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Abstract

Does each cognitive task elicit a new cognitive network each time in the brain? Recent data suggest that pre-existing
repertoires of a much smaller number of canonical network components are selectively and dynamically used to compute
new cognitive tasks. To this end, we propose a novel method (graph-ICA) that seeks to extract these canonical network
components from a limited number of resting state spontaneous networks. Graph-ICA decomposes a weighted mixture of
source edge-sharing subnetworks with different weighted edges by applying an independent component analysis on cross-
sectional brain networks represented as graphs. We evaluated the plausibility in our simulation study and identified 49
intrinsic subnetworks by applying it in the resting state fMRI data. Using the derived subnetwork repertories, we
decomposed brain networks during specific tasks including motor activity, working memory exercises, and verb generation,
and identified subnetworks associated with performance on these tasks. We also analyzed sex differences in utilization of
subnetworks, which was useful in characterizing group networks. These results suggest that this method can effectively be
utilized to identify task-specific as well as sex-specific functional subnetworks. Moreover, graph-ICA can provide more direct
information on the edge weights among brain regions working together as a network, which cannot be directly obtained
through voxel-level spatial ICA.
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Introduction

Decades of neuroimaging studies have demonstrated that

cognition is co-localized with cyto and/or myeloarchitectonically

distinct brain areas. Yet, more recent data suggest this structure-

function relationship to be highly complex such that a single

cognitive function can recruit multiple distributed local clusters of

neurons [1,2]. Furthermore, diverse brain states and functions

appear to be encoded by altering connectivity among distributed

neuronal clusters [3-5]. The importance of these distributed

interactions (i.e., a network) in constructing diverse cognitions is

widely acknowledged in the field of systems neuroscience.

Despite a large amount of growth in phenomenological data

supporting this network perspective on cognition, the mechanism

behind how the brain formulates highly diverse brain processes or

characterizes various individuals has not been sufficiently studied.

Given that there is a potentially infinite number of different

cognitive processes, does the brain generate new networks each

time it computes a new cognitive process? Recent data suggest,

alternatively, that pre-existing repertoires of a much smaller

number of canonical network components are selectively and

dynamically recruited for various cognitions [6]. To this end,

relatively well-defined network components such as working

memory circuits, motor circuits, and language circuits may simply

be members, or mixtures of members, of these repertoires of

functional network components.

The primary aim of this study was to identify independent

cognitive network components from limited sets of neuroimaging

data. Instead of relying on task-specific data which are impractical

to cover whole brain processes, we focused on recent findings that

the pool of cognitive network components are embedded in

spontaneous activity [7], independent of specific cognitive tasks, in

the fashion of slow fluctuations in synchrony of distributed regions

during the resting state [8].

To identify intrinsic cognitive network components from

spontaneous activity, we proposed a subnetwork decomposition

method from multitudes of whole brain networks, with an

assumption that repertoires of intrinsic subnetworks constitute

individual brain networks with different strength combinations

(Figure 1). We identified intrinsic functional subnetworks of the

human brain by applying independent component analysis (ICA)

[9] to a group of brain networks in the form of graphs (graph-ICA)

(Figure 2). Using derived subnetwork repertoires, we decomposed

brain networks during specific tasks including motor activity,

working memory exercises, and verb generation, and identified

subnetworks associated with performance on these tasks. We also
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analyzed sex differences in utilization of subnetworks, which was

useful in characterizing group networks.

Materials and Methods

Graph-ICA concepts
Graph-ICA is a type of cross-sectional ICA that decomposes

measured graphs into common source graphs (Figure 2A). We

denote a graph (i.e. an adjacency matrix) with L nodes from a

resting state fMRI of the i-th brain, a vector, gi, with K = L(L-1)/2

edges for elements. We assumed that N independent network

components (IC), sj, j = 1, …, N, exist in the human brain. M

graphs from M brains, i.e., gi, i = 1, …, M, were concatenated to a

matrix g, and were modeled by weighted mixing of independent

component matrix s with a mixing matrix A, as shown below.

gi~
XN

j~1
aijsi ð1Þ

where the weight aij is the element of A indicating the contribution

of (graph) source sj to compose gi. This can be rewritten as:

g~ g1,:::,gM½ �T~A s1,:::,sN½ �T~As ð1Þ

The matrix sizes of g, s, and A were (M x K), (N x K), and (M x

N). For this study, we assumed the number of ICs (N) equaled the

number of graphs (M), i.e., N = M = 104, since we do not have a

clear a priori knowledge on the number of ICs. The mixing matrix

A can be estimated by an ICA algorithm, which maximizes mutual

independence between estimated functional components [9].

Graph-ICA: A simulation study
We applied graph-ICA to the simulated data. We generated five

artificial graphs by mixing three source graphs with background

noise. The three source graphs consisted of two overlapping and

one non-overlapping (spatially) independent graphs (Figure 2B1).

We considered s~f1,:::,20g|f1,:::,20g to be a total connectivity

set. Three source graphs were designed to be connected only

within s1~f14,:::,18g|f4,:::,11g, s2~f15,:::,19g|f14,:::,18g,
and s3~f10,:::,14g|f2,:::,5g. This setting satisfies

N(s1\s3)=N(s1)~N(s1)=N(s) (as a spatial independence condi-

tion), where the notation N(s) represents the number of nodes in s.

Connectivity of source graphs within existing connections were

assigned for samples of uniform distribution, U(0.25,1). We

artificially generated five graphs by summing differentially

weighted three source graphs and background Gaussian noise (a

contrast-to-noise ratio of 0.5, 0.75, 1, 1.5, and 2 for three sources).

We applied graph-ICA to these five generated data sets using the

Infomax algorithm [9] to extract ICs corresponding to three

source graphs.

Subjects
Resting state fMRI data from 104 healthy, right-handed

participants (48 males and 56 females, mean age: 23 6 6 years,

age range: 10–35 years) were used in this study. For task-specific

functional data, we acquired fMRI scans from 5 healthy

participants during which they performed a motor task, an n-

Figure 1. Motivation for use of graph-ICA. The graph-ICA is to decompose intrinsic subnetworks based on the neurocognitive network model
with two assumptions; 1) A single edge (i.e., functional connection between two regions) can be engaged in multiple cognitive functions and can be
part of multiple functional subnetworks with different weights (i.e., connectivity) (B), rather than a part of only a single subnetwork (A); 2) Whole
brain networks (i.e., graphs) can be composed of independent canonical subnetworks. Each individual recruits different subnetworks with different
strengths of their involvements (C). The usage strengths of subnetworks can be used to identify task-specific subnetworks or group-specific
subnetworks. S1, S2, and S3: three subnetworks; eij: j-th edge in the i-th subnetwork; g1 and g2: two exemplary whole brain networks from two
individuals; aij: the usage strength of j-th subnetwork in the i-th graph.
doi:10.1371/journal.pone.0082873.g001

Intrinsic Subnetworks Identified by Graph-ICA
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back task, and a verb-generation task. Handedness was assessed

using a Korean version of the Annett handedness questionnaire

[10]. None of the participants had a history of neurological illness

or psychiatric disorders. All participants gave written informed

consent for participation according to the Declaration of Helsinki

(BMJ 1991; 302: 1194) and this study was approved by the

Severance Institutional Review Board (IRB).

Data acquisition, image processing, and construction of
whole brain networks

All participants underwent fMRI scanning using a 3.0 Tesla

MRI scanner (Philips Achieva, Philips Medical System, Best, The

Netherlands) to obtain T2* weighted single shot echo planar

imaging (EPI) axial scans with the following parameters: voxel size,

2.7562.7564.5 mm3; slice number, 29 (interleaved); matrix,

80680; slice thickness, 4.5 mm; repetition time (TR), 2000ms;

echo time (TE), 30ms; and field of view, 2096220 mm2. To

facilitate subsequent spatial normalization, we also obtained a high

resolution T1-weighted MRI volume data set for each subject

using a three-dimensional T1-TFE sequence configured with the

following acquisition parameters: voxel size,

0.85960.85961.2 mm3; TR, 9.6ms; and TE, 4.6ms. Foam pads

were used to reduce head motion during EPI data acquisition.

For resting-state fMRI data, we acquired functional scans while

participants lay resting with their eyes closed without focusing on

any specific thoughts or sleeping. This was evaluated by a

questionnaire that was completed after scanning. Scanning

consisted of 165 volumes per participant, which took 330 seconds.

165 scans for a run are known to be sufficient to detect low

frequency clustered fluctuations in resting state fMRI [11] and to

reliably evaluate resting state functional connectivity [12].

We conducted pre-processing for resting state fMRI using

statistical parametric mapping (SPM8, Wellcome Department of

Cognitive Neurology, London, UK) [13]. This process included

correction for acquisition time delay between slices and correction

for head motion by realigning all consecutive volumes to the first

image of the session. We discarded the first 5 scans in order to

minimize stability issues and used the 160 EPI data for analysis.

The realigned images were co-registered with T1-weighted

images, which were then used to spatially normalize the functional

data into a template using nonlinear transformation. Finally, we

spatially smoothed all normalized images using a 4 mm full-width

half-maximum Gaussian kernel.

To obtain individual whole brain networks, we calculated an

interregional correlation map (adjacency matrix) of each mean

fMRI time series between 90 cortical regions as defined by

automated anatomical labeling [14].

Correlation coefficients between the mean time series of two

regions were calculated after band-pass filtering (0.009–0.08 Hz)

and regressing out effects of rigid motion and global signal changes

in white matter, cerebrospinal fluid, and whole brain [15].

Identification of subnetworks using graph-ICA of whole
brain networks

For each participant, only upper diagonal elements of the

adjacency matrix were used for principal component analysis

(PCA) and graph-ICA since the adjacency matrix is symmetric in

this study. To reduce redundancy in graph data from the 104

participants, 75 principal components were chosen according to

90% explained variance in PCA. For the reduced 75 principal

components, we conducted ICA using the Infomax algorithm [9]

100 times. To identify reproducible ICs across 100 different trials,

Figure 2. Concept and simulation results of graph-ICA. A. Concept: An individual whole brain network (gi) can be expressed as a weighted
sum of independent source brain subnetworks (si; i = 1,..,n) by a mixing matrix (A). The purpose of graph-ICA is to estimate an unmixing matrix (W)
and subsequently to estimate source independent brain subnetworks (ui; i = 1,..,n) from cross-sectional whole brain networks (gi; i = 1,..,n). B.
Simulation: We generated three original independent subnetworks (si; i = 1,..,3). Five artificial whole brain networks (gi; i = 1,..,5) were generated by
mixing three independent original subnetworks (si) with different weights and background noise (B1). From whole brain networks, graph-ICA (B2)
estimated original subnetworks better than modularity optimization (B3).
doi:10.1371/journal.pone.0082873.g002

Intrinsic Subnetworks Identified by Graph-ICA
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we applied the RAICAR (ranking and averaging independent

component analysis by reproducibility) algorithm [16], which finds

maximally correlated ICs across different trials and ranks them by

averaging their correlations. RAICAR automatically grouped

similar ICs across all trials and calculated mean correlations of

grouped ICs. Of the 75 groups, we selected 49 whose mean

correlations were greater than 0.3 (z-score = 19.58, p,10216).

Finally, the ICs were normalized to z-scores with a threshold of

z.3. These resultant graph-ICs are termed independent subnet-

works in this study.

These subnetworks were compared with subnetworks identified

by weighted modularity optimization (Text S1). Prior to modu-

larity optimization, we conducted Fisher’s r-to-z transformations of

inter-regional functional connectivity among 90 cortical regions

for each subject and averaged them. Resulting modules (subnet-

works) were normalized z-scores in spatial dimension with a

threshold of z.3.

To show the validity of subnetworks derived using graph-ICA,

we evaluated the subnetworks based on results of conventional

spatial ICA. In this evaluation, we sampled a subgroup (N = 44)

from the whole 104 subjects according to their ages (21–25 years,

mean age = 23). This makes it practical to conduct voxel-wise

spatial ICA. According to previous studies [17,18], it is generally

acceptable to decompose the whole brain signals into around 70

independent sources without significantly over-fitting data. Since

time series data (160 scans) for an individual were temporally

redundant, we reduced the dimension of individual time series to

16 by using PCA according to a threshold of explained variance of

80%. However, total principal components in temporal space

(total 16644 = 704) are still higher than the number of expected

source numbers, i.e., 70. We again reduced the dimension of these

components to 70 by using PCA before applying ICA. Therefore,

information within 44 subjects may represent well 104 subjects

without loss of generality.

We subsequently conducted spatial ICA for these 70 principal

components. Among these, 11 spatially independent components

associated with the occipital lobes were selected. To estimate

individual mixing matrices from the 11 group ICs, we applied a

dual-regression approach [19]. Finally, we calculated correlations

among columns of individual mixing matrices and conducted

Fisher’s r-to-z transformations for each correlation coefficient and

one sample t-test.

Characterization of task-specific and group-specific
subnetworks

To evaluate the subnetworks associated with specific cognitive

functions, we projected whole brain networks during three

cognitive tasks onto the independent subnetworks identified using

the resting state whole brain networks. The motor and cognitive

task procedures were as follows:

Motor task. For 7 subjects, the fMRI session included 6

alternating blocks of 3 motor activation task blocks (30 seconds per

block), and 3 resting blocks (30 seconds per block). During the

motor activation task, subjects were instructed to continuously

move their left foot while minimizing movement of the right foot

and body. During resting blocks, subjects were instructed not to

move the right foot or other body parts.

N-back task. We used 2-back tasks as experimental tasks and

0-back tasks as control tasks reflecting verbal working memory.

For 0-back tasks, subjects were instructed to respond every time a

target stimulus was presented. For 2-back tasks, subjects were

instructed to respond whenever a pre-indicated stimulus that had

been presented was presented again after one intervening stimulus.

The stimuli were auditory, and included three Korean nouns

(socks, pencil, and plate). The block-designed experiment was

conducted according to the stimulus condition. The sequence of

blocks was composed of three alternating sets of 0-back and 2-back

tasks. The order of the stimulus conditions was counter-balanced

across subjects. Ten stimuli were presented for 25s each in a 0-

back task block, whereas 14 stimuli were presented for 35s each in

a 2-back task block. Each block began with instructions for the

subsequent task.

Verb-generation task. For 5 subjects, the fMRI session

included 10 alternating blocks of 5 verb-generation task blocks (30s

per block), and 3 resting blocks (30s per block). During the verb-

generation task, subjects were instructed to continuously generate

relevant verbs for visually presented texts.

All data were preprocessed in the same manner as the resting-

state fMRI data. To evaluate task-dependent network structures

during block-designed tasks, we split fMRI data into task and

baseline blocks (movement versus resting, 2-back versus 0-back,

and verb-generation versus resting) and concatenated them

separately. Then, we calculated interregional correlation maps

(task or baseline adjacency matrices) for separately concatenated

time series. Each adjacency matrix in the graph was regressed on

column spaces (weighted edge vectors) of 49 subnetworks derived

from 104 resting-state networks with intercept. The regression

coefficients (beta; usage-strength) were compared between task and

baseline using a paired t-test.

We also compared usage-strengths between males and females

for each subnetwork after linearly projecting individual adjacency

matrices onto identified subnetworks. Each correlation map was

regressed on spaces of 49 subnetworks with intercept. The

regression coefficients were compared between males and females

by 10,000x random permutation tests.

Results

Simulation results and comparisons of graph-ICA and
voxel-level spatial ICA

In evaluating the validity of using graph-ICA for decomposing

subnetworks, a simulation using a weighted mixture of original

edge-sharing subnetworks showed advantages of graph-ICA over

modularity optimization [20] (Figure 2B). Graph-ICA successfully

determined the distribution of weighted edges of the original

subnetworks. The performance evaluation according to contrast-

to-noise ratio (see Figure S1) shows that contrast-to-noise ratio

over than 1 is acceptable to reliably decompose initial sources.

To relate graph-ICA results (Figure 3), which will be illustrated

in the next section, with voxel-level spatial ICA, 11 spatially

independent components associated with the occipital lobes were

chosen to form functional networks among them. Subnetworks

estimated by graph-ICA were similar to the networks defined with

inter-component connectivity using spatial ICA as presented in the

Figure 4A.

Functional subnetworks uncovered by graph-ICA
A total of 104 individual brain networks containing 90 cortical

nodes and their connectivities were decomposed into 49 intrinsic

functional subnetworks. Graph-ICA differentiated sensory, motor,

default mode, subcortical, and higher cognitive subnetwork

systems from whole brain networks. Figure 3 describes represen-

tative functional subnetworks identified by graph-ICA. Others

subnetworks are listed in Figure S2. These subnetworks are

comparable to network modules identified using modularity

optimization (see Figure 4B).

The vision subnetwork (IC1) is composed of dense connections

among regions of the occipital lobe. The auditory subnetwork

Intrinsic Subnetworks Identified by Graph-ICA
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(IC30) is primarily based in the middle temporal gyrus that acts as

a hub of connectivity for most temporal regions. The motor

subnetwork (IC19) based in the paracentral lobule consists of

connections between the pre- and postcentral gyrus and the

thalamus/basal ganglia. We also identified two default mode

subnetworks including posterior and anterior subnetworks. The

posterior default mode subnetwork (IC34) is mainly based in the

posterior cingulate cortex/precuneus in connection with the

temporal regions bilaterally. The anterior default mode subnet-

work (IC3), on the other hand, is primarily located within the

anterior cingulate cortex, medial superior frontal gyrus, and

medial orbitofrontal cortex in connection with the limbic regions

bilaterally.

We identified two typical subcortical network systems: a dense

subnetwork connecting the basal ganglia and thalamus (IC33), and

a subnetwork based in the limbic regions (IC7). We also found two

representative higher cognitive subnetworks including a subnet-

work based in Broca’s area (IC37) and another in the fronto-

parietal subnetwork (IC35) (Figure 3). Additional diverse cognitive

subnetworks are listed as the adjacency matrix in the Figure 5.

Some subnetworks share single or multiple edges, as shown in

Figure 5. Edges may be shared by up to 4 subnetworks. Figure 5

shows an example of shared edges/nodes including those in the

basal ganglia and thalamus.

Task-specific subnetworks and sex-specific subnetworks
The differential involvement of each subnetwork was evaluated

during motor and cognitive tasks (n-back and verb-generation

tasks) by linearly projecting the individual adjacency matrices onto

identified subnetworks derived from 104 resting state networks.

The individual linear weights represent the strength of involve-

ment of the subnetworks during the tasks, or the network usage-

strengths.

Statistical comparisons of usage-strengths for each subnetwork

showed that motor performance recruited a significant portion of

the paracentral lobule network (IC19, p = 0.001, Bonferroni-

corrected), which has weighted connections with the basal ganglia,

thalamus, right postcentral gyrus, and right precentral gyrus

(Figure 6A). The 2-back task recruited significantly more of the

fronto-parietal network (IC35, p = 0.0005, Bonferroni-corrected)

as well as the subnetwork based in the right superior frontal gyrus

(IC32, p = 0.0006, Bonferroni-corrected) compared to the 0-back

task (Figure 6B). Additionally, a network based in the left inferior

frontal gyrus (IC37) was highly involved in the verb-generation

task (p = 0.0005, Bonferroni-corrected) (Figure 6C).

When sex differences were evaluated, usage-strengths of the

networks based in the posterior cingulate cortex/precuneus (IC34)

(p = 0.004, 10,000x random permutation test) and the middle

cingulate cortex (IC28) (p = 0.007, 10,000x random permutation

test) were greater in males than in females (Figure 7). On the other

hand, the usage-strength of the network connecting the medial

prefrontal and limbic regions (IC3) was less in males compared to

females (p = 0.008, 10,000x random permutation test) (Figure 7).

Figure 3. Representative functional subnetworks identified by graph-ICA. Each group IC was thresholded by z = 3. The line width indicates
the weight of the edge. The size of a circle indicates node degree at the node. ACC: anterior cingulate cortex; AMG: amygdala; BG: basal ganglia; FFG:
Fusiform gyrus; HP: hippocampus; IFG: inferior frontal gyrus; INS: insula; IPL: inferior parietal lobule; MCC: middle cingulate cortex; MTG: middle
temporal gyrus; PCC: posterior cingulate cortex; PCL: paracentral lobule; PoCG: postcentral gyrus; PrCG: precentral gyrus; PRCU: precuneus; SFG:
superior frontal gyrus; SMG: supramarginal gyrus; SPL: superior parietal lobule; STG: superior temporal gyrus; THL: thalamus.
doi:10.1371/journal.pone.0082873.g003

Intrinsic Subnetworks Identified by Graph-ICA
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Discussion

In order to identify independent cognitive network components

from limited sets of neuroimaging data, we extracted 49

independent subnetworks derived from a group of whole brain

networks embedded in the resting state activities. These included

sensorimotor, default mode, subcortical, and higher cognitive

system subnetworks.

Many attempts have been made to identify functional

constructs. Mesulam [6] proposed that the human brain has five

fundamental neurocognitive networks. These include a spatial

attention network based in the posterior parietal cortex and frontal

eye fields, a language network based in the middle temporal gyrus

as well as Wernicke’s and Broca’s areas, an explicit memory

network based in the hippocampal-entorhinal complex and

inferior parietal cortex, a face-object recognition network based

in the ventral temporal cortex and anterior temporal lobe, and a

working memory-executive function network based in the

dorsolateral prefrontal and inferior parietal cortices. Most of these

neurocognitive networks have been identified by functional

connectivity studies using resting state fMRI [7].

It has also been suggested that three particular core networks

detected during resting state activity participate in higher cognitive

functions; that is, the central-executive network based in the

dorsolateral prefrontal cortex and posterior parietal cortex, the

salience network based in the anterior insula adjoining the fronto-

insular cortex and anterior cingulate cortex, and the default mode

network based in the posterior cingulate cortex, medial prefrontal

cortex, medial temporal lobe, and angular gyrus [21–23].

Subnetworks found in this study have considerable overlap with

spatially independent functional patterns introduced in previous

studies [6,7,21–23], though the current subnetworks were

decomposed directly from multitudes of whole brain networks

rather than from time series data. In previous spatial ICA studies,

network information was indirectly driven by referring to the

spatial co-distribution (or co-occurrence) within a component. In

other words, one or more clusters within an independent

component can be considered to be ‘functionally connected’ as

Figure 4. Comparisons among graph-ICA, voxel-level spatial ICA, and modularity optimization. A. Comparisons with voxel-level spatial
ICA: We compared subnetworks based in the occipital cortex derived using graph-ICA with inter-component networks derived using spatial ICA.
Inter-component networks were obtained by calculating correlation coefficient between weights of ICs derived using voxel-level spatial ICA.
Subnetworks derived using graph-ICA had high correspondences with networks composed of spatial ICs. B. Functional subnetworks estimated by
modularity optimization: These subnetworks were also compared with subnetworks identified using graph-ICA. The line width indicates the weight
of the edge. The size of a circle indicates node degree at the node. ACC: anterior cingulate cortex, HP: hippocampus, MPFC: medial prefrontal cortex,
MTG: middle temporal gyrus, OCC: occipital lobe, PCL: paracentral lobule, SPL: superior parietal lobule, STG: superior temporal gyrus.
doi:10.1371/journal.pone.0082873.g004

Intrinsic Subnetworks Identified by Graph-ICA
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they covary together. However, spatial ICA does not provide

information on the connectivity (i.e., strength of connection)

among clusters within the component. Since the current method

focuses on edges rather than nodal activities, the association

between nodes can be more clearly demonstrated than in previous

spatial ICA studies.

In the current study, subnetworks were built on a pool of

intrinsic edges covering the whole brain network. Several

subnetworks were assembled utilizing common edges. For

example, some edges in the basal ganglia/thalamus circuits were

shared not only in subnetwork IC33, but also in subnetworks

including the occipital regions (IC18, IC60), temporal regions

(IC17), frontal regions (IC9, IC16, IC29), and motor regions

(IC19). Certain edges in the posterior cingulate cortex/precuneus

circuits were also shared with various subnetworks such as the

posterior default mode subnetwork (IC34), a subnetwork consisting

of Broca’s area (right) (IC58), a subnetwork consisting of the motor

regions (IC27), and a subnetwork that included the occipital

regions (IC20).

In this model, what make each subnetwork unique is not

exclusive usage of certain edges, but rather the weighted usage of

those edges. Although a functional edge between two nodes may

largely be mediated by anatomical circuitry either through direct

connections or indirect poly-synaptic connections [24], there is

substantial evidence that weighted usage of the edge varies

according to cognitive contexts [25,26]. In other words, different

cognitions may share an anatomical edge, but may differ in

weighted usage of that edge. The weight for a particular edge may

be associated with various factors such as the number of fibers

connecting the two regions, firing rates, and modulation by other

neurons that dynamically changes according to the neural context

[3]. Graph-ICA has the capacity to decompose the weighted usage

Figure 5. Subnetworks in the adjacency matrix and shared edges. Each subnetwork is composed of edges with a same color. Edges shared
by multiple subnetworks were color-coded by averaging colors of multiple subnetworks. Circles (2), triangles (3), and star shapes (4) within cells
represent the number of subnetworks sharing that particular edge. ACC: anterior cingulate cortex, AMG: amygdala, CAL: calcarine, CAU: caudate,
CUN: cuneus, HES: heschl gyrus, HP: hippocampus, IFGtr: triangular part of inferior frontal gyrus, IFGop: opercular part of inferior frontal gyrus, INS:
insula, IOG: inferior occipital gyrus, IPL: inferior parietal lobule, LING: lingual gyrus, MCC: middle cingulate cortex, MFG: middle frontal gyrus, MOG:
middle occipital gyrus, MTG: middle temporal gyrus, OFCmid: middle orbitofrontal cortex, OFCsup: superior orbitofrontal cortex, PAL: pallidum, PCC:
posterior cingulate cortex, PCL: paracentral lobule, PHG: parahippocampal gyrus, PoCG: postcentral gyrus, PrCG: precentral gyrus, PUT: putamen, ROL:
rolandic fissure, SMA: supplementary motor area, SOG: superior occipital gyrus, SPL: superior parietal lobule, STG: superior temporal gyrus, THL:
thalamus. L: left, R: right.
doi:10.1371/journal.pone.0082873.g005
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of each edge, which composes an independent subnetwork. This

differs from previous subnetwork decomposition methods, includ-

ing decomposing exclusive nodes and edges using modularity

optimization [20] or shared nodes and edges but with identical

edge strengths (across multiple subnetworks) using spatially-

overlapping graph clustering methods [27–30]. In graph-ICA,

multiple subnetworks can share same edges but with different edge

strengths.

Various cognitive functions may recruit different sets of spatially

distributed components with different strengths [31,32]. In that

respect, encoding brain states (or cognitions) can be understood in

terms of context-dependent recruitment and release of a set of

functional subnetworks. This hypothesis was tested with motor and

cognitive tasks, which increased usage-strengths of the subnetwork

components corresponding to the task. For example, during a

motor task, a usage-strength increase was found within a motor-

related subnetwork based in the precentral cortex (IC19), similar

to the results reported by Damoiseaux et al.[33]. During a working

memory task, the fronto-parietal subnetwork (IC35) and subnet-

work based in Broca’s region (IC37) were highly active. The verb-

generation task increased usage-strength in the subnetwork

corresponding to the inferior frontal gyrus, which was consistent

with previously reported results [34]. The n-back task elicited

increased strength of the fronto-parietal subnetwork, which

corresponds to well-known working memory circuits including

the dorsolateral prefrontal cortex, inferior frontal gyrus, and

parietal lobe [35]. These examples suggest that cognitive

processing can be modeled with mixtures of independent

subnetwork components.

It is noteworthy that the functional subnetworks involved in

cognition and brain states are derived from networks in the resting

state. It has been suggested that networks involved in cognition are

a subset of networks embedded in spontaneous activity [31,32,36].

Considerable correspondence was found between resting state

subnetworks and task-evoked activation/deactivation patterns in

diverse cognitive imaging studies [32]. Thus, sensory tasks likely

activate intrinsic subnetworks embedded in spontaneous activity

rather than compose a new subnetwork for a given task [37,38]. It

is possible that ongoing rehearsals or recirculation of subnetworks

involved with cognition [39] otherwise remain weak during the

resting state.

Individual variability in human brain networks [40] is a well-

known phenomenon that helps to explain variations in behavior

and cognition. In the current study, independent subnetworks

were extracted based on individual variability of connections

between two nodes, which are the basis of a subnetwork.

The variability in usage-strength for a subnetwork is not limited

to individuals, as it is seen with respect to sex as well. For example,

the usage-strengths of subnetworks differed between males and

females in the network based in the PCC/precuneus (IC34), in the

network connecting the medial prefrontal and limbic regions

(IC3), and in the network based in the middle cingulate cortex

(IC28). In previous studies, the spatial pattern of the default mode

network did not show a sex difference [41], but the density of

Figure 6. Involvement of specific functional subnetworks in cognitive tasks. A. Motor performance recruited more the paracentral lobule
network (IC19). B. N-back task recruited more the fronto-parietal network (IC35) and the subnetwork cored at the right superior frontal gyrus (IC32).
C. The verb-generation task recruited more a subnetwork cored at the left inferior frontal gyrus (IC37). * : p,0.05 after Bonferroni correction. BG:
basal ganglia; IFG: inferior frontal gyrus; INS: insula; IPL: inferior parietal lobule; MCC: middle cingulate cortex; MFG: middle fronta gyrus; PCL:
paracentral lobule; PoCG: postcentral gyrus; PrCG: precentral gyrus; SFG: superior frontal gyrus; SMA: supplementary motor area; SMG: supramarginal
gyrus; SPL: superior parietal lobule; STG: superior temporal gyrus; THL: thalamus.
doi:10.1371/journal.pone.0082873.g006

Intrinsic Subnetworks Identified by Graph-ICA

PLOS ONE | www.plosone.org 8 January 2014 | Volume 9 | Issue 1 | e82873



functional connections was larger in females than in males [42]. In

the current study, females showed increased strength in the

anterior default mode subnetwork (IC3), but decreased strength in

the posterior default mode subnetwork (IC34) compared to males

during the resting state. Aside from these specific subnetworks,

most others were consistently used independent of sex. Thus, the

use of graph-ICA over the modularity optimization method [20] is

advantageous in that it provides a measure for group-level

comparisons of subnetworks.

The concept of deriving independent subnetwork components

from cross-sectional data is based on two main assumptions: the

existence of general subnetworks that are common across

individuals, and the existence of variations across individuals in

utilizing general subnetworks. This approach is similar to previous

ICA applications to cross-sectional neuroimaging data that were

used to find intrinsic independent sources in human brains. These

studies sought to find task-specific cognitive components using

cross-sectional perfusion PET data [43], to compare networks in

the resting state fMRI with cross-sectional metabolic PET data

[44], and to identify group specific components of gray matter

density [45]. The current method is the first to apply ICA to

graphs. Compared to voxel-level spatial ICA that is focused on

weighted activity at each node [46], graph-ICA focuses on

weighted associations among nodes. Although graph-ICA utilizes

adjacency matrices of individuals in contrast to spatial ICA that

uses spatio-temporal data, graph-ICA has capacity to identify

functional subnetworks found in spatial ICA. When compared

with the conventional modularity optimization method [20], we

obtained weighted and shared associations between nodes rather

than fixed associations.

In summary, graph-ICA has several advantages over previous

methods. First, graph-ICA decomposes subnetworks with spatially-

overlapping and weighted edges, which is not supported in the

modularity optimization [47] and a graph clustering method with

spatially-overlapping but fixed edges [29]. Second, graph-ICA

provides more direct information on the edge weights, i.e.,

connectivity, among brain regions working together as a network,

which cannot be directly obtained through voxel-level spatial ICA.

In spatial ICA, the connectivity strengths among clusters within a

component are not clearly defined. Third, graph-ICA facilitates a

group-level comparison of subnetwork usages by comparing

individualized weights for each subnetwork. This is not supported

in conventional modularity optimization or other approaches.

Graph-ICA may be dependent on the node definition to

construct a graph. The definition of nodes used in our study is

based on anatomically defined maps that may not correspond to

functional nodes. Functional connectivity derived from function-

ally homogeneous nodes [48,49] would provide more reliable

results for graph-ICA.

The application of graph-ICA has several challenges, similar to

conventional ICA, such as determination of number of graph

sources and rejection of artifactual components. Also, efficient

visualization techniques of overlapping subgraphs are essentially

needed. All these challenges wait for further research.

In evaluating task-specific subnetworks using n-back task, we

calculated adjacency matrices from different durations (sample

sizes) of 0-back (25s) and 2-back (30s) task blocks, which might

affect functional connectivity estimation due to different degrees of

freedom. Although this may not be critical in the current study,

more reliable evaluation may require same sample sizes across

conditions. In the graph-ICA, we assumed a set of common

subnetwork components but variable usage strengths of those

components according to subjects, tasks and sex groups. This study

can be further extended to allow group-specfic repertoires of

subnetworks and their usage strengths, which may be more

efficient in characterizing individuals, groups and brain functions.

In the current study, graph-ICA is limited in explaining

bidirectional associations, as the adjacency matrix used in this

study contains no directional information. If we could derive brain

networks using bidirectional models such as dynamic causal

modeling [4], graph-ICA could be used to decompose common

brain network constructs based on directional connectivity. The

subnetworks identified using graph-ICA may be regarded as basic

models common to all individuals onto which sophisticated

functions may be constructed. Thus, more sophisticated network

modeling may be constructed on these data-driven subnetworks.

Conclusions

Our results suggest that functional subnetwork repertoires can

be decomposed using independent component analysis based on a

small number of cross-sectional whole-brain networks. Our

simulation and cognitive task studies further suggest that this

method can effectively be utilized to identify task-specific

functional subnetworks both in individual and in group data.

Supporting Information

Figure S1 Simulation results of graph-ICA with different

contrast-to-noise ratios (CNR) from 0.5 to 2.

(JPG)

Figure S2 Functional subnetworks estimated by graph-ICA

(continued on next page). Brain local regions (nodes) and edges

were color-coded to mixture of red, green, and blue for suitable

identification.

(JPG)

Figure 7. Group-level comparisons of functional subnetworks
using usage weights: sex-effects. Sex differences were found in
comparing usage-strengths of three subnetworks. These include the
networks cored at the posterior cingulate cortex/precuneus (IC34), the
middle cingulate cortex (IC28), and connecting the medial prefrontal
and limbic regions (IC3). * : p,0.05, and ** : p,0.01. ACC: anterior
cingulate cortex; HP: hippocampus; MCC: middle cingulate cortex; PCC:
posterior cingulate cortex; PRCU: precuneus; SFG: superior frontal gyrus;
STG: superior temporal gyrus.
doi:10.1371/journal.pone.0082873.g007
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