491 0.656 0.213 0.180 —
3.0 — 0.324 — 0.354 0.358 0.631

3. Discussion and Conclusions

In the present study, we constructed a 2D mesh neural net-
work model and an input/output (I/O) functional model of
neurons. A 2Dmeshmodelmay differ from a real natural cul-
tured neuronal network, which will have a nonhomogeneous

distribution of neurons [26]. The I/O functional model of
neurons has certain intrinsic and instantaneous fluctuations
of the refractory period and output delay time [11].Theremay
be some discrepancies compared with real natural cultured
neurons; however, we have shown that from the perspective of
the code spectrum of spike trains, it is possible to simulate the
electrical activity of a neuronal network on a multielectrode
plate (MED plate) with a 2D mesh neural network model.
Moreover, it was possible to estimate the neuronal network
parameters to some extent by recording spike trains with
electrode without sorting. For example, though there is no
guarantee to be true ones, estimated typical accepting periods
were 8-9ms, and refractory periods were also estimated as
almost the same which are within range (5–10ms) of a text
book [27].

The detected codes were composed of spikes from dif-
ferent neurons because we acquired codes with bit widths
ranging from0.6 to 2.0ms; in cases of 4-bit code, code lengths
are mainly less than 6ms (= 2ms × 3 [spans of 4-bit code]).
These values are generally shorter than the refractory period
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Figure 11: Maximum cross-correlationΦ
𝑁
(𝐶) of a trial among eight (8N) and 20 (20N) neighbors with a time frame difference of 0.5ms for

14 major codes 𝐶.

of neurons, which is estimated to be more than 8ms in our
cases. This suggests that it is unnecessary to add sorting
processing to the spikes obtained from each electrode in
case of analyzing by code with length less than 8ms. That
is, spikes forming the codes under our conditions originate
from different neurons, and it may be possible to analyze
circuit states around the electrodes. We need not to deal
with 𝐸

1
whose spike interval is more than 8ms. In our case,

althoughwe statistically analyzed all the 63 electrodes (except
for the stimulating electrode) together, it may be possible to
analyze individual electrodes, which may give more precise
distribution of𝐸

𝑚
; that is, we can determinewhether neurons

near a certain electrode compose a specific circuit such as a
linear feedback shift register (LFSR) [14].

We used simulated code spectrum components to ana-
lyze the wet experimental spectrum of a cultured neuronal
network. It is true, however, there are problems of (1) besides
codes are not always orthogonal, (2) some of the extracted
codes may be false such that composed of overlapped spike
combination by chance [22]. To reduce such effects, it may
be effective to improve the statistical background such as
increasing the number of spike trains to suppress the sta-
tistical variation of the code spectrum components, because
the present data were acquired from only one spike train of
one trial each, that is, from the 63 electrodes, which are not
necessarily perfectly independent.

A 2D mesh neural network can generate spike waves,
as shown in Figure 4. Thus, the code flow observed on a
cultured neuronal network can be regarded as a fragment
of “spike waves.” Code not only works as a marker of the
spike waves but also provides information or clues about the
circuit’s shape. In other words, the code spectrum reflects

the circuit shape, including the weight distribution, neuron
characteristics, and its role in communication around each
electrode. Therefore, it may be considered as a kind of
network signature.

Furthermore, spike waves will establish asynchronous
multiplex communication links as well as multiplex com-
munication within a synchronous neural network [23, 28]
where various pseudorandom-like codes are observed. For
communication within this network, each neuron or group
of neurons cannot receive entire spike waves, but rather a
specific part of the wave, that is, a pseudorandom-like code
or a spatiotemporal combination of codes.Then, based on the
communication links as presented in Figure 12 [24, 29], infor-
mation will be processed by an intelligencemechanism in the
brain. Under these conditions, informationwill be radiated as
spike waves from source neurons and then widely propagated
via the neuronal network.There has been substantial research
on behavior of a spike intensity wave as a global macrotask
including cardiac electric propagation [30–32]. Although it
may be true that most neurons work to relay spikes as a part
of spike waves, destination neurons in a communication task
are limited in number and must select signals sent to them
from among the various spike waves based on spike trains
containing codes that are a fragment of each spike wave or
a spatiotemporal combination of these codes. This task is
local and should not be treated as conventional “intensity”
level wave information, but rather as “locally phasic” level
wave information incorporated in the spatiotemporal pat-
tern of locally arriving spikes including codes. In artificial
brain research, though through concentrated digital synaptic
switching, effect of communication is shown [33].Thepresent
study serves a base of communication tasks in natural
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Figure 12: Time-shift diagram of 10.2Hz MEG, for a number counting task [23, 24]. Red arrow < 5ms < green < 10ms < blue. We can see
that red arrow with lag time < 5ms runs within each hemisphere, and blue > 10ms across the callosum.

(a) The top three receiving neurons can detect the specific trans-
mitting neuron among the four neurons from the spike wave
fragment as a combination of spike codes (the spatiotemporal
spike pattern)

Which bell
ringing?

(b) The same mechanism allows us to perceive where a bell is
ringing in our surrounding atmosphere

Figure 13: Illustration of the communication within the neural network based on spatiotemporal pattern recognition. Each neuron can
perform the roles of transmitting, receiving, and simply as a transmission media.

intelligence, as illustrated in Figure 13. These studies of spike
waves will lead to higher-order reasoning/intelligence in the
brain via communication [8, 34].

Our results, including those reported in [22], are summa-
rized as follows:

(1) We are investigating an intelligence mechanism with
the maintenance of correspondence between wet
experiments and simulation.

(2) We identified a pseudorandom sequence (code) “1101”
for PSTH in the literature as well as from our

experience which should provide clues about neu-
ronal circuits around electrodes.

(3) A code spectrum as an extension of code “1101”
was obtained from cultured neuronal networks and
simulations.

(4) A code spectrum can be considered as a “signature” of
its associated network by which some characteristics
can be estimated, including the refractory period and
weight distribution.
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(5) A code can function as a mark on a spike wave. We
have shown that to some extent, wave propagation
preserves the codes. This finding was documented by
movies as well as quantitatively.

Future studies will address the following:

(i) communication based on codes as a part of spike
waves,

(ii) organization of communication links to derive intel-
ligence functions.
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