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OBJECTIVE—Thioredoxin interacting protein (Txnip), a regu-
lator of cellular oxidative stress, is induced by hyperglycemia
and inhibits glucose uptake into fat and muscle, suggesting a role
for Txnip in type 2 diabetes pathogenesis. Here, we tested the
hypothesis that Txnip-null (knockout) mice are protected from
insulin resistance induced by a high-fat diet.

RESEARCH DESIGN AND METHODS—Txnip gene-deleted
(knockout) mice and age-matched wild-type littermate control
mice were maintained on a standard chow diet or subjected to 4
weeks of high-fat feeding. Mice were assessed for body compo-
sition, fat development, energy balance, and insulin responsive-
ness. Adipogenesis was measured from ex vivo fat preparations,
and in mouse embryonic fibroblasts (MEFs) and 3T3-L1 preadi-
pocytes after forced manipulation of Txnip expression.

RESULTS—Txnip knockout mice gained significantly more ad-
ipose mass than controls due to a primary increase in both
calorie consumption and adipogenesis. Despite increased fat
mass, Txnip knockout mice were markedly more insulin sensi-
tive than controls, and augmented glucose transport was identi-
fied in both adipose and skeletal muscle. RNA interference
gene-silenced preadipocytes and Txnip�/� MEFs were markedly
adipogenic, whereas Txnip overexpression impaired adipocyte
differentiation. As increased adipogenesis and insulin sensitivity
suggested aspects of augmented peroxisome proliferator–acti-
vated receptor-� (PPAR�) response, we investigated Txnip’s
regulation of PPAR� function; manipulation of Txnip expression
directly regulated PPAR� expression and activity.

CONCLUSIONS—Txnip deletion promotes adiposity in the face
of high-fat caloric excess; however, loss of this �-arrestin protein
simultaneously enhances insulin responsiveness in fat and skeletal
muscle, revealing Txnip as a novel mediator of insulin resistance
and a regulator of adipogenesis. Diabetes 59:1424–1434, 2010

A
dipose expansion and plasticity link obesity to
insulin resistance (1). Adipocytes either store
fatty acids as triglycerides or release them in
response to fluctuating states of nutritional

intake and energy expenditure; adipocytes also secrete
adipokine peptide hormones that regulate the metabolic
activity of other tissues. Dysregulation in either process
can markedly affect whole-body energy balance and insu-
lin sensitivity (2). Insulin resistance may also result from
increased release of inflammatory cytokines or adipokines
derived from adipocytes or fat-infiltrating macrophages.
However, increased fat is not synonymous with dysregu-
lated metabolism. For example, lipodystrophies are often
associated with severe insulin resistance (3–5), whereas
subsets of obese humans and mouse models exist with
normal metabolic indexes despite markedly increased
adipose mass (6).

Thioredoxin interacting protein (Txnip) is one of six
members of the mammalian �-arrestin family. The �-ar-
restins are structurally related to the �-arrestins, which
are well-characterized mediators of G-protein–coupled
receptor signaling and endocytosis. Furthermore, �-arres-
tin-2 was recently shown to be a key contributor to insulin
signaling (7). Little is known about �-arrestin function,
though several family members regulate endocytosis in
yeast (8). Txnip was first identified as a binding partner
and inhibitor of the antioxidant protein thioredoxin (9).
Recent studies show Txnip to be a novel metabolic regu-
lator, with effects on glucose and lipids. Txnip also regu-
lates cellular growth, differentiation, and programmed
death (10–14). Txnip expression is markedly glucose
responsive (15), and its expression is elevated in the
skeletal muscle of diabetic and glucose-intolerant patients
(16). Interestingly, Txnip is the only �-arrestin family
member to bind thioredoxin (17). Another �-arrestin,
Arrdc3, has been linked to development of obesity in
humans (18), and both Arrdc4 and a Txnip mutant that
does not bind thioredoxin have been shown to alter
glucose metabolism (19), supporting �-arrestins as a new
class of metabolic regulators that operate independently
of thioredoxin.

We previously observed that fasted Txnip-null mice are
hypoglycemic and described a functional role for Txnip in
enhancing insulin responsiveness and glucose uptake in
muscle and fat (11,16). Given those findings, we hypothe-
sized that Txnip deletion would protect against the devel-
opment of insulin resistance induced by a high-fat diet.
Here we assessed insulin action by hyperinsulinemic
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clamp studies and the regulation of adipogenesis in high-
fat diet–fed Txnip-null mice. We report that loss of Txnip
leads to a pattern of increased insulin sensitivity despite
expansion of adiposity that is suggestive of clinical re-
sponses seen with peroxisome proliferator–activated re-
ceptor-� (PPAR�)–activating thiazolidinediones (TZDs),
and we furthermore found that Txnip regulates PPAR�
activity. These data support the concept that Txnip pro-
motes adipose tissue expansion, which contributes to its
role as a metabolic regulator.

RESEARCH DESIGN AND METHODS

Animals. Txnip�/� mice were generated as described (20). Mice were housed
under controlled temperature (22 � 2°C) and lighting (12 h of light, 0700–1900
h; 12 h of dark, 1900–0700 h) with free access to water and food. Male
Txnip�/� and wild-type mice between 12 and 18 weeks old were fed a regular
diet (TD2018; Harlan Teklad, Madison, WI) or high-fat diet (HFD; 55% fat by
calories; TD93075; Harlan Teklad) ad libitum for 4 weeks, and metabolic
parameters and insulin action were measured. Mice were maintained in
accordance with the Institutional Animal Care and Use Committees of the
Harvard School of Medicine and the Yale University School of Medicine.
Basal study. Fat and lean body masses were assessed by 1H magnetic
resonance spectroscopy before and after 4 weeks of high-fat diet. Compre-
hensive animal metabolic monitoring system (CLAMS; Columbus Instruments,
Columbus, OH) was used to evaluate activity, food consumption, and energy
expenditure during a 72-h period, with hourly values averaged to a composite
24-h period, as detailed in the supplementary Methods, available in an online
appendix at http://diabetes.diabetesjournals.org/content/early/2010/03/10/
db09-1212/suppl/DC1.
Hyperinsulinemic-euglycemic clamp studies. Hyperinsulinemic-euglyce-
mic clamp studies were conducted as described previously for 140 min with a
primed/continuous infusion of human insulin (21 mU/kg prime for 3 min, 3
mU/kg per min infusion) using mice that were fasted overnight. Protocols and
calculations are detailed in supplementary Methods.
Biochemical analysis. Plasma glucose was analyzed by glucose oxidase
method. Plasma insulin, glucagon, and adiponectin were measured by radio-
immunoassay using kits from Linco. Plasma leptin was measured using the
LINCOplex Assay (Linco). Serum tumor necrosis factor and interleukin-6
levels were measured by ELISA (BD Biosciences). Colorimetric assays were
used for plasma fatty acid (Wako) and �-hydroxybutyrate concentrations
(StanBio Labs). Plasma [3H]glucose was measured by scintillation counting of
ZnSO4/Ba(OH)2 deproteinized serum, dried to remove 3H2O.
Adipose tissue biopsy and cell size analysis. Adipocyte sizing using a
Beckman Coulter Multisizer III with a 400-�m aperture, set to count 6,000
particles, was performed on osmium tetroxide–fixed epididymal fat tissue as
previously described (21).
MEF isolation and adipogenesis. Mouse embryonic fibroblasts (MEFs)
were isolated from day-14.5 embryos as previously described (22). Adipogen-
esis was induced in 2-day postconfluent cells (passage 4) by standard
dexamethasone, methylisobutylxanthine, and insulin (DMI) induction (16)
with rosiglitazone or DMSO vehicle when indicated.
mRNA quantification by real-time PCR. Epididymal white adipose tissue
total RNA was isolated using Trizol per manufacturer’s instructions (Invitro-
gen). cDNA was reverse transcribed from 1 �g total RNA for real-time PCR as
previously described (11) and detailed in supplementary Methods.
Endogenous PPAR and exogenous PPAR�–ligand binding domain re-

porter assays. Generation and transduction of Txnip lentivirus is described
previously (11). Txnip short hairpin RNA (shRNA) and control shRNA
plasmids were purchased from Sigma. 3T3-L1 preadipocyte lines were made
with stable overexpression of Txnip, empty vector control, control shRNA, or
Txnip shRNA species by puromycin selection after viral transduction. Txnip
expression was confirmed by Western blot analysis with anti-Txnip antibodies
as described (20). PPAR response element and ligand binding domain assays
were performed as described (23), as detailed in supplementary Methods.
Statistical analysis. A two-tailed Student t test was used to test differences
between Txnip�/� and wild-type mice; 2-way ANOVA was performed to test
multiple effects during the hyperinsulinemic-euglycemic clamp. One-way
ANCOVA analysis was performed using a Web-based calculator provided
by Vassar College (http://faculty.vassar.edu/lowry/VassarStats.htm). Val-
ues are presented as mean � SE; P � 0.05 was considered statistically
significant.

RESULTS

High-fat feeding increased adiposity in Txnip-null

mice. Txnip knockout and wild-type control mice were
fed a 4-week high-fat, high-caloric diet (55% fat, 24%
carbohydrate), and whole-body metabolism and insulin
responsiveness were measured. Baseline body composi-
tion was determined prior to high-fat feeding while on
standard chow diet (SCD): age-matched Txnip knockout
mice were heavier than wild-type littermates (36.7 � 1.0g
vs. 30.5 � 1.2 g, P � 0.05, supplementary Fig. 1A).
Magnetic resonance (MRS) analysis of body composition
revealed Txnip knockout mice had greater total fat and
lean mass, but the same ratio of fat to total body weight as
wild-type controls (supplementary Fig. 1A). After 4 weeks
of HFD, Txnip knockout total body weight increased twice
as much as control mice (Fig. 1A). MRS indicated this was
almost entirely due to fat mass expansion: Txnip knockout
mice gained 8.1 � 1.1 g of fat mass relative to 3.3 � 1.1 g
for wild type (Fig. 1A, P � 0.01), and greater fat mass
relative to total body mass (wild type: 23 � 2%, Txnip
knockout: 32 � 2%, P � 0.05). Both subcutaneous and
visceral Txnip knockout fat depots expanded relative to
wild-type controls (Fig. 1B).
Increased adiposity in HFD Txnip knockout mice was

due to increase calorie intake. Energy balance was
determined before and after high-fat feeding using an
Oxymax CLAMS system for a 3-day period. Total energy
expenditure averaged to a 24 h cycle was markedly
influenced by the method of indexing; indexing energy
expenditure to body mass indicated Txnip knockout mice
expended less energy than control mice, whereas energy
expenditure indexed per mouse indicated Txnip knockout
mice expended greater energy (Fig. 1C and D, representa-
tive tracings on HFD). As this discordance was likely due
to the significant differences in body composition, we
adjusted the energy expenditure for body mass by AN-
COVA, as described by Packard and Boardman (24).
Energy expenditure was strongly correlated to body mass
with r2 values from 0.6 to 0.87 (Fig. 1E). After adjustment
of energy expenditure for differences in body mass by
ANCOVA, there were no significant differences between
wild-type and Txnip knockout mouse energy expenditure
for mice fed either SCD or HFD (Fig. 1E). Adjustment of
energy expenditure for lean body mass (using values
derived from MRS) gave similar results (data not shown).

Food intake was also compared with total body mass.
No significant correlation was seen for either genotype on
either diet, with r2 values from 0.01 to 0.17 (Fig. 1F), hence
ANCOVA was not performed. Txnip knockout mice con-
sumed 14% more calories per day than wild-type mice on
SCD (P � 0.05); a similar trend, although not significant,
was seen during HFD (Fig. 1F). From these data, we
conclude that the development of obesity in Txnip knock-
out mice was most attributable to primary excess in food
consumption.
Txnip-null mice use the same fuel source as wild-type
mice. Previous ex vivo tissue studies of substrate oxida-
tion in different Txnip-deficiency models indicated both
carbohydrate and lipid oxidation are diminished (25,26).
We examined respiratory quotient profiles for mice on
both diets to determine whether Txnip deletion altered
carbohydrate versus lipid substrate oxidation in vivo. The
24-h averaged respiratory quotient for Txnip knockout
mice was the same as for wild-type controls on each diet
(Fig. 1G, SCD: 0.90 � 0.01 for both; HFD: 0.80 � 0.01 for
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both). Respiratory quotient was equally reduced for both
mice after 4 weeks of HFD feeding, consistent with
increased fat oxidation. A subtle variance in light/dark
respiratory quotient values was discernable between each
group, with Txnip-null mice exhibiting a greater trend
toward carbohydrate oxidation during relatively inactive
light periods, and a more pronounced shift to lipid oxida-
tion during more active nighttime periods. Txnip knockout
mice trended toward greater locomotor activity on both
diets relative to control mice, most evident during dark
cycles, although the differences were not statistically
significant when averaged over a 24-h period (Fig. 1H).
Txnip knockout mice are protected from insulin re-
sistance after prolonged high-fat feeding. Insulin re-
sponsiveness was first assessed in SCD-fed and HFD-fed
mice by intraperitoneal insulin tolerance testing. SCD-fed
Txnip knockout mice had lower baseline blood glucose
levels and a more pronounced insulin-stimulated blood
glucose drop than SCD-fed wild-type controls, both by
absolute and relative measures of insulin response (Fig.

2A and B). After HFD feeding, Txnip knockout blood
glucose levels were markedly lower than wild-type mice
(Fig. 2A). HFD-fed wild-type insulin responsiveness was
blunted relative to SCD-fed wild-type mice, but HFD-fed
Txnip knockout mouse insulin response was unchanged
relative to SCD-fed Txnip knockout mice (Fig. 2B).

Fasting plasma glucose levels were 37% lower and
fasting insulin levels were �70% lower for HFD-fed Txnip-
null mice than wild-type controls (Fig. 2C and Table 1; P �
0.01 and P 	 0.05, respectively). Fasting glucagon levels
were essentially unchanged, despite Txnip knockout rela-
tive hypoglycemia (Table 1). Interestingly, despite in-
creased adiposity, Txnip knockout leptin serum levels
were lower by 40% (P � 0.05) and adiponectin levels were
lower by 20% (P � 0.05, Table 1). HFD-fed Txnip knockout
mice had increased triglycerides (176%, P � 0.05), free
fatty acids (137%, P � 0.05), and serum ketones (3.7-fold,
P � 0.0001) relative to wild-type controls after an over-
night fast, reflecting a similar fasting physiology to SCD-
fed Txnip knockout fasted mice (11).
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feeding. A: Total mass, lean body mass, and total adipose weight for Txnip knockout and wild-type control mice assessed by 1H magnetic
resonance spectroscopy and expressed as After HFD � Before HFD weights. n � 8 per group. B: Mean difference in weight between HFD and SCD
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Txnip knockout mice required nearly fourfold higher
glucose infusion rates to maintain euglycemia compared
with wild-type HFD-fed littermates during hyperinsuline-
mic-euglycemic clamp studies (Fig. 2C, P � 0.0001). This

corresponded to a 2.1-fold increase in insulin-stimulated
whole-body glucose turnover (Fig. 2D, P � 0.0001). Basal
hepatic glucose output (HGO) was 189% higher in the
Txnip-null mice (Fig. 2E, P � 0.01). Hepatic glucose
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TABLE 1
High-fat–fed serum hormone and serum metabolite levels

Wild type Txnip KO P value

Serum hormone
Insulin (pg/ml) 70.0 � 19.4 28.3 � 4.0 0.05
Glucagon (pg/ml) 30.4 � 3.0 29.4 � 5.1 0.92
Leptin (pg/ml) 611 � 110 360 � 52 0.03*
Adiponectin, HFD (ng/ml) 9.1 � 4.2 4.2 � 0.6 �0.01*
Adiponectin, SCD (ng/ml) 5.7 � 0.9 6.8 � 0.5 0.33

Serum metabolites
Glucose (mg/dl) 139 � 9 87 � 6 �0.001*
Triglycerides (mg/dl) 146 � 32 258 � 31 0.02*
FFA (before clamp, mEq/ml) 0.97 � 0.07 1.33 � 0.16 0.04*

 FFA (after clamp, % change) �3.3 � 8.9 �31.8 � 6.2 0.02*
�-hydroxybutyrate (mmol/l) 1.57 � 0.26 5.88 � 0.47 �0.0001*

Unless indicated, values reflect serum levels after an overnight fast. *Statistical significance by Student t test.
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production was not suppressed by insulin in either wild-
type or Txnip knockout animals (supplementary Fig. 2).
Increases in Txnip knockout whole-body glucose uptake
were associated with significant increases in whole-body
glycolysis (182%) and glycogen synthesis (429%) (Fig. 2F
and G).
Peripheral glucose disposal is augmented in Txnip-
deficient mice. Insulin-stimulated glucose transport into
skeletal muscle was increased by 36% in Txnip knockout
mice (Fig. 2H, quad). Glucose uptake into white adipose
tissue (WAT) was similarly increase by 40% (Fig. 2H,
WAT). No differences were seen in brown adipose glucose
transport levels (315 � 56 vs. 302 � 72 nmol/g/min). Txnip
knockout mice exhibited nearly a 10-fold greater post-
clamp reduction in free fatty acid (FFA) levels than
wild-type controls (31.8% vs. 3.3%, respectively, P � 0.05,
Table 1). Reduced FFA levels after insulin stimulation are
an index of adipose insulin sensitivity, reflecting de-
creased adipocyte lipolysis and increased adipose triglyc-
eride synthesis from FFA reesterification. Together, these
data point to globally enhanced peripheral insulin sensi-
tivity in Txnip-null mice, protecting against high-fat diet–
induced insulin resistance.
High-fat diet induces adipogenesis in the Txnip-null
mice. Although expanded, Txnip-null visceral, subcutane-
ous, and brown adipose tissues were structurally similarly
to wild type (Fig. 3A–C). CD68� inflammatory infiltrate
was observed in the epididymal WAT of both strains
(supplementary Fig. 3A), and no differences were ob-
served in serum levels of tumor necrosis factor or inter-
leukin-6 between the two groups after HFD feeding
(supplementary Fig. 3B). HFD-fed Txnip knockout and
wild-type control epididymal adipose cell size distribution
was determined with a Beckman Coulter Multisizer III.
Multisizing revealed wild-type and Txnip knockout adipo-
cyte median size and size distribution were equal (Fig. 3D
and E), and the fat depots contained equivalent propor-
tions of small to large adipocytes (Fig. 3F). Given Txnip
knockout’s greater net fat accumulation, this implied
adipogenesis was occurring at pace with lipid storage.

To test directly the hypothesis that Txnip deficiency
stimulated adipogenesis, 3T3-L1 preadipocytes were trans-
duced with lentivirus carrying Txnip cDNA or gene-silenc-
ing shRNA and were assessed for impaired or enhanced
adipogenesis. Txnip overexpression blunted adipogenesis
to 65% of control lentivirus–infected 3T3-L1 cells (Fig. 4A
and B). Similarly, two different Txnip shRNA species
increased adipocyte formation by 3.2-fold and 12.6-fold
relative to control shRNA (shTxnip1 and shTxnip2, Fig. 4B
and C). Txnip reintroduction into 3T3-L1 cells stably
gene-silenced with shTxnip1, which targeted the endoge-
nous Txnip 3� untranslated region not present in the cDNA
transgene, effectively reversed the effects of Txnip gene-
silencing, reducing adipogenesis to less than 20% of empty
vector control (Fig. 4D). MEFs derived from Txnip knock-
out embryos exhibited a similar increased potential to
differentiate into mature adipocytes—more than a fourfold
increase compared with wild-type control MEFs (Fig. 4E,
P � 0.0001; similar results were seen in a second indepen-
dent line). Reintroduction of Txnip into the Txnip-null
MEFs by lentiviral transduction reduced adipocyte forma-
tion (Fig. 4F, 54% reduction relative to control-infected
cells, P � 0.05). Finally, lentiviral overexpression of Txnip
in mature differentiated 3T3-L1 adipocytes reduced de
novo glycerol synthesis from labeled pyruvate by 15%,
whereas Txnip gene-silencing increased glycerol forma-
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tion nearly twice that of control transduced cells (Fig. 4F,
P � 0.05 and P � 0.01, respectively). Rates of glyceroneo-
genesis correlate with adipogenesis as adipocytes exhibit
nominal glycerol kinase activity and must generate de
novo glycerol-3-phosphate for fatty acid esterification dur-
ing triglyceride synthesis (27). These results support the
concept that Txnip intrinsically regulates adipocyte differ-
entiation and lipogenesis.
Txnip deletion augments PPAR�-stimulated adipo-
genesis. Increased insulin sensitivity, increased adiposity,
and augmented adipogenesis are similar to the clinical
response of PPAR� agonism, as seen in thiazolidinedione
treatment of patients with type 2 diabetes (5,28). To test
the hypothesis that Txnip-null cells show increased
PPAR� activity, we repeated MEF adipogenesis in the
presence of the PPAR�-selective agonist rosiglitazone, and
demonstrated PPAR� specificity with the coadministration
of the PPAR�-selective irreversible antagonist GW9662
(29). Txnip-null MEFs had approximately fivefold greater
adipogenic response than wild-type controls at each dose
of rosiglitazone (Fig. 5A, P � 0.0001), which was attenu-

ated with the coapplication of the antagonist GW9662. Net
adipogenesis was uniformly greater at each dose of ros-
iglitazone, suggesting that Txnip did not affect ligand
responsiveness.
Txnip expression modulates PPAR� activity level.
Endogenous PPAR activity was assessed in 3T3-L1 cells
overexpressing Txnip or control vectors, using a tran-
siently expressed (PPRE)3TKLuc PPAR response element
luciferase reporter (PPRE). Txnip overexpression inhib-
ited the PPRE reporter 2.5-fold relative to empty vector
control (Fig. 5B, P � 0.05). This was followed by an
assessment of Txnip’s ability to activate or inhibit the
PPAR�-ligand binding domain (LBD) in a standard chi-
meric Gal4-DBD-hPPAR�-LBD fusion protein/Gal4-lucif-
erase reporter assay. 3T3-L1 cells stably transduced with
Txnip or shTxnip1 were compared with relevant controls.
Txnip overexpression reduced PPAR�-LBD activation
nearly twofold relative to control in response to rosiglita-
zone (Fig. 5C, P � 0.05). In the reciprocal study, Txnip
gene silencing induced PPAR�-LBD activation 1.5-fold
more than the shRNA control at each increasing dose of
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rosiglitazone (Fig. 5D, P � 0.05). Reflecting the MEF
adipogenesis results, total PPRE reporter activity was
reduced by Txnip overexpression; however, rosiglitazone
dose responsiveness was similar to that of the control,
suggesting Txnip expression impedes PPAR� activity with-
out inhibiting the response to ligand activation.
PPAR� activation suppresses Txnip expression dur-
ing adipocyte differentiation. Txnip expression pro-
gressively increased threefold relative to uninduced
preadipocytes for 6 days after standard DMI induction
(supplementary Fig. 4). The addition of 1 �mol/l rosiglita-
zone suppressed Txnip mRNA expression during the early
phase of adipogenesis (days 0–3) relative to standard DMI
differentiation alone (P � 0.01), suggesting PPAR� activa-
tion suppresses Txnip expression to impede Txnip’s neg-
ative feedback inhibition of PPAR�.
Txnip deletion promotes adipogenic PPAR� target
gene expression after high-fat feeding. In vivo expres-
sion of WAT adipogenic and lipogenic PPAR� target genes
was measured in SCD-fed and HFD-fed mice to determine
whether HFD potentiated PPAR� activation in Txnip-null

mice. AP2, CD36, pyruvate carboxylase, fatty acid syn-
thase, phosphoenolpyruvate carboxykinase, lipoprotein
lipase, and acetyl-CoA carboxylase-� are known adipo-
genic and lipogenic PPAR� target genes (30). After 4
weeks of HFD, these PPAR� targets were uniformly up-
regulated in Txnip knockout HFD-fed adipose tissue rela-
tive to Txnip knockout SCD-fed adipose tissue, and HFD
Txnip knockout transcript levels were consistently greater
than HFD-fed wild-type expression levels (n 	 8–12 per
group, P � 0.01, Fig. 6A). PGC1� and UCP2 expressions
were measured, as the two genes influence lipid metabo-
lism, adiposity, and energy balance, but are not PPAR�
targets (31,32). No significant differences in expression
were detected for either gene on SCD or after HFD (Fig.
6B). Although HFD-fed Txnip knockout serum adiponectin
levels were lower than wild type, adiponectin transcript
levels in Txnip knockout HFD-fed adipose were increased
relative to wild-type mice, suggesting regulation of, or a
defect in, adiponectin translation, protein stability, and/or
secretion (Fig. 6C). Similarly, leptin transcript levels in
HFD-fed Txnip knockout and wild-type adipose were
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equivalent, although Txnip knockout serum leptin levels
were lower (Fig. 6C). GLUT mRNA levels for the insulin-
regulated (and known PPAR� target) GLUT4 and the
constitutively expressed GLUT1 were also determined.
GLUT1 expression trended downward for both mice after
HFD, but GLUT4 expression was significantly increased in
Txnip knockout WAT relative to wild type after high-fat
diet. Wild-type GLUT4 levels were reduced by 40% after
HFD, whereas Txnip knockout post-HFD levels increased
1.6-fold (P � 0.01, Fig. 6D). Finally, we examined both
PPAR� and Txnip expression, as PPAR� expression is
influenced by its own activation (33), and Txnip expres-
sion is augmented in states of insulin resistance (16).
High-fat diet increased PPAR�2 expression in Txnip
knockout WAT by 1.7-fold (P � 0.01, Fig. 6A). In wild-type
WAT, high-fat feeding increased Txnip expression 1.4-fold
(P � 0.01, supplementary Fig. 4B). These data support the
concept that Txnip deletion augments adipogenic and
lipogenic programs in WAT in vivo after high-fat feeding by
preferentially augmenting PPAR� activation. HFD-induced
Txnip expression may play a role in suppressing dietary
PPAR� activation to impede adipogenesis in the face of
positive energy balance, resulting in diet-induced insulin
resistance.

DISCUSSION

We show here that Txnip plays a central role in regulating
insulin sensitivity, energy balance, and adiposity. Previ-
ously, we demonstrated Txnip’s critical function in glu-
cose homeostasis during nutrient deprivation, in part by
regulating liver gluconeogenic capacity and peripheral
insulin sensitivity (11). When challenged with high-fat
caloric excess, Txnip-deficient mice are protected against
insulin resistance, with markedly higher rates of insulin-
stimulated glucose disposal. This increased insulin sensi-
tivity occurs despite increasing adiposity. Expanded
adipose mass is primarily due to an increased drive for
food intake, which may reflect a central defect in satiety or
a secondary response to lower circulating factors such as
leptin or blood glucose. In concert, cellular storage capac-
ity is expanded through increased adipogenesis.

Our results correspond well with other recent reports
using different Txnip-deficient models. Hui et al. showed
Txnip-null mice had increased insulin responsiveness pri-
marily from enhanced skeletal muscle insulin sensitivity,
which was confirmed using muscle-restricted Txnip-null
mice. As a striking observation, they showed high-fat
feeding the null mice even further lowered fasting blood
glucose (25). Hui et al. also reported increased basal Txnip
knockout HGO, which was a surprise given our earlier
observations of defective Txnip knockout hepatocyte glu-
cose production (11). We suspect this reflects both in-
creased gluconeogenic substrate delivery to the liver, as
Txnip knockout mice have increased serum lactate levels,
and diminished HGO suppression from lower endogenous
serum insulin levels (10,34). One notable difference is that
in the model of Hui et al., fat mass was unchanged and
adipose insulin responsiveness was not increased in Txnip-
null mice. Strain differences or specific aspects of the
gene-targeting approaches may underlie the differences in
the two models. In a third model, Chen et al. observed
results similar to ours using Hcb-19 mice, which have a
naturally occurring Txnip truncation mutation. They re-
ported marked increases in Hcb-19 adiposity relative to
controls that developed at an early age, and observed

increased glucose tolerance and insulin responsiveness
(35). Also in agreement, Chen et al. attributed increased
Hcb-19 fat mass to a primary increase in food intake. When
the Hcb-19 mice were crossed with the ob/ob leptin-
deficient mice, Txnip deletion promoted even greater fat
mass expansion, but protected against diabetes develop-
ment by preventing peripheral insulin resistance and �-cell
apoptosis. Collectively, these three different Txnip-defi-
cient models are highly corroborative and underscore
Txnip’s central importance in metabolic regulation, devel-
opment of insulin resistance, and global energy balance.

An increased capacity for adipocyte expansion in Txnip-
null mice may contribute to the protection against insulin
resistance from high-fat feeding. Finite adipose expansion
has been proposed to explain the similarities in metabolic
dysfunction shared between lipodystrophies and obesity
(1,36,37). Once storage capacity is exceeded, toxic metab-
olite spillover or dysfunctional adipokine and cytokine
release may result in insulin resistance (38). Augmented
adipogenesis in the null mice may alleviate the damaging
metabolic effects of exhausted adipocyte storage capacity,
which may similarly underlie the therapeutic benefits of
TZD therapy (6,30,36). Other evidence suggests TZDs
promote fat redistribution from inflammatory visceral
depots to more protective subcutaneous depots. We ob-
serve Txnip-null adipose stores are equally expanded
without any apparent redistribution from one depot to
another. Increased adipose glucose uptake also contrib-
utes to the increased insulin-mediated glucose disposal
seen in Txnip-null mice. Although Txnip-null brown fat
2-deoxyglucose (2DG) transport rates were not different
from wild type, both increased null brown adipose mass
and its high glucose transport make it a significant con-
tributor to overall glucose disposal. Based on depot sizes
and relative 2DG transport levels, we estimate WAT and
brown fat account for 10% of total glucose disposal and
�1.6-fold greater glucose uptake relative to wild-type fat
mass.

Txnip’s regulation of PPAR� activity may account for
several observations regarding energy balance, adipogen-
esis, whole-body glucose and lipid homeostasis, and insu-
lin responsiveness. PPAR� is a central regulator of
adipogenesis and lipogenesis, and participates in inflam-
mation (30). Many lines of evidence have established
PPAR�’s role in integrating fat development, metabolic
control, and insulin responsiveness (39–41). However,
many striking inconsistencies are seen among various
mouse PPAR� deletion models, hence a direct comparison
with the Txnip-null phenotype is difficult. In addition,
several observations here suggest Txnip’s alteration of
PPAR� function cannot be the sole determinant of the
metabolic phenotype. For instance, PPAR� activation is
not associated with fasting hypoglycemia, and its activa-
tion should suppress triglyceride and free fatty acid levels,
however we observed elevated levels. Txnip has recently
been shown to regulate PPAR� expression and activity
(42) and Foxo4 activity in vitro (43), suggesting that Txnip
regulates multiple metabolic transcription factors to affect
a composite metabolic picture. Txnip likely also more
directly affects cellular redox balance and enzymatic func-
tions that mediate triglyceride formation and insulin sen-
sitivity. For example, previous studies show increased
ratio of reduced to oxidized nicotinamide adenine dinucle-
otide (NADH/NAD�) levels in Txnip-null mice, which
impair tricarboxylic acid cycle flux and promote fatty acid
incorporation into triglycerides (26), whereas Hui et al.
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demonstrated Txnip deletion altered phosphatase and
tensin homolog activity and insulin signaling (25). Further
compound mutational studies with Txnip and the different
transcriptional regulators of metabolism will be necessary
to determine how Txnip regulates metabolism through
these pathways, and in which tissues.

Txnip appears to regulate PPAR� by several mecha-
nisms. First, Txnip is a negative regulator of PPAR�
expression. PPAR� activation, in turn, suppresses Txnip
expression, reflecting reciprocal feedback inhibition. Sev-
eral other recent reports describe a similar relationship
between Txnip and PPAR� (44,45). Second, Txnip expres-
sion blunts PPAR� activity. Recent evidence that Txnip
also inhibits PPAR� activity suggests its function is more
generalized with respect to nuclear hormone receptors
(42). The inhibition does not appear to be one of PPAR�
ligand responsiveness. Both the PPRE reporter and in
vitro differentiation data suggest PPAR� rosiglitazone
dose responsiveness is not affected by changes in Txnip
expression, hence we speculate that differences in PPAR�
activity reflect a tonic change in PPAR� activation. This
may reflect a Txnip-mediated shift in PPAR� coactivator
recruitment rather than ligand binding. In an analogous
example, Foxo4 was recently shown to directly interact
with the coactivator p300 through redox-sensitive disulfide
bond formation that mediated suppression of Foxo4 activ-
ity. The critical cysteine bridge was a thioredoxin target
and was regulated by Txnip expression (43). We have been
unable to demonstrate any direct interaction between
Txnip and PPAR� using coimmunoprecipitation and glu-
tathione S-transferase pull-down techniques (data not
shown), hence we hypothesize Txnip regulates PPAR�
through more indirect mechanisms. That enhanced PPAR�
activation follows high-fat feeding may reflect diet-derived
PPAR�-activating factors. In rodents, high-fat diet leads to
elevations in PPAR�-activating free fatty acids (and tri-
glyceride lipolysis in certain situations) that have been
shown to generate PPAR� ligands and PPAR� activation
(46,47). We speculate that HFD simultaneously activates
PPAR� while inducing Txnip expression in WAT to re-
presses PPAR�. In the absence of Txnip, high-fat feeding
may permit PPAR�-activating factors to operate unopposed,
promoting a PPAR�-activated increase in adipogenesis.

In summary, these studies demonstrate that Txnip is an
important mediator of energy balance and nutritional
sensing. Txnip protects against the insulin-resistant insult
of high-fat caloric excess while simultaneously augment-
ing adipocyte storage capacity. Efforts to regulate Txnip
function will shed further insight into metabolic disorders
such as diabetes, and may represent a novel strategy for
diabetes therapy.
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