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Abstract: We develop Categorical Exploratory Data Analysis (CEDA) with mimicking to explore and
exhibit the complexity of information content that is contained within any data matrix: categorical,
discrete, or continuous. Such complexity is shown through visible and explainable serial multiscale
structural dependency with heterogeneity. CEDA is developed upon all features’ categorical nature
via histogram and it is guided by all features’ associative patterns (order-2 dependence) in a mutual
conditional entropy matrix. Higher-order structural dependency of k(≥ 3) features is exhibited
through block patterns within heatmaps that are constructed by permuting contingency-kD-lattices
of counts. By growing k, the resultant heatmap series contains global and large scales of structural
dependency that constitute the data matrix’s information content. When involving continuous
features, the principal component analysis (PCA) extracts fine-scale information content from each
block in the final heatmap. Our mimicking protocol coherently simulates this heatmap series by
preserving global-to-fine scales structural dependency. Upon every step of mimicking process,
each accepted simulated heatmap is subject to constraints with respect to all of the reliable observed
categorical patterns. For reliability and robustness in sciences, CEDA with mimicking enhances data
visualization by revealing deterministic and stochastic structures within each scale-specific structural
dependency. For inferences in Machine Learning (ML) and Statistics, it clarifies, upon which scales,
which covariate feature-groups have major-vs.-minor predictive powers on response features. For the
social justice of Artificial Intelligence (AI) products, it checks whether a data matrix incompletely
prescribes the targeted system.

Keywords: contingency-kD-lattice; high order structural dependency; heterogeneity; mutual condi-
tional entropy matrix; principal component analysis (PCA)

1. Introduction

Let a structured data set be represented by a rectangular matrix with sampled subjects
being arranged along the row-axis and selected features arranged along the column-axis.
Then, each entry of this data matrix is either a continuous or discrete feature’s measurement
or a categorical feature’s category of a row-specific subject. This is the most common data
structure encountered in data analysis. Naturally, we wonder: what information content
is in such a data matrix? Interestingly, researchers seemingly never ask this simple and
universally valid question formally in literature. Is it just like the most complex question
taking the most simplistic form? “What is it?” John Steinbeck and his marine biologist
friend E.D. Ricketts discussed and argued about the enormous hidden complexity in this
simple question when he encountered the seemingly endless food-web in his 1951 book:
“The Log from the Sea of Cortez” [1].

The wording of the above two questions points to the complex system that gives rise
to the observed data set. Such a system could be rather commonly encountered in our real
world. Even if it is entirely governed by well-understood physical and biological principles,
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its details always surprise us in one way or another. The more data we have, the more
surprising structures and heterogeneity would merge upon finer and finer scales. This is
a common phenomenon in the current Big Data era. When more data are collected from
an intrinsically finite system of interest on this planet earth, its abundant structural scales
would be exposed. Further, as we look into finer scales, the heterogeneous global and
large-scaled structures would also become clear. This theme of multiscale structures with
heterogeneity in any complex system was depicted in a 1972 Science paper title: “More is
different” by physics Nobel laureate P. W. Anderson [2].

If multiscale structures with heterogeneity are underlying every finite complex system,
should its data matrix’s information content not likewise embrace such structural charac-
teristics? It is a solemn call for data analysts. Because our current system knowledge with
available data analysis methodologies still cannot lead us to extract data’s full information
content [3–5]. Such a state needs to be transcended.

Apparently, data analysts must adopt data-driven computing and effective explo-
ration techniques to face the largeness of data. Their data analyzing repertoires must be
widely expanded to discover complex multiscale structures and identify scale-specific
heterogeneity. Such a transcendence could truly elevate Data Analysis as a discipline of
science, as John Tukey argued and proclaimed in his 1962 paper with the title: “The future
of Data Analysis” [6].

Data analysts and domain scientists share the central scientific issue: what makes this
system of interest works as it does? Their scientific roles are somehow different. Domain
scientists, in general, play the role of data curator, while data analysts do not. However,
on the road to achieving an understanding of a target system, data analysts must check
whether data curators indeed have achieved a somehow complete description of the target
system or not? That is, data analysis should not begin by presuming that a complete
description of the system of interest is in the data. This task already requires data analysts
to successfully extract and discover the multiscale structures and identify the scale-specific
heterogeneity contained in the data. Therefore, finding data’s full information content is
not just the ultimate goal of data analysis, but also the most basic requirement. Only after
this task is fulfilled, then making inferences become feasible and sensible.

We illustrate the above arguments with a real-world example. One rarely spoken fact
is that data curators have intelligently encoded their expert knowledge and understanding
regarding a system of interest into a data matrix. Such encoding is seen in the efforts of
creating and choosing particularly relevant features. From this perspective, we see the
significant differences between structured and unstructured data. For instance, PITCHf/x is
a database from 2006 to 2017 seasons that was made public by Major League Baseball (MLB)
in the USA. Two high-speed cameras take 40 images for every single pitch delivered by any
MLB pitcher in any of 30 MLB stadiums. These images are unstructured data. To obtain
structured data from these 40 images, scientists from the private company Sportvision have
carefully calculated and meticulously selected 21 quantitative features. These features are
created to capture each pitch’s bio-mechanical and aerodynamic characteristics. Several
qualitative features, such as “batting_result”, “Strike _Ball”, and “zone _number”, see panel
(A) of Figure 1, are also recorded for each pitch.

Specifically, we take a starting pitcher’s pitching dynamics of his favorite pitch-type,
Four-seam Fastball, as the system of interest. On top of the aforementioned categorical
features, features regarding his biomechanics are typically measured on the pitcher mound,
while features regarding aerodynamics are measured along the baseball trajectory before
arriving at the home plate. The most relevant physical rule within baseball pitching
dynamics is called the Magnus effect in aerodynamics, as illustrated in panel (B) of Figure 1.
Very briefly, the Magnus effect prescribes a force acting on the movement trajectory of a
spinning subject, like a pitched baseball, within air media. The Fastball’s typical back-spin
would induce an upward force as the Magnus effect, as illustrated in the panel. This is
why a Fastball looks like going against gravity by flying upward when arriving at the
home plate.
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Figure 1. Two pictorial Illustrations: (A) strike “zone” in MLB; (B) Magnus effect for fastball having
the back-spin and up-ward force, see https://upload.wikimedia.org/wikipedia/commons/I/15
/Sketch_of_Magnus_effect (accessed on 8 May 2021).

Here, the Magnus effect serves as one principal force in pitching dynamics [7]. Its chief
factor is the baseball’s spin direction. There is only one feature, denoted as “spin_dir”, for
spin-direction in PITCHf/x. Each discrete measurement of this feature is measured under
the assumption that the Magnus effect is perpendicular to the baseball trajectory. However,
a baseball field is wide and open, unlike a wind tunnel in a laboratory. Many minor forces
could collectively impact a baseball trajectory. These minor forces are not measured and
recorded in the data. For instance, there is one curve line of seams on each baseball’s surface,
with which an MLB pitcher makes use of it differently to create distinct types of spins for
his four-seam Fastball. One discrete measurement of “spin_dir” is unlikely to capture all of
the seam’s rotating patterns. Further, a baseball trajectory is curved and more than 60 ft
(18 m) long. From this trajectory perspective, this measurement of “spin_dir” is understood
as just an approximated one. Furthermore, it is evident that atmospheric or air pressure,
which is the key factor of the air media of a spinning baseball, would also have effects on
the Magnus effect. However, it is left out. Accordingly, whether the PITCHf/x database
indeed offers a complete or incomplete description of a pitcher’s pitching dynamics is an
essential question to be addressed here. Such system completeness-vs.-incompleteness like
questions should always be in data analysts’ minds.

As we attempt to understand a pitcher’s fastball pitching dynamics based on the
PITCHf/x database, we have to simultaneously analyze a data matrix consisting of continu-
ous, discrete, and categorical features. Such a structured data matrix of mixed data types is
typical in the real world, like hospitals’ medical records, various censuses in governments,
and business surveys. Given its prevalence in societies around us, it very mysteriously
deems why we are by and large still missing efficient means to ascertain the whole and full
information content contained in a data matrix with categorical entries.

Indeed, this phenomenon is not a mystery at all. Nowadays, in the literature of
Mathematics, Statistics, or Computer Science, most methodologies that are popularly
used for analyzing data purposes focus on sophisticated modeling and optimizations.
These works universally require explicit Y = f (X) functional constructs to link data Y to
data X. Nevertheless, there are no available functions that can naturally and efficiently
accommodate categorical features at this data analysis stage. To transcend this current stage
to accommodate reality, we need to go beyond modeling and its sole focus of inferences.
To truly resolve fundamental issues in data analysis, we must extract any data matrix’s
complete, or at least the essential parts of, information content. Here, it is emphasized
that our data analysis must work equally well for all quantitative, all qualitative, or partly
quantitative and partly qualitative data matrices.

What is a data matrix’s full information content looking like? It is not a formidable
question. There are relatively simple, general settings in which we can visualize the total
information content. A series of settings is given, as follows. If a data matrix has only one

https://upload.wikimedia.org/wikipedia/commons/I/15/Sketch_of_Magnus_effect
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column corresponding to one feature, then its information content is seen as all patterns
found in its histogram. A feature of any type universally has a histogram. Accordingly,
we can see this data matrix’s information content. For a continuous feature, a very natural
version of histogram, called a possibly-gapped histogram, is recommended [8]. This
histogram accommodates a piecewise linear approximation to its empirical distribution
function and potential gaps. They are major parts of data’s information content.

If there two features that are involved in a data matrix, then the data matrix’s in-
formation content ideally must add all associative patterns onto all patterns found on
the two histograms, respectively. Here, associative patterns of two features of any data
types can be seen through a contingency table framed by the two features’ histograms on
row- and column-axes, respectively. A conditional categorical random variable is defined
upon each row or column of this contingency table. These categorical random variables
reveal a locality-specific directional associative relation, a visible kind of local heterogeneity.
The strength of such directional associative relations can be evaluated by the Shannon
entropy ratio between this categorical random variable and the marginal one. Row-wise
and column-wise weighted sums of such Shannon entropy ratios, respectively, become a
natural measure of the global directional associations, see the details in [9]. These local and
global associative patterns are collectively representing the order-2 dependency of these
two features.

When a data matrix involves three features, a 3D structure framed can be built using
three histograms on three axes, respectively. Patterns of such a 3D structure collectively
express the order-3 structural dependency among the features. However, visualizing and
exploring such patterns is not an easy task. This task is impossible anyway for a data
matrix with more than three features. Can we see the key characteristics of a complex high-
dimensional relational structure if we pick and choose potential informative perspectives?
Indeed, we can. We partially overcome this curse of dimensionality on human visualization
by looking into K(≥ 3)D geometry through specific directions.

Here, we consider and propose taking a progressive approach given, as follows.
Suppose that the three features are denoted as {X1, X2, X3} and assume that the pair
{X1, X2} is most associative among the three feature-pairs. Subsequently, we have two
choices: (1) make {X1, X2} as one whole; (2) split {X1, X2} and let {X2, X3} be one whole.
A pair of features being taken as one whole means building a contingency table based
on these two features for extracting this pair’s order-2 structural dependency. A larger
contingency table, called the contingency-3D-lattice, is built with all of the occupied
cells from the pair’s contingency table being arranged along the row-axis, while the
bins of the histogram belonging to the third feature being arranged along the column-
axis. For the first choice, its resultant contingency-3D-lattice provides a directional view
of 3D structural dependency of {X1, X2, X3} from the perspective of {X1, X2} ⇔ X3,
while the 2nd choice offers a directional view of 3D structural dependency from the
perspective of X1 ⇔ {X2, X3}. Indeed, these two choices carry rather distinct motivations.
The perspective of {X1, X2} ⇔ X3 shows us what are new associative patterns between
{X1, X2} and X3. In contrast, the perspective of X1 ⇔ {X2, X3} demonstrates to us how
and where X3 would enhance the association of {X1, X2}. The latter perspective is, as
would be shown in sections below, one essential approach of visualizing heterogeneity in
associative relations.

This contingency-3D-lattice in a large contingency table format might be too large to
easily visualize pattern formations of associations and heterogeneity. Hence, we further
proceed to build a heatmap based on this contingency-3D-lattice. A heatmap is resulted
from properly permuting rows and columns respective to their natural neighborhood
information. For a continuous feature or feature group, a tree is typically constructed
from a binary adjacency matrix that records the natural neighborhood relations among
all occupied cells or bins. Regarding categorical features, sometimes, a tree structure also
could be established via domain knowledge.
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Moreover, we need domain knowledge and natural neighborhood relations to permute
their occupied cells for a feature-group of mixed types. Accordingly, a heatmap is built
by superimposing a tree-geometry on the row-axis and another tree-geometry on the
column-axis. The goal of permuting rows and columns of a contingency-3D-lattice into
a heatmap is to reveal all possible block patterns. Under the tree-frameworks, such
block patterns effectively capture the essential parts of order-3 structural dependency
with evident heterogeneity. The most important characteristic of a heatmap is that the
manifestation of deterministic and stochastic structures within such structural dependency
becomes rather evident.

Regarding any data matrix involving K(> 3) features of any data types, we likewise
propose a step-by-step progressive split-then-aggregate protocol to discover essential
high-order structural dependency of all involving features. That is, we build a series of
contingency-kD-lattices and a corresponding series of heatmaps until all K(≥ k) features are
accommodated. In this serial fashion, we compute and visualize the multiscale structural
dependency with heterogeneity as a major part of a data matrix’s information content. This
serial multiscale structural dependency with heterogeneity would also become the basis
for checking whether the targeted system has a complete or incomplete description given
the set of chosen features.

A system of interest is typically defined by a designated set of response features and
the rest of the features as covariate ones. Among covariate features, we can identify one
of its subsets that collectively has major effects through directional conditional entropy
evaluations along with the series of heatmaps. Further, we can also identify various subsets
of features that only offer minor effects upon limited localities. Both major and minor effects
together are sources of heterogeneity on each scale. The system’s complete or incomplete
descriptions are realized along with identifying major and minor features. Consequently,
we would see at which scale what response’ categorical structures can be predicted and
what can not. All of the computational developments up to this point are called Categorical
Exploratory Data Analysis (CEDA).

After CEDA, our mimicking protocol is proposed along with this series of contingency-
k-lattices and the corresponding series of heatmaps, from the global to finest scales. Under-
lying this mimicking protocol is the principle of conditioning on observed deterministic
and stochastic structural patterns with confirmed reliability [10]. That is, our mimicking
protocol makes sure that each mimicry embraces the observable multiscale structural de-
pendency and heterogeneity. Therefore, all reliability and robustness evaluations based
on an ensemble of such mimicries, which can be huge, are coherent and pertinent without
man-made assumptions or unrealistic perturbations on data’s computable and observable
deterministic and stochastic structures. On top of these classic utilities, our mimicking
can enhance our data visualization capability by filling up open spaces among observed
data points in Euclidean space. With this advantage, we can see some intricate geomet-
ric structures of manifolds that are otherwise too blurred to be sure with only observed
data points [11,12]. In this fashion, mimicking enhances the exposure of a data matrix’s
information content complexity.

In Theoretical Information Theory, any data set has a conceptual Kolmogorov complex-
ity. This complexity is referred to as the shortest computer program in a universal computer
that can regenerate the data a one whole [13]. Although this is not a computable concept, it
is highly relevant to most data analyses involving finding its pattern-based information
content. In this paper, we take our mimicking as the flowchart of one computer program
that is practically an approximation to the shortest one for Kolmogorov complexity.

This paper is organized, as follows. In Section 2, we discuss directional and mutual
associations’ evaluations based on Shannon conditional entropy in detail. In Sections 3
and 4, we discuss and develop CEDA with mimicking for all categorical and all continuous
features settings, respectively. In Section 5, the mixed categorical and continuous setting is
discussed. In Section 6, we discuss the impacts of CEDA with mimicking on Statistics, ML,
and AI. Throughout this paper, our computational developments for CEDA and mimicking
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are fully illustrated with data matrices being constructed based on 2118 four-seam Fastball
pitches delivered by the MLB pitcher: Justin Verlander of Houston Astro in the 2016 season.
The data of these 2118 pitches are taken from MLB’s PITCHf/x database.

2. Multiscale Dependency and Directional Conditional Entropies

In this paper, a structured dataset is represented by a N × K data matrix that is
denoted as M0 = [Xk[i]]. Its enrty Xk[i] is either a categorical record, or a discrete or
continuous measurement of k-th feature (or variable) Xk from ith subject with i = 1, . . . , N
and k = 1, . . . , K. These K features are possibly mixed in data types: continuous, discrete,
or categorical. However, each feature of any type has its intrinsic categorical structure with
respect to its histogram that is constructed based on the N 1D data points [8]. Within this
collection {Xk}K

k=1, at first, we do not separate response variables from covariate ones. We
also consider no temporal or spatial coordinates withinM0.

2.1. Contingency-kD-Lattice

One basic construct in our CEDA developments is the contingency-kD-lattice. A
contingency-1D-lattice is a vector of counts with respect to a histogram, while a contingency-
2D-lattice is commonly called a contingency table, which is a matrix lattice of counts.
Accordingly, a contingency-2D-lattice is framed by two contingency-1D-lattices with
their occupied cells being arranged along its row- and column-axes, respectively. Hence,
with k = k1 + k2, a contingency-k1D-lattice, and a contingency-k2D-lattice can frame a
contingency-kD-lattice by arranging their occupied cells along the row- and column-axes,
respectively. As such, this contingency-kD-lattice would serve as one effective platform
for viewing the order-k structural dependency of k features from a specifically chosen
perspective between the feature-group of k1 features and the feature-group of k2 features.

A contingency-kD-lattice is a large contingency table. Underlying its largeness, hetero-
geneous structures likely are embedded. To make the difficult task of pattern recognition
easier and simultaneously pave ways to reveal its explicit heterogeneity, we usually per-
mute its row- and column-axes whenever possible. Here, the permutation performed on
one axis typically means superimposing a hierarchical tree with all row-wise or column-
wise occupied cells as tree-leaves. We intend to use a series of tree branches: from large to
small, to cluster different degrees of neighboring occupied cells. When such a contingency-
kD-lattice is framed by two such hierarchical trees, a multiscale of visible and explainable
blocks would naturally appear. Therefore, a heatmap is a simple manifestation of em-
bedded heterogeneity and large-scale order-k structural dependency with block-based
deterministic and stochastic structures.

Here, we briefly discuss how to construct such a hierarchical tree under three settings.
First, suppose that the k1 features are all qualitative with nominal categories and L1 occu-
pied cells being found in contingency-k1D-lattice. There exists no natural neighborhood
system for these L1 cells. However, some domain knowledge often helps build a hierar-
chical tree upon the L1 cells in a realistic and meaningful fashion. Even without domain
knowledge, we can treat each occupied cell as one population, and the contingency-kD-
lattice becomes a setting of L1 categorical sample problem, see [14]. A clustering tree would
be available among L1 cells. It is noted that qualitative features’ ordinal categories, indeed,
are equipped with natural neighborhood systems.

Secondly, suppose that the k2 features are all quantitative, and there are L2 occu-
pied cells found within the contingency-k2D-lattice. With respect to the Rk2 Euclidean
geometry and a cell of contingency table being a k2-dim Rk2 hypercube, there are natural
neighborhood systems among these L2 hypercubes regarding their different kinds of con-
nectivity: one point, one edge, or one face, etc. One chosen neighborhood system would
give rise to one version of binary symmetric L2 × L2 adjacency matrix. One version of the
adjacency matrix would specify one network structure among these L2 cells. Therefore,
various community-detection or clustering approaches, including the Hierarchical Cluster-



Entropy 2021, 23, 594 7 of 28

ing algorithm (HC), can be applied to build a hierarchical tree geometry upon the L2 cells
as nodes [15,16].

Thirdly, suppose that thek3 features are of mixed types: quantitative and qualita-
tive. In this setting, we recommend a bivariate-coding for these L3 cells. Using do-
main knowledge to organize qualitative categories as alphabets {a, b, c, . . .} for the first
coding-coordinate, and then quantitative categories as integers {1, 2, 3, . . .} as the second
coding-coordinate, we arrange the L3 cells on the column-axis in the following fashion:
{a1, a2, . . . , b1, b2, . . .}. We will illustrate these three settings in Section 3 to Section 5,
respectively.

2.2. Conditional Entropy and Order-k Structural Dependency in Contingency-kD-Lattices

If the number of features is K, around 2K potential order-k structural dependency will
be explored. Such full-scale explorations can easily overwhelm our computing capability.
Further, because of our 3D visual limitation, we also need to devise a realistic approach to
explore higher-order dependency when involving four or more features. For this reason,
we employ contingency-kD-lattices as an extended contingency table embracing all kD
hypercubes to resolve the visualization issue. The number of all potential contingency-kD-
lattices could also overwhelm our computing capability. Accordingly, we need some kinds
of road maps to guide us to see and pick potential essential ones. We attempt this task
explicitly in this subsection.

As aforementioned, each feature of all data types has its intrinsic categorical nature.
For a continuous Xk, it is categorized by a possibly-gapped histogram, which is computed
via the Hierarchical Clustering (HC) algorithm [8]. Denote Xc

k as the categorized version
of Xk and its categorical distributional nature via its histogram as Gk. In addition to its
categorical nature, a discrete or continuous feature’s Gk has a geometric neighbor system
inherited from R1. We also have Xc

k = Xk when Xk is categorical.
Within a contingency-kD-lattice, each unoccupied cell is a dependency structural

pattern that indicates an impossible locality. The more unoccupied localities found in a
contingency-k-lattice, the more structured dependency is revealed among the involved
features. The structural dependency of order-k is easily seen via a locality-formation among
empty cells and highly occupied cells. How to quantitatively evaluate such complex
dependency structures in a 2D-table setting of any contingency-kD-lattice? We adopt
several Shannon entropy-based elements from Combinatorial Information Theory, which
are indeed model-free and scale-free. Such evaluations are equally applicable on heatmaps
upon its hierarchical block-patterns formations.

Denote any pair of categorical or categorized features {Xc
k, Xc

k′} with k 6= k′ ∈
{1, . . . , K}. Suppose that Gk has m bins and Gk′ has m′ bins, respectively. All of the bins
are indexed, as follows:{bj|j = 1, . . . , m} for Xc

k, and {b′j′ |j
′ = 1, . . . , m′} for Xc

k′ . These
two histograms {Gk, Gk′} frame a m×m′ contingency table Tab[m, m′] = [njj′ ] of counts
(njj′) of subjects falling into 2D cells. Its row-sum vector is denoted by (n1+, . . . , nm+), and
column-sum vector is denoted as (n+1, . . . , n+m′). The total sum is n++ = ∑m

j=1 n1+ =

∑m′
j′=1 n+1 = N. This table would sustain two versions of directional conditional (re-scaled

Shannon) entropy: column-to-wise (Xc
k-to-Xc

k′ ) and row-wise (Xc
k′ -to-Xc

k), being denoted as
E [Xc

k|X
c
k′ ] and E [Xc

k′ |X
c
k]. Below, we only detail the calculations for E [Xc

k|X
c
k′ ].
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E [Xc
k|X

c
k′ ] =

H[Xc
k|X

c
k′ ]

H[Xc
k]

;

H[Xc
k|X

c
k′ ] = (−1)

m′

∑
j′=1

n+j′

n++
H[Xc

k|X
c
k′ = Xc

k′ ,j′ ];

H[Xc
k|X

c
k′ = b′j′ ] = (−1)

m

∑
j=1

njj′

n+j′
log

njj′

n+j′
;

H[Xc
k] = (−1)

m

∑
j=1

nj+

n++
log

nj+

n++
.

Here, H[Xc
k] is the Shannon entropy of Xc

k, H[Xc
k|X

c
k′ = b′j′ ] is the conditional Shannon

entropy of the conditional random variable Xc
k given Xc

k′ = b′j′ , H[Xc
k|X

c
k′ ], the conditional

Shannon entropy of Xc
k given Xc

k′ , is calculated as a weighted sum of H[Xc
k|X

c
k′ = b′j′ ].

The E [Xc
k|X

c
k′ ] is the re-scaled version column-wise direction conditional Shannon entropies.

It is worth noting the following two facts that are related to the re-scaling used here.

1. If the the conditional entropy ratio E [Xc
k|X

c
k′ = b′j′ ] =

H[Xc
k |X

c
k′=b′j′ ]

H[Xc
k ]

is indeed smaller

than 1, then we know that the event {Xc
k′ = b′j′} in fact constrains and limits the

potential outcomes of Xc
k. There might only be a small subset of {bj|j = 1, . . . , m} that

are coupled with Xc
k′ = b′j′ being observed inM0. This is the strong indication of

directional association from one observed event of Xc
k′ to Xc

k.
2. Because we have fact that E [Xc

k|X
c
k′ ] is the expected value or weighted average of

E [Xc
k|X

c
k′ = b′j′ ]. Hence, if E [Xc

k|X
c
k′ ] is indeed significantly smaller than 1, then, overall,

the observed outcomes of Xc
k are constrained and limited by outcomes of Xc

k′ . This is
an overall directed association from Xc

k′ to Xc
k that allows us to make predictive results

of Xc
k based on outcomes of Xc

k′ .

Likewise, we can calculate directional conditional entropy E [Xc
k′ |X

c
k] for the direc-

tional associations from Xc
k to Xc

k′ . The simple average or minimum of these two directed
conditional entropies is termed mutual conditional entropy (MCE) E < k, k′ >, see the
details in [9]. The smaller the E < k, k′ > value, the higher associative between Xc

k and
Xc

k′ . To avoid confusion, here we remark that our mutual conditional entropy E < k, k′ > is
intrinsically distinct with the commonly known mutual information (I(Xc

k : Xc
k′)). Their

differences are seen, as follows.

E < k, k′ > = [E [Xc
k|X

c
k′ ] + E [X

c
k′ |X

c
k]]/2, or

= min E [Xc
k|X

c
k′ ], E [X

c
k′ |X

c
k],

I(Xc
k : Xc

k′) = H(Xc
k)− H(Xc

k|X
c
k′),

= H(Xc
k) + H(Xc

k′)− H(Xc
k, Xc

k′).

Thus, I(Xc
k : Xc

k′) is a difference of two quantities without re-scaling, while E < k, k′ > is
properly re-scaled. The scaling makes E < k, k′ > to reflect the rate-comparisons between
conditional and marginal entropies pertinently. The value “1” becomes a standard with
a special meaning. However, mutual information I(Xc

k : Xc
k′) has no reflecting standards.

That is why MCE becomes a sensible association measure for two variables.
Based on the collection of histograms {Gk}K

k=1, we compute all of the pairwise MCEs
to make a K× K mutual conditional entropy (MCE) matrix, being denoted as Mce = [E <
k, k′ >]. Further, if we take the degree of association as a form of closeness, then Mce can
be taken as distance matrix among {Xc

k}
K
k=1. We apply the Hierarchical clustering (HC)

algorithm on Mce and build a binary HC-tree Tmce.
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The heatmap MTce of Mce is obtained by superimposing tree Tmce onto its row and
column axes. Here, by superimposing, we mean the permuting operations with respect to
the arrangement of tree-leaves of Tmce. Accordingly, upon the heatmap MTce , we would see
block-patterns displayed along the diagonal of the matrix lattice. Because the tree geometry
has multiple levels, such block-patterns are also multi-scale. Upon each block of choice,
it corresponds to a highly associative or so-called synergistic feature-group. That is, the
heatmap MTce can serve as a road map that indicates which features are highly associated
with which features, but less associated with which features. Algorithm 1 provides the
procedure to build the heatmap.

After the above Combinatorial Information Theory discussion and developments,
from here onward to the end of this paper, we would not explicitly differentiate between
Xk and its categorized version Xc

k. It is just for notational simplicity. The context should
make clear which versions are indeed used without specific indications. For instance, all
of the entropies of Xk are always evaluated with respect to Xc

k. We do not consider any
entropies of any continuous feature or random variable in this paper.

Algorithm 1: Heatmap based on mutual conditional entropy
Input: N × K data matrixM0 = [Xk[i]].
Output: The heatmap MTce .

For each pair k and k′, compute E [Xc
k|X

c
k′ ] =

H[Xc
k |X

c
k′ ]

H[Xc
k ]

.

The K× K mutual conditional entropy matrix is defined as Mce = [E < k, k′ >],
where E < k, k′ >= [E [Xc

k|X
c
k′ ] + E [X

c
k′ |X

c
k]]/2.

Apply Hierarchical clustering algorithm on Mce to build a binary HC-tree Tmce.
Permute the rows and columns of Mce according to the arrangement of tree-leaves

of Tmce to have MTce .

We illustrate the heatmap MTce based on a 2118× 10 data matrixM0, as shown in panel
(A) of Figure 2. There are three synergistic feature-groups: 1) {“pfx_x”(Y), “spin_dir”(X),
“pfx_z”(V), “spin_rate”(U)} for Magnus effect; 2){“VX0”, “X0”, “Z0”} for the biomechanics
of pitching gesture; 3){“Zone”, “Batting-results”, “Strike-vs.-Ball”}. Upon the point-clouds
in R4 and R3 of the first and second synergistic feature-groups and rotatable figures of
these manifolds that are presented in [17], respectively. Directional conditional entropies
of E [Xc

k′ |X
c
k] among the 10 feature-nodes beyond a chosen threshold are also presented as

directed linkages in panel (A) of Figure 2.
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Figure 2. (A) Heatmap of 10× 10 MCE matrix (with a HC tree using the single linkage module) and
(B) a directed network of 10 nodes with thin and thick edges for directional conditional entropy
falling in threshold regions [0.9, 0.95] and [0, 0.9], respectively.
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3. CEDA with Mimicking Scenario-I: All Categorical Features

We first develop our CEDA paradigm on categorical data matrix setting in this section.
All of the computational developments are fully illustrated through a real 2118× 3 data
matrix consisting of all four-seam fastball pitches delivered by MLB pitcher Justin Verlander
in the 2016 season. Three categorical features: {“Zone”, “Batting-results”, “Ball-vs.-Strike”}.
There are 12 count-categories in the format of a− b: a Balls and b Strikes, 11 batting-result
categories, and 13 zones: nine strike zones and four peripheral zones outside of strike zone.
Their 3× 3 mutual conditional entropy (MCE) matrix can be extracted from panel(A) of
Figure 2. The pair of two features—“Zone”, “Batting-results”—is slightly more associative
(with directional conditional entropies 0.85 for the zone-to-batting result and 0.89 for
batting-result-to-zone) than the other two pairs of features (with MCEs being equal to
0.940 and 0.961). It is recalled, from the Introduction section, that we would split this most
associative pair when we construct the contingency-3D-lattice below.

[Discover order-2 structural dependency for mimicking: 1st step.]

In this example, there are three pairs of categorical features. We look for evident
patterns from all three corresponding contingency tables (contingency-2D-lattices). All of
the patterns are picked up either based on observed evidence or domain knowledge. Each
pattern is subject to the reliability check. For this reliability check, a large ensemble of
simulated sets of 2118 copies of 3D vectors that are generated by a simple random sampling
scheme. A pattern is only turned into a rule of regulating purpose (under our would-
be proposed mimicking protocol) when 95% of the members of the ensemble retain this
pattern. The collection of rules with reliability are to regulate our first step of mimicking
collectively. These rules are marked on the three contingency tables shown in Figure 3.
They are visible and explainable.

Indeed, they represent 2D structural dependency within each of the three contingency
tables. That is, we can see which feature has predictive power for which feature on which
scale. For example, panel (A) shown in Figure 3, the category of Ball-call (2nd column),
can predict rather well for the four peripheral zones: {zone-11, zone-12, zone-13, zone-14},
as one composite category, but not individual zones. Such kinds of feature-sensitive and
scale-specific aspects of information content include: being good at a specific feature’s
certain composite subset of categories, but not individual ones, are seen among all the
three contingency tables. This might be the reality of data’s information content in the real
world. The next question is: can the “Zone” be better predicted by using {“Batting-results”,
“Ball-vs.-Strike”}?

In this step of discovering order-2 structural dependency, it is critical to mention that,
in our experiment, we found that the collective acceptance rate is less than 35% within the
aforementioned large ensemble of simulated sets of 2118 copies of 3D categorical vectors.
That is, the rejection rate is more than 65%. This is one rather significant different as
compared to other re-sampling schemes, such as Bootstrapping [18].

[Construct a contingency-3D-lattice for mimicking: 2nd step.]

After discovering the order-2 structural dependency, we proceed to explore and
discover the order-3 dependency among the three categorical features: {“Zone”, “Batting-
results”, and “Ball-vs.-Strike”}. This series of structural dependency forms the basis of
information in the 2118× 3 data matrix. The order-3 structural dependency surely would
help us to address the aforementioned natural question: can “Zone” be better predicted by
using {“Batting-results” and “Ball-vs.-Strike”}?

To capture order-3 structural dependency of these three features and shed light on
the above question, we construct a contingency-3D-lattice of “Zone” vs. {“Batting-results”,
“Ball-vs.-Strike”}. There are 13 categories of “Zone” (without zone-10) and 95 occupied cells
in the contingency table of {“Batting-results”, “Ball-vs.-Strike”}, as shown in panel (C) of
Figure 3. Therefore, we have a 13× 95 a contingency-3D-lattice with all of its rows and
columns being categorical.
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1 2 3 4 5 6 7 8 9 11 12 13 14

0-0 29 34 23 41 43 46 19 25 25 114 84 67 68

1-0 9 11 12 16 12 10 7 7 6 29 29 21 22

2-0 6 5 6 6 5 8 1 6 2 15 10 4 7

3-0 1 2 0 2 2 3 0 2 2 8 2 1 1

0-1 7 13 24 6 14 14 1 2 8 46 62 25 21

1-1 8 11 14 4 10 8 6 4 3 40 43 16 14

2-1 8 4 9 6 15 4 1 2 1 27 17 8 5

3-1 5 0 0 4 3 3 1 3 2 13 6 5 4

0-2 10 7 8 0 3 6 1 0 2 62 53 0 5

1-2 6 14 19 3 7 10 0 0 1 47 47 6 9

2-2 5 9 18 2 8 3 1 2 2 51 45 7 16

3-2 8 8 4 14 10 5 2 7 4 32 17 9 7
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Figure 3. Contingency tables marked with constraints with 95% reliability: (A) Zone-vs.-Batting-results; (B) Strike-and-Ball-
vs. Zone; and, (C) Batting-results-vs.-Strike-and-Ball. (the darker color, the higher order.)

To transform this contingency-3D-lattice into a heatmap, each row vector is considered
to be a 95-dim vector of categorical counts pertaining to one population. This vector can
be turned into a proportion vector by dividing by its row sum. Then we have a data
set consisting of 13 populations, from each of which a proportion vector of 95-dim is
observed. This is a typical Extreme-K categorical sample problem that is equipped with
natural distance measures, see the details in [14]. An HC-tree is derived upon these 13 rows.
Likewise, we have another Extreme-K categorical sample problem with 95 populations,
each of which has an observed 13-dim vector of proportions. Accordingly, another HC-tree
is derived. By superimposing these two HC-trees on the row and column axes, respectively,
we arrive at a heatmap marked with 4 lattice of blocks, as shown in Figure 4. The visible and
explainable patterns that are revealed by this heatmap are an order-3 structural dependency
of these three categorical features. We acknowledge that such a collection of patterns is an
essential part of the information content contained in the 2118× 3 observed data matrix.
Algorithm 2 summarizes the algorithm for building the contingency-kD-lattice.

Algorithm 2: Building the contingency-kD-lattice
Input: A contingency-k1D-lattice and a contingency-k2D-lattice.
Output: The contingency-kD-lattice.
If k1 > 1, treat each occupied cell in the contingency-k1D-lattice as a new category.
If k2 > 1, treat each occupied cell in the contingency-k2D-lattice as a new category.
Construct the contingency-kD-lattice with each row representing an occupied

category from the contingency-k1D-lattice and each column representing an
occupied category from the contingency-k2D-lattice.

Permute the rows and columns, respectively, by the HC-trees from [14].

A cluster that was found on the row-axis would indicate that its member categories
share the same functional relations of having close conditional distributions with respect to
the categories and clusters on the column-axis and vice versa from the opposite direction.
For instance, there are four evident clusters of zone-numbers on row-axis (from top to
bottom): {1, 2, 3, 4, 5, 6} (the upper part of strike zone); {7, 8, 9} (lower part of strike zone);
{13, 14} (lower peripheral of strike zone); and, {11, 12} (upper peripheral of strike zone).
Moreover, there are nine evident clusters along the column-axis. These clusters on both
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axes together construct a block framework as the large-scale order-3 structural dependency.
We summarize and explain this visible block-patterns, as follows.

1. The four zone-specific clusters are rather heterogeneously distributed across the clus-
ters of bivariate categories of {“Batting-results” and “Ball-vs.-Strike”}. Further, these
four block-row specific heterogeneity are distinct, so are their relational functions.

2. The clear separation between block-rows {13, 14} and {11, 12} across column-clusters
of {“Batting-results” and Ball-vs.-Strike”} belonging to the left-major branch, but
not clusters belonging to the right-major branch, reveal apparent order-3 structural
dependency.

3. The apparent heterogeneity that is revealed on this heatmap in Figure 4 indicates that
“Batting-results” and “Ball-vs.-Strike”, together, play the minor effect role only. There-
fore, the answer to the above question is that “Ball-vs.-Strike” only helps “Batting-
results” upon some limited numbers of localities, not uniformly.

4. The order-3 structural dependency manifested through the 4 lattice of blocks in this
13× 95 heatmap offers functionally meaningful information of clustering among the
2118 pitches.

0 10 20 30 40 50 60

Value

Color Key

Figure 4. The 13× 95 contingency table of the zone feature against the bivariate feature Ball-vs.-Strike
count and Batting result.

[Mimicking protocol for scenario-I.]

Let’s take the series: the 11× 12 contingency-2D-lattice of {“Batting-results”, “Ball-
vs.-Strike”}, as shown in panel (C) of Figure 3, and the 13× 95 contingency-3D-lattice of
“Zone” vs. {“Batting-results”, “Ball-vs.-Strike”}, as shown in Figure 4, as the basis for our
mimicking protocol given as follows.
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M1-1. We first simulate a 11× 12 contingency-2D-lattice of {“Batting-results”, “Ball-vs.-
Strike”} that satisfies all of the rules marked there;

M1-2. The 95 simulated counts from contingency-2D-lattice in Step-[M1-1] are taken as
the 95 column sums for column-by-column simulations for a 13× 95 contingency-3D-
lattice of “Zone” vs. {“Batting-results”, ”Ball-vs.-Strike”}.

M1-3. A simulated 13× 95 contingency-3D-lattice in Step-[M1-2] is accepted if the resul-
tant contingency tables of {“Zone”,“Batting-results”} and {“Zone”, “Ball-vs.-Strike”}
satisfy all of the rules marked in panel (A) and (B) of Figure 3.

Algorithm 3 describes the generic algorithmic flow-chart of this protocol.

Algorithm 3: Micmicking protocol for contingency-kD-lattice for scenario-I
Input: N × K data matrixM0 = [Xk[i]] and a tree structured contingency-kD

lattice.
Output: A simulated contingency-kD lattice.
Set up rules from the observed contingency-k′D lattice, where k′s are all non-leaf
descendants of k.

for k′ (from the bottom up), do
repeat

simulate k′1 × k′2 contingency-k′D-lattice from the simulated counts of the
contingency-k′1D-lattice and the contingency-k′1D-lattice where k′1 and k′2
are the children of k′.

until all rules for the contingency-k′D-lattice are satisfied;
end

This mimicking protocol makes sure that each mimicry embraces all of the computed
pattern information with reliability from the observed data matrix. It is noted that an
ensemble of mimicries can be of any size. Such an ensemble would be the proper basis for
evaluating any computational approaches that are applied on this 2118× 3 data matrix,
such as clustering structures among the 2118 pitches and its robustness. It is empha-
sized once more that our mimicking might give rather distinct evaluations from that of
classic approach.

In this section, we demonstrate the theme of this paper under the scenario of all
categorical features: our CEDA computations extract the observed data matrix’s mul-
tiscale information content, which is manifested through a series of various orders of
structural dependency with heterogeneity, and our mimicking protocol is based on this
information content.

4. CEDA with Mimicking Scenario-II: All Continuous Features

In this section, we consider mimicking a N × K data matrix with all K features of
continuous measurements. These features are again denoted as {Xk}K

k=1 with K > 1.
Upon each feature, one histogram is built and used as the basis for “categorizing” this
continuous feature. Based on the categorical nature of these K categorized features, we
compute K× K the MCE matrix as a road map for detecting 2D dependency for all feature-
pairs. As for discovering high orders dependency beyond that of order-2, we would
employ contingency-kD-lattice in the format of “2-to-1” for order-3, and ”3-to-1” and “2-
to-2” for order-4, etc. We specifically consider a scenario of having a two-layer structured
dependency to illustrate our CEDA with mimicking computational developments here.
The K features are subdivided into two synergistic feature-groups, and these groups are
globally associated.

To concretely illustrate such a two-layer structured dependency scenario, we use a
feature-group of K = 4: {“pfx_x”, “spin_dir”, “pfx_z”, and “spin_rate”}. This feature-group
primarily manifests the Magnus effects in aerodynamics of baseball pitching, as illustrated
in panel (B) of Figure 1. These four features consists of two synergistic pairs: {“pfx_x”,
“spin_dir”} and {“pfx_z”, “spin_rate”}. Their within-pair associations are larger than their
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between-pair association, as shown in Figure 2. Such a two-layer structural dependency
allows us to illustrate the protocols for mimicking based on two contingency-2D-lattices
in the format of “1-to-1”, and then a contingency-4D-lattice in a format of “2-to-2”. This
mimicking protocol can be easily modified to accommodating various formats, like“2-to-1”
and “3-to-1” .

Recall that the actual N × 4 data matrix used here is derived from the same collection
of 2118(= N) pitches of the four-seam Fastball delivered by MLB pitcher Justin Verlander
in the Year 2016 season. The individual categorical nature of these four features are revealed
through their own histogram that is reported in Figure 5, and the degrees of validity of
histograms are demonstrated by giving rise to very well piecewise linear approximations
to their empirical distributions.
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Figure 5. Piecewise linear approximations via histograms of four features related to Magnus effects:
(A) “pfx_x”; (B) “pfx_z”; (C) “spin_dir”; and, (D) “spin_rate”.

If we use a color-coding scheme based on nine bins in the histogram of “spin_dir”,
then the 4D geometry of these 2118 data points indeed can be expressed by a colored 3D
manifold as shown in Figure 6. As shown via the two panels, the front and back views
of this colored 3D manifold reveal the nearly 2D geometric structures. Indeeds, such
a low complexity structure manifests the Magnus effect by indicating highly structural
dependency among these four features.
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(A) (B)

Figure 6. The 4D manifold of 4 features related to Magnus effects. The color-coding scheme is the
9 bins of histogram of “spin_dir”: (A) front view; (B) back view. See corresponding rotatable 3D plots
through the link: https://rpubs.com/CEDA/Mimicking (accessed on 8 May 2021).

4.1. Multiscale Structural Dependency

For visualizing the structural dependency of these two highly associated feature-pairs,
{“pfx_x”, “spin_dir”}, and { “pfx_z”, “spin_rate”}, we make use of their 9× 9 contingency
tables as the simplest natural platform, as shown in Figure 7. Both of the contingency
tables, in fact, effectively bring out the geometric patterns of dependency in a visible and
explainable fashion. We see evident column-wise unimodal patterns of counts evolving
along the diagonals of both tables. Likewise, unimodal patterns are also visible along the
row-axis, but with slightly fewer degrees.

1 2 3 4 5 6 7 8 9

1 0 0 0 0 2 1 10 16 20

2 0 0 0 1 13 32 45 72 31

3 0 0 8 17 116 104 156 81 34

4 0 2 28 41 149 72 81 22 5

5 0 7 63 55 121 41 41 14 3

6 0 12 69 31 60 11 13 5 1

7 11 67 102 34 35 4 6 1 2

8 41 28 16 5 6 3 0 0 0

9 38 6 1 4 2 0 0 0 0

pfxX

Spin direction

pfxZ

Spin rate

1 2 3 4 5 6 7 8 9

1 18 13 6 4 2 0 1 0 0

2 12 25 38 12 9 3 0 0 0

3 0 21 80 65 60 14 6 0 0

4 0 3 31 52 84 46 23 1 0

5 0 1 19 59 136 108 104 9 0

6 0 0 7 23 84 125 210 17 2

7 0 0 0 1 26 26 170 61 3

8 0 0 0 0 4 9 92 94 18

9 0 0 0 0 0 0 11 34 36

(A) (B)

Figure 7. Two 9× 9 contingency tables marked with 95% pattern-based rules: (A) {“pfx_x”, “spin_dir”}; (B) {“pfx_z”,
“spin_rate”}. Pattern-based rules are marked along columns: darker colors for larger counts.

https://rpubs.com/CEDA/Mimicking
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Are these unimodal patterns realistic in the sense of being supported by data? We go
through the same reliability checking protocol as if we are under the categorical setting.
For expositional simplicity, we focus on column-wise patterns and report the 95% reliable
rules, as marked in Figure 7. These are rules that would be implemented when we perform
the mimicking protocol below.

Before discussing our mimicking protocol, we need to overcome one obvious issue:
many cells in both contingency tables have rather small counts. We need to resolve such
an issue by merging. Because each data point is 4D, we need to use data’s 4D geometric
information and their structural dependency. We propose using the neighborhood systems
of two collections of occupied cells in both contingency tables to resolve this issue. There
are 62 occupied cells for the contingency table of {“pfx_x”, “spin_dir”}, and 53 for that of
{“pfx_z”, “spin_rate”}.

By a neighborhood system of a collection of 62 cells, we mean a binary symmetric
62× 62 adjacency matrix that records which cells are neighbors of which cells. There are
two natural definitions of the neighbor of two cells: (1) sharing a common edge; and, (2)
sharing a common edge or a point of a corner. A cell can have four neighbors under the
first definition but can have 8 neighbors under the second definition. An adjacency matrix
based on the four-neighbor definition would give rise to a tighter relational neighborhood
than the eight-neighbor definition. The visible consequence is that many clusters with a
small number of member cells, but tight connectivity, would result from the four-neighbor
definition. Accordingly, this neighbor definition is suitable for a large data set. In contrast,
there would be considerably fewer clusters with a sizable number of member cells but
loose connectivity, from the eight-neighbor definition. Therefore, this definition is suitable
for contingency tables with many sparsely occupied cells, as we have seen in this case.

Here, we apply the Hierarchical clustering (HC) algorithm to build a HC-tree on the
two binary symmetric 62× 62 and 53× 53 adjacency matrices for {“pfx_x”, “spin_dir”},
and {“pfx_z”, “spin_rate”}, respectively. To further reveal potentially more detailed global
dependency structures, we build a 62× 53 contingency table that is based on the two
collections of occupied cells from both contingency tables. There are 293 occupied cells
among the total 3286(= 62× 53 cells in the contingency table. That is, the fact of having
only 8.9% of cells being occupied strongly indicates the structural dependency between
{“pfx_x”, “spin_dir”} and {“pfx_z”, “spin_rate”} on fine-scale. Each occupied cell of this
62 × 53 contingency table is a 4D hypercube that is framed by foue bins of the four
features’ histograms.

Next, we make such a fine-scale version of structural dependency visible and, at
the same time, look for large-scale versions. To achieve both tasks, we superimpose the
two neighborhood-system-based HC-trees accordingly on the row-and column-axes to
result in a heatmap, as shown in Figure 8. The large-scale versions of the four features’
structural dependency are explicitly expressed through the multiscale block-structures that
are framed by a composition of clusters on row-axis and another composition of clusters
on column-axis found on the heatmap of Figure 8. Hence, one collection of occupied blocks
could serve as a version of a large-scale structural dependency. We choose one version
of such block-based structural dependency to serve as the foundation for mimicking the
observed 2118× 4 data matrix. This choice is primarily made to ensure that there is only a
small number of blocks containing less than 10 data points. It turns out that there are 10
blocks found in the block-composition that is shown in Figure 8 having less than 10 data
points. These blocks would be kept intact in our mimicking protocol because of the high
potentials of unreliable structural geometry.

4.2. Mimicking Based on One Block

A chosen block within the heatmap, such as one of the six colored blocks shown in
Figure 8, typically consists of a small collection of adjacent 4D hypercubes of {“pfx_x”,
“spin_dir”, “pfx_z”, and “spin_rate”}. These 4D hypercubes likely have relatively uniform
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4D geometric characteristics due to being adjacent to each other. Therefore, such a block
can be taken as a super-4D-hypercube.

Denote the measurements of these four features as {X, U, Z, W} with {X, U} for
{“pfx_x”, “spin_dir”} and {Z, W} for {“pfx_z”, :spin_rate”}, and denote the observed 4D
point-cloud contained in this block (�) as an ensemble Co

� = {Co
i = (xi, ui, zi, wi)

T}m
i=1

with m copies of 4× 1 vectors of observed measurements. We perform Principal Compo-
nent Analysis (PCA) upon the m× 4 data matrix and then extract the four eigenvalues
(λ1, λ2, λ3, λ4), which are arranged in decreasing fashion, and their corresponding four
eigenvectors {V1, V2, V3, V4}. Here, Vh is in a 4× 1 format and its transpose is denoted as
VT

h with h = 1, 2, 3, 4. We expect that the smallest eigenvalue λ4 would be rather small as
being close to 0, while the third eigenvalue λ3 could be only slightly larger than λ4, as seen
in Figure 6. These two observations are confirmed below. Further, we denote the 4× 4
matrix V� = [VT

1 : VT
2 : VT

3 : VT
4 ] by stacking the four 1× 4 transposed eigenvectors as

four row vectors. Additionallt, projections of Co
i onto the coordinate system with respect to

the four eigenvectors are then denoted and calculated as:

ε[i|�] = V�Co
i ,

with ε[i|�] = (ε
(1)
i , ε

(2)
i , ε

(3)
i , ε

(4)
i )T and i = 1, ..., m. We then build four histograms H(h)

with h = 1, .., 4, each of which is based on {ε(h)i }
m
i=1. We illustrate the aforementioned

computational results derived from six color-coded blocks that are shown in Figure 8. The
six eigenvalues and eigenvectors are reported in Figure 9, while the six histograms are
reported in Figure 10, respectively.
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Figure 8. Contingency-4D-lattice of 4 features governing Magnus effects: { “pfx_x”, “spin_dir” }-vs.-
{ “pfx_z”, “spin_rate”}.
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Figure 9. Eigenvalues and eigenvectors form six color-coded blocks.
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Figure 10. Individual histograms of ε̃
(1)
i , ε̃

(2)
i , ε̃

(3)
i , ε̃

(4)
i pertaining to the 6 color-coded blocks: (A)

Yellow; (B) Orange; (C) Green; (D) Blue; (E) Pink; and, (F) Purple.

It is evident that ranges of ε̃
(1)
i , ε̃

(2)
i , ε̃

(3)
i and ε̃

(4)
i are rather distinct. This observation

supports our visualization of a “nearly” 2D manifold of 4D measurements of the four
Magnus effect-related features. It also potentially indicates that structural details could be
rather intricate in one whole, on the other hand. Indeed, to realize such potential visually
is the most immediate impact of mimicking.

By beginning with mimicking within a block, we build their kernel smooth versions,
denoted as H̃(h) with h = 1, . . . , 4. Our mimicking upon one focal block is described in the
following [Mimicking-block] algorithm:

M2-1: Simulate each of the four components of ε̃[b|�] = (ε̃
(1)
b , ε̃

(2)
b , ε̃

(3)
b , ε̃

(4)
b )T from H̃(h)

with h = 1, . . . , 4, individually.



Entropy 2021, 23, 594 19 of 28

M2-2 Solve the equation for C̃b: b = 1, . . . , B�

ε̃[b|�] = V�C̃b.

M2-3 All of the block-specific ensemble of B mimicries are subject to the 4D hypercubes’
boundary constraints and denotes the resultant ensemble of B∗ mimicries as C∗� =

{C̃b = (x̃b, ũb, z̃b, w̃b)
T}B∗�

b=1.

By using the above [Mimicking-block] algorithm, we can simulate B∗� copies that
could be much larger than the size of the block m. From a geometrical perspective, we can
visualize C∗� contrasting with C�, the observed manifold within a focal block. As such, the
six mimicked blocks are shown in panel (A) of Figure 11.

Via the local view, we achieve the coherent filling into each 4D hypercube within
each block by mimicking. It is essential to keep in mind that such a mimicking-based
filling is done in a fashion coherent with the data’s observed deterministic and stochastic
structures. With the details being filled-in within each 4D hypercubes, the local view of each
block reveals its evident characteristic structures. What impacts would such characteristic
structures bring collectively?

(A) (B)

Figure 11. Snapshots of 3D plots of {“pfx_x”, “pfx_z”, “spin_rate”}: C∗� (dark-colored-points) and C�
(light-colored-points) the six color-coded mimicked blocks: (A) local view; (B) global view. Block-
specific color-coding: Yellow; Orange; Green; Blue; Pink; Purple. See the corresponding rotatable 3D
plots through the link: https://rpubs.com/CEDA/Mimicking (accessed on 8 May 2021).

The consequential answer is somehow surprising: global structural details, as shown
in panel (B) of Figure 11 and see the corresponding rotatable 3D plot via the link in the
legend of Figure 11. That is, the manifold’s “2D sheet” indeed consists of at least three
layers. The mimicked six blocks collectively constitute a part of the middle layer. Such a
demonstration without ambiguity is chiefly attributed to mimicking: the point-clouds right
above and beneath the patch of unified mimicked blocks are spotted. What are the reasons
behind such a composite structure of multiple thin layers? The answer to this question will
mean very much regarding the Magnus effects in the PITCHf/x database.

We investigate such causes by exploring the relational patterns that are embraced by
the 293 pieces of 4D hypercubes contained in the contingency-4D-lattice shown in Figure 8.
Because the Magnus effect is mainly regarding the force perpendicular to a spinning
baseball trajectory, it is logical to see whether a single spin-pair of (“spin_dir”, “spin_rate”)
indeed corresponds to multiple 4D hypercubes? It is unfortunate and fortunate at the same
time that such multiplicity in correspondence is observed, as reported via a histogram in
panel (A) of Figure 12.

https://rpubs.com/CEDA/Mimicking
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Figure 12. (A) Histogram of spin-pair (“spin_dir”, “spin_rate”) to (“pfx_x”, “pfx_z”) correspondence
among 293 pieces of 4D hypercubes. (B) The snapshot of 3D plot of {“VX0”, “X0”, “Z0”} for data
points belonging to five 4D hypercubes sharing the spin-pair (5,7). See the corresponding rotatable
3D plots through the link: https://rpubs.com/CEDA/Mimicking (accessed on 8 May 2021).

Such an one-to-multiple correspondence means that one spin-pair, where one bin of
“spin_dir” against one bin of “spin_rate” could have mapped to rather distinct multiple
pfx-pairs of (“pfx_x”, “pfx_z”). This histogram concludes that the four features: {“pfx_x”,
“pfx_z”, “spin_dir”, and “spin_rate”}, only provide an incomplete system description
of baseball dynamics. This consequence simply implies that, even though the spin-pair
(“spin_dir”, “spin_rate”) is a major factor of Magnus effect, it alone apparently can not
reasonably lead to one single pfx-pair of (“pfx_x”, “pfx_z”).

Could a minor effect exist and help the predictive decision-making? To answer this
question, it is natural to consider the biomechanics-related feature triplet: {“VX0”, “X0”,
“Z0”} as potential individual minor factors or as a factor-group. Our explorations consist
of making the following plots. Choose one spin-pair, say (5, 7), for example. Its five
corresponding 4D hypercubes are specified by five pfx-pairs of (“pfx_x”, “pfx_z”):{(3,6),
(3.7), (4,6), (4,7), (5,6)}. The 3D rotatable plot of {“VX0”, “X0”, “Z0”} with respect to
memberships of five 4D hypercubes also reveals a very high degree of mixing, as seen in
panel (B) of Figure 12. Here, we conclude that neither individual features of {“VX0”, “X0”,
“Z0”}, nor the triplet, play role of minor factors.

We then confirm that all features measured at pitcher’s mound: {“spin_dir”, “spin_rate”,
“VX0”, “X0”, “Z0”}, can only incompletely prescribe pfx-pairs (“pfx_x”, “pfx_z”) in the
aerodynamics of this particular pitcher’s four-seam fast-ball pitching dynamics. We recog-
nize that such incompleteness renders no analytical systems of equations being possible for
the pfx-pairs (“pfx_x”, “pfx_z”) as a 2D response variable with respect to the five covariate
variables: {“spin_dir”, “spin_rate”, “VX0”, “X0”, “Z0”}. That is, based on this data set, any
functional modeling upon the pfx-pair is unreasonable, at least from physics perspective.
The generic algorithmic flow-chart of mimicking protocol for this scenario is described in
Algorithm 4.

Here, we briefly summarize some of the key and significant conclusions from multiple
perspectives. First, the foremost message is that Data Analysis must undertake mimicking
the observed structural data matrix to figure out data’s authentic information content
with structural dependency among all involving features. Secondly, we need to determine
whether the computed information content indeed offers a complete or incomplete de-
scription of the system involving the targeted response variable. Thirdly, if completeness
is confirmed, then our mimicking offers visible understanding of the targeted system
and a model-free predictive decision-making platform. If any modeling structures are

https://rpubs.com/CEDA/Mimicking
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undertaken, then data’s structural dependency and multi-scale deterministic and stochastic
parts of information content need to be accommodated. Consequential impacts on Machine
Learning and Data Science are discussed in the last section. Fourthly, if the decision of
incompleteness in describing the target system is reached, then this decision will post-
pone all attempts of modelling and predictive decision-making until extra features being
discovered and measured.

Algorithm 4: Micmicking protocol for contingency-kD-lattice for scenario-II
Input: N × K data matrixM0 = [Xk[i]], a tree structured contingency-kD lattice,

and a threshold nT .
Output: A simulated data matrix.
Merge cells from the observed k1 × k2 contingency-kD lattice into blocks.
for each block do

if the sample size in this block is smaller than nT then
Keep intact

else
Perform Principal Component Analysis on the observed data within this
block to obtain eigenvectors.

Compute the kernel smoothed version of each histogram H̃(h) with respect
to each eigenvector.

Simulate data points by simulating coefficients from H̃(h).
end

end

5. CEDA with Mimicking Scenario-III: Continuous and Categorical Features

So far, we have discussed mimicking under two pure scenarios: (1) all of the features
being categorical; and, (2) all features being continuous, respectively. In this section, we dis-
cuss the mixed scenario: some features being continuous, and some are categorical. Again,
we demonstrate that the mimicking protocol for this mixed scenario follows the same
theme of mimicking the two pure scenarios. Therefore, the universal theme of mimicking a
data matrix starts with categorical or categorized features in order to discover all of the
large and median scale structural dependency among features by using contingency-KD-
lattice, and then to capture heterogeneous fine-scale structural dependency within each KD
hypercubes. For expositional simplicity, in this section, we consider mimicking a 2118× 4
data matrix with four features: {“zone”, “VX0”, “X0”, “Z0”}. The techniques developed
here would be easily expanded for mimicking the observed 2118× 10 data matrix. The
discussions of the impacts of mimicking this larger and complex data matrix would add
many more pages to this already lengthy paper. Hence, the discussion will be reported in a
separate work.

Based on the MCE matrix and directed network that are reported in Figure 2, we
clearly see that these four features can subdivided into two feature-pairs: {“X0”, “Z0”} and
{“zone”,“VX0”}. Accordingly, based on their histograms, we construct two contingency
tables for these two pairs with 127 and 96 occupied cells, as shown in panels (A) and (B)
of Figure 13, respectively. Upon these two contingency tables, as discussed in the two
previous scenarios, we identify all of the column-wise ordering patterns and individually
check whether their reliability reaches 95%. All of the confirmed ordering patterns with
95% reliability are taken as observed patterns and marked in these two contingency tables.
These selected patterns are to be conditioned upon within all computations and operations
for mimicking. That is, our mimicking protocol would accept a simulated a 2118 × 4
matrix {“X0”, “Z0”, “zone”, “VX0”} when all of these confirmed rules marked in panels
(A) and (B) of Figure 13 are collectively satisfied. If the simple random sampling scheme
is implemented upon observed data, we found that the acceptance rate is about 56%.
That is to say that about 45% of bootstrapped data matrices fail to be accepted by the
conditioning paradigm.
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The contingency table of {“X0”, “Z0”} reveals unimodal patterns row- and column-
wise. However, its overall 2D structural pattern seemingly is not Normal-like. As for the
contingency table of {“zone”, “VX0”}, many interesting global patterns are observable
beyond the column-wise unimodal patterns. Recall the strike-zone used by MLB, as shown
in panel (A) of Figure 1. It is also noted that there is no zone-10. For zone-11 to zone-14
(the four columns on the right of the contingency table), we see that large cell-counts on
zone-11 and zone-13 (on the left-hand side of outer peripheral zone coding) are associated
with the first four rows with lower “vX0” values, while large cell-counts on zone-12 and
zone-14 (on the right-hand side of outer peripheral of zone coding) are associated with
the bottom four rows with high “vX0” values. Such a separation in speed (“vX0”) is also
evidently seen within the strike-zone (zone-1 to zone-9). Lower speeds for zone-1, zone-4,
and zone-7 (on the left-hand side of inner zone coding), while higher speeds for zone-3,
zone-6, and zone-9 (on the right-hand side of inner of zone coding). Collectively, we see
that this pitcher delivered higher speed pitches to the zones on the right than to the zones
on the left.

1 2 3 4 5 6 7 8 9 10 11 12

1 3 3 5 2 2 1 0 2 0 0 0 0

2 9 14 41 36 12 19 9 7 7 3 4 0

3 10 21 41 37 22 28 24 17 12 14 7 2

4 8 15 43 32 25 31 26 24 19 14 6 2

5 7 15 40 57 44 81 50 33 35 27 16 1

6 4 11 27 39 26 51 22 18 28 27 20 4

7 1 7 15 26 17 46 38 19 26 27 21 3

8 1 8 16 18 19 27 29 14 29 29 20 5

9 2 1 7 12 18 24 33 21 27 28 19 5

10 0 0 2 7 6 4 5 5 8 5 3 0

11 0 0 0 1 2 5 8 3 10 5 9 2

12 0 0 0 2 1 5 7 0 3 5 5 0

1 2 3 4 5 6 7 8 9 11 12 13 14

1 0 0 0 0 0 0 0 0 0 46 0 15 0

2 0 0 0 0 0 0 2 0 0 56 0 35 0

3 5 0 0 3 0 0 2 0 0 65 1 28 0

4 16 3 0 15 3 0 5 1 0 110 0 55 0

5 37 4 4 33 9 1 13 5 3 73 2 19 0

6 31 38 7 39 32 7 15 20 1 75 23 10 5

7 11 32 5 13 54 16 1 15 5 33 47 6 8

8 2 19 31 1 21 22 0 13 10 20 58 1 13

9 0 19 56 0 8 36 2 3 21 5 64 0 16

10 0 3 30 0 5 34 0 3 14 1 111 0 46

11 0 0 4 0 0 3 0 0 3 0 63 0 44

12 0 0 0 0 0 1 0 0 1 0 46 0 47

vX0

zonez0

x0

Figure 13. Two contingency tables of two feature-pairs: {“zone”,“VX0”} and {“X0”, “Z0”}. Observed
column-wise ordering rules with 95% of reliability are marked. The collective acceptance rate is
about 56% with respect to simply random sampling.

Although we also see that “vX0” is informative enough to predict the left-hand-side
against the right-hand side, it apparently cannot differentiate the upper-side against the
lower-side of inner or peripheral zones. Accordingly, one natural question is: would {“X0”,
“Z0”} help? This question can be specifically and precisely described as the following one:
If “VX0” is taken as a major factor for predicting “zone”, could the feature-pair {“X0”,
“Z0”} play the role of a minor factor?

To address the above somehow equivalent questions, as discussed in the previous
two scenarios, we build a 127× 96 contingency-4D-lattice with 127 occupied cells of a
contingency table of {“X0”, “Z0”} being arranged on its row-axis and 96 occupied cells of
contingency table of {“zone”, “VX0”} on column-axis. Further, the row-axis of this 127× 96
matrix-lattice is permuted with respect to an HC-tree derived based on the 127 × 127
symmetric binary adjacency matrix of the 127 cells under the eight-neighbor-neighborhood
system. Because of the categorical nature of “zone”, the column-axis is arranged according
to zone-numbers from left-to-right, and each zone-number is coupled with increasing
bin-numbers of “VX0”. The heatmap resulted from the row, and column permutations are
shown in Figure 14.
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Figure 14. The 127× 96 contingency-4D-lattice of two feature-pairs: {“X0”, “Z0”} vs. {“zone”,“VX0”}.
The row-axis is superimposed with a HC-tree derived from 127 × 127 adjacency matrix under
eight-neighbor-neighborhood system. These five blocks are marked across the four peripheral zones.

Indeed, this heatmap offers a platform that very clearly addresses the above questions.
Interestingly, the answers are “yes” and “no” due to the heterogeneity of minor effects.
We divide the whole heatmap lattice into a 13× 13 lattice of blocks. Each block-column
corresponds to one zone-number. By comparing the zone-12 block-column, which is the
3rd column from the right, and zone-14 block-column, which is the first column from the
right, we can see that many blocks on the zone-14 column are empty or nearly empty,
while blocks on the same rows on zone-12 block-column are heavily occupied. Although
not as many, the reverse correspondences are also seen. Such pairs of having a heavily-
occupied block against an empty block on either zone-12 or zone-14 sharing the same
block-row strongly indicate that feature-pair {“X0”, “Z0”} can help to separate zone-12 and
zone-14. These pairs are “yes” answers. Accordingly, “yes” pairs can be found nine out
of 13 block-rows. However, the {4, 5, 12, 13} block-rows offer visible “no” pairs. Similar
but less clear patterns are visible by comparing block pairs on zone-11 and zone-13 block-
columns across all block-rows. In sharp contrast, when comparing zone-1 through zone-9
block-columns, the nine blocks on each block-rows are equally occupied. Therefore, we
conclude that feature-pair {“X0”, “Z0”} can help to differentiate zone-12-against-zone-14
and zone-11-against-zone-13 to a great extent, but have zero differentiability for zone-1, 2,
3-against-zone-7,8,9. Such visible and explainable heterogeneity in high order structural
dependency is the typical phenomenal manifestation of a minor-factor.

In summary, the global and large scales patterns of structural dependency found in
the two contingency tables in Figure 13 and in the heatmap of contingency-4D-lattice, as
shown in Figure 14, collectively constitute key information content contained in 2118× 4
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data matrix with four features: {“zone”, “VX0”, “X0”, “Z0”}. Based on such structural
dependency patterns, mimicking can and must be carried out accordingly. Consequently,
the resultant mimicked data will contribute not only fine-scale details, but also enhanced
block-by-block geometric structures that are only vaguely visible based on observed data.

Our mimicking protocol that is given below for such data matrix of mixed data types
bears the same theme used in the previous sections.

[Mimicking protocol for a matrix of mixed data types:]

We take the heatmap of contingency-4D-lattice that is shown in Figure 14 as a road
map of our mimicking since it contains all patterns of large scale structural dependency.

M3-1. Simulate a contingency table of {“zone”,“VX0”} with 96 occupied cell-counts that
satisfy all confirmed rules marked in panel (B) of Figure 13;

M3-2. We build a HC-tree based on the 127× 127 binary adjacency matrix of the occupied
cells in the contingency table, as shown in panel (A) of Figure 13. Because of the
categorical nature of “zone”, we do not have 96× 96 adjacency matrix for the 96
occupied cells in panel (B) of Figure 13. We build 127× 96 contingency-4D-lattice with
the HC-tree being superimposed on its row-axis. After some explorations, we choose
13 branches of this HC-tree as 13 clusters of 2D cells of {“X0”, “Z0”}. The 96 cells are
arranged with respect to increasing zone-numbers, within each of which increasing
bin-numbers are arranged on its column-axis. These 96 2D cells of {“zone”,“VX0”}
are divided in 13 with respect to their zone-numbers, respectively. Consequently, one
13× 13 block-lattice is built upon the 127× 96 contingency-4D-lattice. Here, each
block is one zone-number specific.

M3-3. Based on the simulated 96 cell-counts, we simulate cell-counts of 127× 96 matrix
in a column-by-column fashion. The 127 row-sums must satisfy the confirmed rules
marked in contingency table of {“X0”, “Z0”}, as shown in panel (A) of Figure 13.

M3-4. Within each block, we simulate continuously measured {“VX0”, “X0”, “Z0”} data
points via PCA and the kernel smoothing methodologies with the imposed boundary
constraints of all involving 3D cubes within the block, as described in the previous
section for the setting of all features being continuous. Such block-by-block mimicking
affords us to have as many simulated data points as we wish to have.

M3-5. Among the mimicked data points within each zone-number specific 3D cubes
derived in Step-M3-4, we use the simple random sampling scheme to sample the
simulated counts (in Step-M3-3) of mimicked data points. Collectively, we build a
mimicked 2118× 4 data matrix of four features: {“zone”, “VX0”, “X0”, “Z0”}. We can
have as many copies of such mimicry as we wish to have.

Algorithm 5 describes the generic algorithmic flow-chart of mimicking protocol for
this scenario.

Algorithm 5: Micmicking protocol for contingency-kD-lattice for scenario-III
Input: N × K data matrixM0 = [Xk[i]], a tree structured contingency-kD lattice,

and a threshold nT .
Output: A simulated data matrix.
Simulate cell counts by Algorithm 3 with rules set for all categorical variables.
Simulate variable values by Algorithm 4 within each obtained blocks with size

larger than nT for all continuous variables.

There are five heavily occupied blocks marked in Figure 14 with five different color-
codings. They are located on two adjacent block-rows (one in the 3rd block-row and four in
the 4th block-rows) and four adjacency block-columns (two in zone-11 block-column, and
one in each of zone-12, zone-13, and zone-14). Two block-pairs are established: (zone-12,
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zone-14) and (zone-11, zone-13), on the 4th block-row. They both give rise to a “no” answer.
We perform mimicking upon the five blocks separately.

In Figure 15, we demonstrate the geometric display of the mimicked data of the five
blocks marked in Figure 14 in the form of three 3D bricks. Two of three 3D bricks are for
the two block-pairs. Within each brick, the observed and mimicked data points are very
well mixed. The 3D geometry of the three 3D bricks reflects the neighboring relations of
their two block-rows (3rd and 4th) and four block-columns (zone-11 to zone-14) within
the heatmap display very well, as shown in Figure 14. The geometry of three 3D bricks
also reflects the row difference. The green-color-coded brick is by itself because it is the
only block on the 3-row. In contrast, the row-specific 4-column neighboring relations are
functionally reflected by merging and mixing within each block-pairs in the geometry
of 3D bricks. Such merging and mixing within each of the two block-pairs is seen as
being functional. Mimicking makes such geometric and functional revelations visible and
explainable.

Figure 15. Geometry of five mimicked blocks marked on the heatmap of 127× 96 contingency-4D-
lattice of two feature-pairs: {“X0”, “Z0”} vs. {“zone”,“VX0”}, as shown in Figure 14. These 5 blocks
are marked across the 4 peripheral zones. See corresponding rotatable 3D plots through the link:
https://rpubs.com/CEDA/Mimicking (accessed on 8 May 2021).

It is also essential to keep in mind that the adjacency-matrix-based HC-tree makes
such geometric and functional relations found on and between the geometry of 3D bricks
and neighboring system of blocks in contingency-4D-lattice possible. This recognition
would play a key role when we undertake mimicking the observed 2118× 10 involving
with three synergistic feature-groups: {“zone-number”, “batting-result”, “Ball-vs.-Strike” },
{“pfx_x”, “spin_dir”, “pfx_z”, “spin_rate”}, and {“x0”, “z0”, “VX0”} in a separate study.

Indeed, our computing endeavors in this setting of mixed data types illustrate the
chief message of this paper: by building and revealing data’s categorical nature, mimicking-
based data visualizations will lead to a natural platform for exploratory data analysis (EDA).
In the next section, we conclude and then briefly discuss the impacts of our Categorical
Exploratory Data Analysis (CEDA) with regard to mimicking on Machine Learning and
Statistics and Data Science.

https://rpubs.com/CEDA/Mimicking
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6. Conclusions: Impacts of CEDA with Mimicking on ML, AI and Statistics

A structured data matrix is, in general, created to describe a system of interest. A set
of features is primarily chosen based on data curators’ domain knowledge and subject
matter expertise. In this paper, we point out the possibility that such a set of features might
only provide an incomplete description of the target system. Beyond speculating such
possibility intuitively, we actually demonstrate how to see it in a visible and explainable
manner. Consequently, we conclude that the ultimate goal of data analysis upon a data
matrix is, and should be, phrased as discovering data’s authentic information content
in full.

In this paper, we build a computational paradigm, called CEDA, with mimicking to
discover such information content. CEDA discovers the global and large scales of informa-
tion content in terms of deterministic and stochastic structures that have to be extracted
from all features’ categorical nature, despite their data types: continuous, discrete, or cate-
gorical. That is, both scales of structures are typically categorical. Such categorical nature
facilitates high potentials to accommodate non-linear and complex relational dependency
among features. This key part of data analysis is, by-and-large, missing in the literature.

Further, patterns of categorical multiscale structural dependency collectively serve as
the basis for mimicking. After securely preserving data’s global and large scales structures,
mimicking is further designed to extract fine-scale dependency in the fashion of one-
locality-at-time. Such a locality-by-locality design allows the mimicking to expose data’s
fine-scale information heterogeneity. By design, all of the mimicries are supposed to
retain all scales of computed characteristics belonging to an observed data matrix. In this
fashion, our computing endeavors must discover data’s information content first. Above
all its potential merits, such information content primarily offers a visible and explainable
understanding of the system of interest. It also provides a natural platform for us to
differentiate which system descriptions are complete and incomplete. Afterward, we can
afford all of the relevant tasks of inference and reliability related evaluations.

For example, based on categorical patterns revealed in the contingency tables pre-
sented in Figure 13 and the heatmap displayed in Figure 14, we are very confident that the
four features’: {“zone”, “VX0”, “X0”, “Z0”} description of the pitching system pertaining
to this pitcher’s 4-seam Fastball is incomplete in the sense of being unable to differentiate
the 13 zones individually with respect to biomechanics via {“VX0”, “X0”, “Z0”}. This
incompleteness is marked by the fact that 12 out of 13 individual zone-numbers are not
identifiable. However, it is somehow complete from the perspective of the Left-vs.-Right
and peripheral-vs.-inner parts of the strike zone.

Another example of incomplete system description is about the aerodynamic system
of Magnus effects via {“pfx_x”, “spin_dir”, “pfx_z”, “spin_rate”}. The incompleteness
is well revealed in a fashion of one single spin-pair corresponding to multiple pfx-pairs
that are reported in Figure 12. That is, the majority of spin-pairs bear no predictability of
pfx-pairs.

Such incompleteness of a system description will exclude any meaningful modelings
upon a set of fechosenatures. Checking whether a set of features completely describes a
targeted systemis not a simple task. The complexity pertaining to this task can be clearly
defined as discovering which features play the major roles, which features play only
minor roles, and which features play no roles at all, as we have demonstrated in this
paper. Indeed, such major-vs.-minor effects naturally reflect the multiscale heterogeneity
embraced by data’s information content. Hence, once again, the computing task for data’s
full information content is not only a critical topic for statistics and data analysis, but
equally critical for Machine learning (ML) and Artificial Intelligence (AI).

Nevertheless, this critical topic seemingly has not yet attracted serious research at-
tention in all related literatures. It is partly because any assumed modeling structures
likely violate certain visible and explainable data characteristics. Furthermore, it is partly,
because, even when the completeness of a system description is confirmed, any valid model
needs to accommodate all computed multiscale deterministic and stochastic structures.
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Such a valid model might be too complicated to be realized because of the complexity
of its multiscale nature. From both perspectives, we explain why all models are wrong.
Are some models more useful than others? Our answer to this somehow self-contained
question is: as the data’s information content is computable, why are any ad hoc choices of
models of any realistic uses? We believe that such an answer bears awakening impacts in
the fields of Statistics, Data Science, ML, and AI.

In Statistics, a choice of modeling structure usually specifies explicit parameterized
functional relations between response and covariate variables coupled with an additive
error variable. By placing model structures upon an observed data matrix and skipping
the task of figuring out data’s information content, statistical analysis goals are focused
on estimating the parameters and specifying one seemingly valid distribution among
members of an assumed family. The principles and approaches available for achieving
these goals have become standard receipts. For instance, the approaches for goodness-of-fit
testing on modeling structures often lead to single testing statistics, which usually aims
at only whether one selected structural characteristic of the modeling is present in the
data or not. The maximum likelihood estimating (MLE) principle also leads to a single
estimating statistics. Such kinds of single real-valued statistics only offer limited amounts
of information. Further, these statistics’ variations and reliability evaluations are typically
specified by asymptotical Gaussian approximations or Bootstrapping via simple random
sampling under the i.i.d framework. Such receipt-like analysis has been adopted by many
scientists far beyond statistics and computer science. At the current state of data analysis,
such model-based receipt-like analysis has been widely mistaken and wrongly accepted as
“what data analysis is all about”.

Here, our standpoint toward the above state of data analysis is precisely given, as
follows. CEDA with mimicking apparently must be performed before implementing the
above rigid statistical model-based data analysis. Even if any completeness of system
descriptions are found being supported by data, statistical modeling could be just too
difficult, if not entirely hopeless, to be properly constructed in real-world settings due to
complexity involving accommodating the multiscale deterministic and stochastic structures.
Even when a modeling structure is confirmed to be valid, the reliability evaluations that
are based on an ensemble of mimicries of observed data matrices could be very distinct to
that-based bootstrapping. This potential is real, since very high percentages of the simple
random sampling-based bootstrapped data matrix are rejected in our mimicking protocols
throughout the three settings discussed in this paper. Further, classic reliability evaluations
are performed by slightly perturbing deterministic as well as stochastic structures. Such
a perturbation scheme likely is not in accordance with reality, because these two kinds
of structures indeed interact and produce structural changes in the real world. On top of
structural interactions, there are too many potential perturbation schemes due to multiple
scales structures in a data matrix. In sharp contrast, an ensemble of mimicries of observed
data matrix enable us to realize reliability evaluations of any computed patterns being
discovered through CEDA. Such a reliability concept primarily and purely rests on data’s
stochasticity, not a man-made one.

Nowadays, predictive inference has nearly become the solo goal of so-called data
science performed, in particular, by computer scientists. ML approaches, such as Random
Forest and many Boosting variant approaches, are driving the predictive inferences toward
achieving the “engineering-like of precision” by enlarging their underlying black-boxes.
Such ML approaches commonly developed by dividing a data set into two subsets: test-
ing and training. Beneath all attempts to achieve the universal goal of minimizing the
prediction error rate as much as possible; nevertheless, there is one serious but unspoken
requirement that needs to be fulfilled underlying all ML applications. This requirement
is that both testing and training data subsets are identical regarding all aspects of data
structures in the original data set.

The task of checking whether this requirement is fulfilled or not means that the multi-
scale information content in these two data subsets, or data submatrices, must be computed
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and discovered, respectively. Additionally, methodologies need to be developed for check-
ing the information content equivalence. In other words, CEDA with mimicking has to be
performed twice before checking the structural equivalence requirement. However, such
a requirement is hardly being checked in real-world ML applications or within Artificial
Intelligence (AI) products. The consequences of without checking this requirement surely
are linked to social injustices, because the differences between the testing data subset
and training data subsets would make the error-rate evaluations invalid. More seriously,
and importantly, the structural distinctions between the original data set and the popu-
lations, which use Artificial Intelligence (AI) products, are multiple avenues for creating
social injustices.

In summary, our CEDA with mimicking can help to develop ML research and build
AI products that achieve the requirement for eliminating the potentials of social injustices.
Additionally, CEDA with mimicking would bring out the realistic data analysis in the real
world and, at the same time, serve as one fundamental bedrock of Data Science.
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