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Eosinophils are multifunctional granulocytes that contribute to initiation and modulation 
of inflammation. Their role in asthma and parasitic infections has long been recognized. 
Growing evidence now reveals a role for eosinophils in autoimmune diseases. In this 
review, we summarize the function of eosinophils in inflammatory bowel diseases, neu-
romyelitis optica, bullous pemphigoid, autoimmune myocarditis, primary biliary cirrhosis, 
eosinophilic granulomatosis with polyangiitis, and other autoimmune diseases. Clinical 
studies, eosinophil-targeted therapies, and experimental models have contributed to 
our understanding of the regulation and function of eosinophils in these diseases. By 
examining the role of eosinophils in autoimmune diseases of different organs, we can 
identify common pathogenic mechanisms. These include degranulation of cytotoxic 
granule proteins, induction of antibody-dependent cell-mediated cytotoxicity, release of 
proteases degrading extracellular matrix, immune modulation through cytokines, antigen 
presentation, and prothrombotic functions. The association of eosinophilic diseases with 
autoimmune diseases is also examined, showing a possible increase in autoimmune 
diseases in patients with eosinophilic esophagitis, hypereosinophilic syndrome, and 
non-allergic asthma. Finally, we summarize key future research needs.

Keywords: innate immune system, autoimmune diseases, eosinophilia, bullous pemphigoid, neuromyelitis optica, 
eosinophilic granulomatosis with polyangiitis, myocarditis, inflammatory bowel disease

iNTRODUCTiON

The cells of the innate immune system can contribute to autoimmune diseases. Activation of innate 
immune cells by pathogen-associated molecular patterns and antigen presentation by dendritic 
cells can result in priming of autoreactive T and B cells and set off an adaptive immune response 
against self-antigens (1–3). Possible roles for innate immune cells exist not only in the initiation 
stage of autoimmune diseases but also in the modulation and propagation of inflammation and 
tissue destruction. Such roles have been proposed for neutrophils (4), natural killer cells (5, 6), 
macrophages (7), dendritic cells (8, 9), innate lymphoid cells (10), and mast cells (11). Eosinophils 
have been recognized as a part of the inflammatory infiltrate in several organ-specific autoimmune 
diseases, but their potential role in autoimmune diseases has not been addressed comprehensively. 
The aim of this review is to synthesize the role of eosinophils in different autoimmune diseases and 
explore potential unifying effector mechanisms. We also address the association of autoimmune 
diseases with eosinophil-associated disease like asthma and eosinophilic esophagitis.

eOSiNOPHiLS

eosinophil Biology
Eosinophils are granulocytes that develop in the bone marrow in response to IL-5, with a minor role 
for IL-3, granulocyte-macrophage colony-stimulating factor (GM-CSF), and IL-33 (12–15). IL-5 also 
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FigURe 1 | Cellular structure, receptors, and mediators of eosinophils. The pseudocolored composite electron micrograph of an eosinophil highlights cellular 
structures. Characteristic features of eosinophils include the multilobed nucleus, specific eosinophil granules, lipid bodies, and sombrero vesicles. Eosinophil 
granules contain cationic proteins, cytokines, growth factors, chemokines, and enzymes. The granule contents can be released upon stimulation. Lipid bodies are 
the place of synthesis for numerous lipid mediators. Granule contents can be released through sombrero vesicles. Eosinophils carry numerous cell surface receptors 
including chemokine receptors, Fc receptors, pattern recognition receptors, receptors for lipid mediators, cytokine receptors, complement receptors, and adhesion 
receptors. Abbreviations: 15-HETE, 15-hydroxyeicosatetraenoic acid; APRIL, a proliferation-inducing ligand; CCL, CC-chemokine ligand; CCR, CC-chemokine 
receptor; CXCL, CXC-chemokine ligand; CXCR, CXC-chemokine receptor; ECP, eosinophil cationic protein; EDN, eosinophil-derived neurotoxin; EGF, epidermal 
growth factor; EPX, eosinophil peroxidase; GMCSF, granulocyte-macrophage colony-stimulating factor; IFN, interferon; MBP, major basic protein; NGF, nerve growth 
factor; PDGF, platelet-derived growth factor; PAF, platelet-activating factor; SCF, stem cell factor; TGF, transforming growth factor; TNF, tumor necrosis factor; VEGF, 
vascular endothelial growth factor. The electron micrograph was generously provided by Dr. Isabelle Coppens, Johns Hopkins University, Baltimore, MD, USA.
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mediates the release of mature eosinophils into the bloodstream 
from where they migrate into tissues (16). In healthy individuals, 
eosinophils are found in the bone marrow, blood, spleen, thymus, 
gastrointestinal tract, and uterus (17). Under pathological condi-
tions, eosinophils can infiltrate other tissues as well. Eosinophils 
are usually enumerated in the blood because tissue eosinophils are 
hard to measure. Eosinophil counts over 450–500 cells/μl blood 
are considered mild eosinophilia and counts over 1,500 cells/μl 
are characterized as hypereosinophilia (18).

The main chemotaxins for eosinophils are eotaxins, which 
homeostatically recruit eosinophils to the gastrointestinal tract, 
thymus, and uterus (19–21) and to other organs in disease states 
(22–24). Humans express three functional eotaxins (CCL11, 
CCL24, and CCL26), whereas mice only express two (CCL11 and 
CCL24) (25–28). The eotaxin receptor, CCR3, is highly expressed 
on eosinophils and to a low level on human basophils, mast cells, 
and Th2 cells (29, 30). Other eosinophil chemoattractants include 
CCL5 and lipid mediators such as leukotriene B4 and prostaglan-
din D2, although these factors are not specific for eosinophils (31) 
(Figure 1).

A unique characteristic of eosinophils are their specific (also 
termed secondary or secretory) granules. These are secretory 
vesicles with an electron-dense core and an electron-lucent 

matrix. Eosinophil granules contain four major granule proteins 
and numerous cytokines, chemokines, and growth factors (31) 
(Figure 1). Cytotoxic effects to host tissues and pathogens have 
been demonstrated for all major granule proteins: eosinophil 
cationic protein (ECP), eosinophil-derived neurotoxin (EDN), 
eosinophil peroxidase (EPX), and major basic protein (MBP) 
(32). MBP can disrupt the cell membrane and is therefore highly 
cytotoxic to mammalian cells, helminths, and bacteria (33–35). 
Other effects of MBP include altering smooth muscle contrac-
tion, inducing mast cell and basophil degranulation, provoking 
acetylcholine release from peripheral nerves, and promoting 
nerve cell survival (36–39). The granule proteins ECP and EDN 
are ribonucleases (13, 40) with neurotoxic and strong antiviral 
activities (41, 42) and immune modulatory functions (43). EPX 
generates reactive oxygen species that are directed extracellularly 
(44). These products have cytotoxic, prothrombotic, and pro-
inflammatory effects (44–46). Granule contents are generally pre-
formed in eosinophils and released upon stimulation. Piecemeal 
degranulation is the most common process by which eosinophils 
release their granule contents (47–49). Specific granule factors, 
rather than the entire granule, are released in response to an 
activating signal. This leaves the eosinophil intact and able to 
respond to subsequent stimulation.
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BOx 1 | Possible eosinophil effector functions in autoimmune 
diseases.

•	 Damage of tissues by cytotoxic granule proteins
•	 Antibody-dependent cellular cytotoxicity
•	 Activation of tissue remodeling and fibrosis
•	 Antigen presentation
•	 Modulation of the adaptive immune response
•	 Promotion of B cell responses
•	 Induction of tissue repair processes.
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Possible eosinophil effector Functions  
in Autoimmune Diseases
Eosinophils are extremely versatile effector cells that damage  
tissues or modulate the activity of other immune and stromal cells. 
One could envision many of these effector functions playing a role 
in the context of autoimmune diseases as well (Box 1). Damage of 
tissues and cells is a feature of many organ-specific autoimmune 
diseases. Eosinophils are well known for their strong cytotoxic 
properties, mediated mostly through granule proteins. This could 
contribute to organ destruction in autoimmune inflam mation.

The ability of eosinophils to bind antibodies and consequently 
degranulate and kill cells links the adaptive autoimmune response 
to eosinophil effector functions. Eosinophils express complement 
receptors (50) and Fc receptors (FcαR, FcγRI–III, and FcεRI–II) 
either constitutively or under inflammatory conditions (51–54). 
As a result, they are capable of antibody-dependent cellular cyto-
toxicity (ADCC) to parasites and mammalian targets (55–57). In 
autoimmune diseases, eosinophils may kill host cells bound by 
autoantibodies.

Eosinophils also interact with stromal cells. Actively degranu-
lating eosinophils are frequently found in areas of fibrogenesis, 
suggesting a potential profibrotic role (58–61). Granule proteins 
and eosinophil-derived transforming growth factor (TGF)β1 were 
demonstrated to affect tissue remodeling and fibrosis. Eosinophils 
can promote fibroblast proliferation (62–64), proteoglycan accu-
mulation (65), matrix metalloproteinase and TGFβ expression, 
and extracellular matrix protein synthesis (66). These profibrotic 
functions of eosinophils may add to tissue dysfunction in autoim-
mune diseases. In chronic inflammatory conditions, eosinophils 
preferentially locate to nerves (67–70). This interaction results in 
activation of eosinophils (71–73), nerve damage (74, 75), altered 
nerve growth (76, 77), and neuropeptide release (78). Contact 
between eosinophils and nerves has functional consequences. 
For example, it is one of the causes of airway hypersensitivity in 
asthma (38, 79).

Eosinophils can form extracellular DNA traps by quickly 
releasing mitochondrial DNA and granule proteins (80). These 
structures bind and kill pathogens and contribute to tissue injury 
in inflammatory conditions (81). DNA extracellular traps have 
been described in allergic asthma (82), drug hypersensitivity 
reactions, and allergic contact dermatitis (83). Eosinophils may 
initiate or perpetuate inflammation by releasing cytokines and 
chemokines and by interacting with other innate immune cells. 
For example, eosinophils release MBP, IL-9, stem cell factor, or 
nerve growth factor, which affect mast cell maturation, survival, 
and histamine release (84–87).

Eosinophils can also influence the adaptive immune response. 
They are capable antigen-presenting cells that upregulate MHCII 
and costimulatory molecules in the context of parasitic infec-
tion or allergic asthma (88–90). Moreover, eosinophils migrate 
to draining lymph nodes (91), and in  vitro experiments have 
demonstrated their ability to present antigen to and activate 
T cells (92–94). Eosinophils may contribute to the initiation of 
autoimmune responses by presenting antigen to and activating 
T cells.

Eosinophil granules contain numerous cytokines such as IL-4, 
IL-13, IL-25, TGFβ, IL-10, or IDO (31), which suggests an ability 
to affect T cell differentiation. Eosinophils were shown to suppress 
Th1/Th17 differentiation (95) or activate Th2 responses in drain-
ing lymph nodes (96). In addition, they modulate dendritic cell 
activity, thereby indirectly affecting polarization of naïve T cells 
into Th2 cells (97). Eosinophils also shape the humoral immune 
response. In the bone marrow, eosinophils stimulate plasma cell 
survival by producing IL-6 and a proliferation-inducing ligand 
(98), and in the intestine, they promote class-switching to IgA 
(99, 100). These properties enable eosinophils to shape the adap-
tive immune response in autoimmune diseases.

Eosinophils may also fulfill immune regulatory and protec-
tive functions. Eosinophil-derived mediators like TGFβ and 
TGFα (101), platelet-derived growth factor (102), vascular 
endothelial growth factor (103), and fibroblast growth factor 
(104) can all contribute to tissue repair and angiogenesis. IL-4 
released from eosinophils was shown to play a role in liver (105) 
and muscle (106) regeneration. Whether eosinophils contribute 
to tissue repair or tissue damage is likely context and disease 
dependent.

identification of eosinophils in Blood  
and Tissues
Numerous methods exist to identify eosinophils in blood and  
tissues. Blood eosinophils are routinely counted in clinical settings 
in differential white blood counts. Human eosinophils (and to a 
lesser extent mouse eosinophils) are easily identified by hema-
toxylin and eosin staining of histological sections due to the bright 
pink staining of the basic granules, which gave them the name 
eosinophils (107). Mouse blood eosinophils can be detected using 
modified Giemsa stain or by flow cytometry. Their characteristic 
forward scatter-side scatter profile in flow cytometry allows for 
approximation of eosinophils in blood even without specific 
antibody staining. Antibodies that can be used to stain blood 
eosinophils target Siglec-F (mouse) or CCR3 (mouse and human) 
(108, 109). Eosinophils are also positive for unspecific receptors 
such as CD11b and (at low/intermediate levels) Ly6G. Staining 
with several antibodies is often required for identification and 
characterization of eosinophils from tissues, as none of them are 
absolutely specific for eosinophils (110). Tissue eosinophils can 
also be detected using immunohistochemistry or immunofluores-
cence staining with antibodies against MBP or EPX (111). Electron 
microscopy is another method used to distinguish eosinophils 
from other cells based on the morphology of eosinophil granules. 
Moreover, with this technique, the extent and mechanism of 
degranulation of eosinophils can be determined (112).
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ROLe OF eOSiNOPHiLS iN AUTOiMMUNe 
DiSeASeS

Bullous Pemphigoid
Bullous pemphigoid is a blistering disease of the skin with a 
well-established autoimmune etiology (113). Autoantibodies 
bind to hemidesmosomal proteins BP180 and BP230 at the 
dermal–epidermal junction and other extracellular matrix 
proteins (114–119). Hemidesmosomes are part of the complexes 
that anchor the cytoskeleton of basal keratinocytes to the dermis 
(120). Autoantibody binding triggers complement activation, 
recruitment of immune cells, and release of proteases. This 
results in tissue damage and blistering (121–124). Neutrophils 
and eosinophils infiltrate the dermal–epidermal junction and, 
together with mast cells, are thought to play a key role in bul-
lous pemphigoid (125–127). Increased numbers of peripheral 
blood eosinophils has long been recognized as a characteristic 
of bullous pemphigoid patients (128, 129). A positive correlation 
between blood eosinophil numbers and disease severity has 
been observed in some reports (130, 131) but not others (132). 
Eosinophilia in bullous pemphigoid patients is likely caused by 
increased levels of IL-5, which can be detected at high levels in 
the serum and blister fluid (133, 134). Keratinocytes in the blisters 
express eotaxin-1, which directs eosinophil infiltration (133, 135). 
Eotaxin-1 expression is positively correlated with the number 
of infiltrating eosinophils in blisters. Eosinophil localization to 
the basement membrane zone is autoantibody and complement 
dependent in a human cryosection model of bullous pemphigoid 
(127). Eosinophils from blisters release IL-6, IL-8, and IL-1β 
and show an activated phenotype with high CD11b expression 
(136). Blister eosinophils also underwent apoptosis more readily 
compared to eosinophils from healthy donors (136).

Several mechanisms by which eosinophils (and other granu-
locytes) contribute to lesion formation have been identified. 
Eosinophils in lesional skin were shown to degranulate, and 
granule proteins are deposited in blisters (125, 137). The eosino-
phil granule protein ECP can be readily detected in serum and 
blister fluid of bullous pemphigoid patients (132). However, it is 
not clear if granule proteins contribute to tissue damage. Eosin-
ophils and neutrophils have been shown to release proteases, 
matrix metalloproteinase 9 (MMP9), and neutrophil elastase, in 
lesional biopsies and blister fluid. These proteases can degrade 
extracellular matrix proteins and BP180, which contributes to 
dermal–epidermal separation and blister formation (138–140). 
Blister formation also depends on autoantibodies (141), which 
are of the IgG1, IgG4, and IgE subtype (142, 143). Recently, 
eosinophils from bullous pemphigoid patients were shown to 
express the high-affinity IgE receptor FcεRIα (144), which may 
trigger eosinophil activation by IgE autoantibodies. Additional 
evidence for a pathogenic role for eosinophils comes from a case 
report of a patient with hypereosinophilic syndrome and bullous 
pemphigoid who was treated with imatinib (a tyrosine kinase 
inhibitor). In response to imatinib, both conditions resolved and 
his eosinophil count normalized (145).

Taken together, there is strong evidence from patient studies, 
in  vitro experiments, and animal models for a pathogenic role 
of eosinophils in bullous pemphigoid. In addition to the mouse 

model of passive antibody transfer, which reproduces blister 
formation but not eosinophil infiltration (146), a new model 
with genetically modified mice has been established (147). Mice 
with a deletion in the BP180 (collagen XVII) gene spontaneously 
develop eosinophilia, blister formation, itch, and eosinophil 
infiltration into the skin lesions. This new model could be used 
to test for the requirement and pathologic role of eosinophils 
(and eosinophil products) in future studies. Novel eosinophil-
specific drugs may also help to clarify the role of eosinophils in 
bullous pemphigoid. Trials of bertilimumab, an anti-eotaxin-1 
antibody, and mepolizumab, an anti-IL-5 antibody, are currently 
ongoing (http://ClinicalTrials.gov identifiers: NCT02226146 and 
NCT01705795).

inflammatory Bowel Diseases
The etiology of the inflammatory bowel diseases, Crohn’s disease 
and ulcerative colitis, is not fully understood. Evidence for the 
involvement of autoimmune processes exists for both (148, 149). 
Both diseases are associated with other autoimmune diseases, 
characterized by lymphocytic infiltration, and respond to 
corticosteroid treatment. Patients with ulcerative colitis carry 
autoantibodies against colonic epithelial cells and often perinu-
clear antineutrophilic cytoplasmic (ANCA) antibodies. Specific 
autoantibodies have not been found in Crohn’s disease patients. 
The evidence for autoimmunity is stronger in ulcerative colitis 
than in Crohn’s disease. Here, we will discuss the role of eosino-
phils in both diseases with a focus on ulcerative colitis.

Eosinophils have long been recognized as a prominent fea-
ture of the infiltrate in inflammatory bowel diseases (150–154). 
Eosinophil numbers in the colon are substantially increased in 
inflammatory bowel disease patients and display an activated 
phenotype (154–157). The number of infiltrating eosinophils is 
positively correlated with disease severity in ulcerative colitis and 
Crohn’s disease (23, 158–161). In mouse models, the absence of 
eosinophils dramatically reduces disease severity. In the model of 
DSS-induced colitis, two different strains of eosinophil-deficient 
mice were protected compared to controls (23, 162). Depletion 
of eosinophils in a model of colitis due to Helicobacter hepaticus 
infection also reduced disease severity (163). Similarly, in a 
model of TNBS-induced colitis, eosinophil-deficient mice fared 
better, while hypereosinophilic mice developed more severe 
disease (164).

Eosinophil migration into the colon mucosa occurs in response 
to eotaxins. Patients with inflammatory bowel diseases have 
elevated serum eotaxin-1 levels (158, 165, 166), which correlates 
positively with disease activity (158, 165). Tissue expression of 
eotaxin-1, and to a lesser extent eotaxin-2, is increased in ulcerative 
colitis patients and positively correlated with the number of infil-
trating eosinophils and histopathologic disease severity (23, 158). 
Another study found increased expression of all three eotaxins 
and IL-5 in ulcerative colitis, but only eotaxin-1 correlated with 
eosinophil numbers (167). The relative significance of eotaxin-2 
and -3 is less clear. Eotaxin-3 was found to be increased in active 
lesions in ulcerative colitis and to a lesser extent in Crohn’s disease 
(168). Gene polymorphisms in eotaxin-2 are associated with 
ulcerative colitis (169). This suggests that all eotaxins may con-
tribute to eosinophil trafficking. The cellular source of eotaxin-1 
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was identified as CD68+ macrophages and epithelial cells (23) 
or as CD14+ mononuclear cells (167). Colonic myofibroblasts 
express eotaxin-3, which is increased in response to IL-4 and 
IL-13 (168). In the mouse model of DSS-induced colitis, expres-
sion of eotaxin-1 and -2 in the colon is increased and deficiency 
of eotaxin-1, but not eotaxin-2, decreases eosinophil infiltration. 
This demonstrates that eotaxin-1 is the major chemoattractant 
for eosinophils in experimental colitis (23, 170). In this mouse 
model, macrophages are the major eotaxin-1-producing cell 
type (23, 171). The increased expression of eotaxins, particularly 
eotaxin-1, in inflammatory bowel diseases shows that eosinophils 
are specifically recruited to the site of inflammation.

Electron microscopy and immunohistochemistry of colonic 
biopsies show degranulation of eosinophils (157, 172, 173). 
Eosinophil granule proteins are also found in the feces (156, 174), 
gut perfusates (175), and gut lavage fluids (176) of patients with 
ulcerative colitis and Crohn’s disease. Eosinophil granule proteins 
in serum or intestine are positively correlated with disease activ-
ity in ulcerative colitis (23, 156, 161, 177, 178). Polymorphisms 
in the genes of ECP and EPX are associated with inflammatory 
bowel diseases (179). These findings suggest a pathogenic role of 
eosinophil granule proteins in inflammatory bowel diseases. In 
one study, however, eosinophil activation was observed during 
the remission phase (180). EPX is pathogenic in mouse models 
of DSS- and H. hepaticus-induced colitis. Genetic deficiency or 
inhibition of EPX reduced disease severity (163, 170).

Several pathogenic functions of eosinophils have been sug-
gested in recent years. Eosinophils were found to increase mucosal 
barrier permeability in ulcerative colitis by releasing MBP (181) or 
corticotropin-releasing factor (182). IL-22 is increased in patients 
with ulcerative colitis or Crohn’s disease (183, 184), and animal 
studies showed that it is crucial to restore epithelial homeostasis 
(185). IL-22 induces antimicrobial peptides, mucus production, 
and epithelial tight junctions (186). Recently, eosinophils were 
identified as the main source of IL-22-binding protein (IL-22BP), 
inhibiting the protective actions of IL-22 in DSS-induced experi-
mental colitis and in patients with inflammatory bowel disease 
(187). In another study, eosinophils were found to localize to nerves 
in the colonic mucosa in ulcerative colitis and Crohn’s disease 
(70). Th17 responses have been implicated in inflammatory bowel 
diseases (188). A possible link between the downstream effector 
of Th17 responses, GM-CSF, and eosinophils was found recently. 
GM-CSF enhances eosinophilopoiesis, induces cytokine secretion 
from eosinophils, and promotes eosinophil survival (163, 189).

In summary, tissue eosinophils are increased in patients with 
inflammatory bowel diseases, are associated with disease severity, 
and are specifically recruited through eotaxin-1. Eosinophils likely 
contribute to the disease process by releasing granule proteins 
(EPX) or other mediators that affect the intestinal barrier. Thus, 
there is a strong evidence for a pathogenic role of eosinophils 
in inflammatory bowel diseases, particularly in ulcerative colitis.

eosinophilic granulomatosis with 
Polyangiitis (egPA)
Eosinophilic granulomatosis with polyangiitis was first described 
by Churg and Strauss in 1951 (190). The disease progresses 

through three overlapping phases: adult-onset asthma, peripheral 
and tissue eosinophilia, and necrotizing vasculitis with tissue 
infiltration of eosinophils (191–193). EGPA is an idiopathic type 
of small vessel vasculitis and is also part of the hypereosinophilic 
syndromes (194). It is associated with HLA and IL-10 polymor-
phisms (195). About 40% of EGPA patients have perinuclear 
ANCA antibodies against myeloperoxidase (MPO), resulting 
in the classification of EGPA as an ANCA-associated vasculitis  
(192, 193). The presence or absence of ANCA in EGPA may 
indic ate two clinical subtypes with different organ involvement. 
ANCA-positive patients have more frequent vasculitis and glo-
merulonephritis, whereas ANCA-negative patients have more 
frequent heart and lung involvement (196, 197).

Blood and tissue eosinophilia are diagnostic criteria for EGPA, 
yet little is known about the pathogenic role of eosinophils in this 
disease (192). One reason for the absence of mechanistic data is 
the lack of suitable animal models. The transfer of MPO-positive 
human serum to mice causes vasculitis, but the eosinophilic com-
ponent is missing (198). Therefore, all knowledge about the role 
of eosinophils in EGPA comes from patient studies. An increased 
eosinophil count during active disease is associated with increased 
Th2 cytokines IL-5 in serum (199, 200) and increased production 
of IL-4, IL-5, and IL-13 by T cells (201, 202). CCL17, a chemokine 
that recruits Th2 cells into tissues, is increased in the serum and 
biopsies of EGPA patients and is positively correlated with blood 
eosinophils and IgE (199, 203). This increase in Th2 activity likely 
contributes to eosinophilia.

Blood eosinophils in EGPA show an activated phenotype 
expressing high levels of CD69 and CD11b (200, 204). Moreover, 
they express IL-25, a cytokine that increases release of IL-4, -5, 
and -13 from T cells. Serum IL-25 is increased in patients with 
active EGPA compared to inactive disease or healthy controls. It 
is also detectable in eosinophils from lesional biopsies. T cells in 
these biopsies and in the blood express the IL-25 receptor IL-17RB 
(205). This suggests a feed-forward loop between eosinophils and 
Th2 cells in EGPA.

Neuropathy is a common symptom of EGPA (196). Interest-
ingly, different mechanisms lead to nerve damage depending on  
the presence or absence of MPO–ANCA. In patients with auto-
antibodies, MPO–ANCA-induced necrotizing vasculitis results 
in ischemic damage to the nerves (206–209). In the absence of  
autoantibodies, massive eosinophil infiltration into the epineur-
ium and occasionally endoneurium is observed. These eosinophils 
are degranulating and cytotoxic to nerves (209, 210). Sometimes 
eosinophils form part of the inflammatory infiltrate surrounding 
necrotizing vessels (209, 211, 212). This may accelerate damage 
of blood vessels because eosinophils were shown to be directly 
cytotoxic to endothelial cells in vitro (34, 213). This damage may 
be mediated by ECP, which is deposited on endothelial surfaces 
in patients with eosinophilic endomyocarditis (214–216), or by 
MBP, which is cytotoxic in vitro (34).

Eosinophil chemotaxis into affected tissues in EGPA patients 
occurs in response to eotaxin-3. Serum levels of eotaxin-3 are 
substantially higher in EGPA patients with active disease com-
pared to those with inactive disease, healthy controls, or patients 
with other eosinophil-associated diseases (217, 218). In contrast, 
there is no increase in serum eotaxin-1 or -2 (217). Eotaxin-3 is 
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also readily detected in biopsies of affected tissues from EGPA 
patients (217). Eotaxin-3 localizes to endothelial cells of small 
vessels, smooth muscle cells of small arterioles, the perineurium 
of the sural nerve, and the respiratory epithelium of the nose. 
An analysis of single-nucleotide polymorphisms in the eotaxin-3 
gene in 161 EGPA patients found no significant associations 
(218), suggesting that eotaxin-3 polymorphisms may not be 
causal in EGPA.

The strongest evidence for a pathogenic role of eosinophils in 
EGPA comes from novel biological treatments that target IL-5 
and thereby drastically reduce eosinophil levels. Two open-label 
trials with the anti-IL-5 antibody mepolizumab demonstrated its 
efficacy as a steroid-sparing agent and its ability to induce remis-
sion over 9 months (219–221). Upon termination of mepolizumab 
treatment, the majority of patients developed relapses. In one 
trial, eosinophil count and serum ECP were strongly correlated 
with disease activity (221). A double-blind randomized placebo-
controlled trial of mepolizumab in EGPA is currently ongoing 
(http://ClinicalTrials.gov identifier: NCT02020889).

Several key findings amount to moderate evidence for a 
pathogenic role of eosinophils in EGPA. (1) The number of 
eosinophils and serum ECP correlate with disease severity. (2) 
Eosinophil infiltration and degranulation in tissues causes organ 
damage. (3) A potential feed-forward loop between Th2 cells and 
eosinophils may propagate disease. (4) IL-5-targeted therapies 
showed beneficial effects.

eosinophilic Myocarditis
Myocarditis is the inflammation of the heart muscle with or with-
out damage or necrosis of adjacent myocytes in the absence of an 
ischemic event (222). A wide range of causes from viral, bacterial, 
and parasitic infections to toxic effects of drugs or hypersensitiv-
ity reactions can cause myocarditis, and in many cases, the etiol-
ogy is unknown (223). Autoimmune processes often play a role 
either causally or as postinfection autoimmunity: autoantibodies 
against cardiac antigens are present in the majority of myocar-
ditis patients, myocarditis is associated with other autoimmune 
diseases, and some patients benefit from immunosuppressive 
treatment (224, 225). Animal models provide further evidence 
for autoimmune mechanisms. Cardiac autoantibodies induce 
disease in rats, and immunization with cardiac myosin peptide in 
adjuvants induces experimental autoimmune myocarditis (EAM) 
in mice (224).

Eosinophils form a major part of the inflammatory infiltrate 
in subtypes of myocarditis, namely in eosinophilic myocarditis 
and giant cell myocarditis. These subtypes are usually idiopathic. 
Eosinophilic myocarditis is associated with hypereosinophilic 
syndrome (HES) and EGPA, but it can also develop in the absence 
of eosinophilia. About one-third of EGPA patients and 20–50% 
of HES patients develop cardiovascular manifestations (196, 197, 
226–229). Myocarditis is more frequent in ANCA-negative EGPA 
patients (196, 229). Parasitic infections and hypersensitivity reac-
tions to drugs are other potential causes of eosinophilic myocardi-
tis (230, 231). Giant cell myocarditis and eosinophilic myocarditis 
are usually treated with strong immunosuppressive agents.

Eosinophils likely play a pathogenic role in the heart  
(227, 232, 233). Eosinophil granule proteins are deposited in 

the myocardium during eosinophilic myocarditis and may be  
cytotoxic to cardiomyocytes (61, 234–236). Eosinophils have also 
been proposed to activate cardiac mast cells (237) or release pro-
thrombotic tissue factor (238). In HES, eosinophils are thought 
to damage the endocardium, which results in thrombosis and 
endocarditis and eventually leads to endomyocardial fibrosis 
and valvular complications (226, 228). Animal studies further 
strengthen the evidence that eosinophils contribute to pathology 
and mortality in eosinophilic myocarditis. Hypereosinophilic 
mice with transgenic expression of IL-5 (IL-5Tg) spontaneously 
develop eosinophilic myocarditis at a low frequency (239). We 
found that induction of EAM in these IL-5Tg mice reliably induces 
eosinophilic myocarditis with over 60% of the heart-infiltrating 
cells being eosinophils (240). Induction of EAM in A/J mice 
causes myocarditis with numerous infiltrating eosinophils (241). 
Blockade of IL-4 in this model reduces eosinophil infiltration and 
disease severity (241). Induction of EAM in BALB/c mice that 
lack interferon (IFN)γ and IL-17A (IFNγ−/−IL-17A−/−) results in 
severe eosinophilic myocarditis with about 50% fatality by day 21 
(242). Ablation of eosinophils in these mice improved survival. In 
another model, natural killer cell depletion resulted in increased 
eosinophil infiltration in the heart and aggravated myocarditis. In 
eosinophil-deficient mice, however, natural killer cell depletion 
did not increase disease severity (243). These results show that 
eosinophils are pathogenic in myocarditis.

A major burden of myocarditis lies in the sequela inflamma-
tory dilated cardiomyopathy (DCM), which is the major cause 
of heart failure in patients younger than 40 years and has a poor 
5-year survival rate of less than 50% (244, 245). It is not known at 
what rate eosinophilic myocarditis patients progress to DCM or 
how this rate compares to other myocarditis subtypes. By using 
the EAM model, we found that eosinophil-deficient mice are 
protected from DCM following myocarditis, while hypereosino-
philic IL-5Tg mice developed more severe DCM. This process 
was dependent on eosinophil-derived IL-4 (240). This suggests 
that eosinophils drive the chronic disease that ensues myocarditis 
and impair cardiac function.

Little is known about the mediators that induce eosinophil 
infiltration into the heart. We found increased expression of 
eotaxin-1 and eotaxin-3 in endomyocardial biopsies from patients 
with eosinophilic myocarditis compared to chronic lymphocytic 
myocarditis (24). In the eosinophilic myocarditis mouse model of 
EAM in IFNγ−/−IL-17A−/− mice, cardiac expression of eotaxin-1 
and -2 is highly increased compared to naïve mice or WT controls 
(24, 242). In this model, the eotaxin-CCR3 pathway is necessary 
for eosinophil trafficking to the heart during myocarditis (24).

In summary, there is substantial evidence that eosinophils play 
a pathogenic role in myocarditis during acute and chronic stages. 
Several studies in animal models offered mechanistic insight into 
how eosinophils contribute to myocarditis. It will be interesting 
to see if eosinophil-targeted therapies in patients with HES or 
EGPA will reduce the incidence of eosinophilic myocarditis in 
this high-risk group.

Neuromyelitis Optica
Neuromyelitis optica (NMO) is a demyelinating disease of the 
central nervous system (CNS) that usually affects the optic nerve 
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and spinal cord. Lesions are necrotic, cavitary, and infiltrated 
with macrophages and granulocytes. NMO is an autoimmune 
disease. Anti-aquaporin 4 (AQP4) autoantibodies are present in 
the majority of patients. These pathogenic antibodies are highly 
specific for NMO and are one of the features that distinguish 
it from multiple sclerosis. NMO patients often carry multiple 
other autoantibodies, and there is a strong association with other 
autoimmune diseases. Moreover, NMO is much more common 
in women than men (246).

Neuromyelitis optica has only recently been distinguished 
from multiple sclerosis with eosinophil infiltration being one of 
the distinctive features (247). The first description of eosinophil 
infiltration in NMO lesions was by Lucchinetti and colleagues 
in 2002. In analyzing lesions from NMO patient autopsies, 
they found eosinophil infiltration in early active lesions (248). 
Eosinophils infiltration is located meningeal and perivascular in 
spinal cord lesions. Both intact and degranulating eosinophils 
are found (248). Since this original observation, multiple studies 
have described eosinophil infiltration in the spinal cord, optic 
nerve (249), brainstem (250, 251), and cerebrospinal fluid (252). 
Another study found that the cerebrospinal fluid from patients 
with NMO contains higher levels of eotaxin-2, eotaxin-3, and 
ECP compared to healthy controls or multiple sclerosis patients. 
In addition, stimulation of cerebrospinal fluid cells with myelin 
oligodendrocyte glycoprotein results in increased IL-5 produc-
tion in NMO compared to controls (253). Together, these studies 
clearly establish that eosinophils infiltrate and degranulate in 
NMO lesions, which suggest a pathogenic role for eosinophils.

A recent elegant study used in vitro experiments and a mouse 
model to determine the role of eosinophils in NMO (254). Bone 
marrow-derived eosinophils exhibit ADCC when cocultured with 
a cell line expressing AQP4 in the presence of anti-AQP4. Similar 
effects of eosinophils are observed on spinal cord slide cultures. 
Stimulation of eosinophils with platelet-activating factor (PAF), 
which induces the release of EPX, results in damage to spinal cord 
slice cultures independent of anti-AQP4 antibody. The authors 
developed a mouse model of NMO by continuously infusing 
anti-AQP4 antibodies and human complement intracerebrally 
for 3 days. In this model, depletion of neutrophils, eosinophils, 
or both reduces pathology. Likewise, eosinophil-deficient mice 
have less severe lesions. Induction of disease in hypereosinophilic 
mice results in more severe lesions with increased eosinophil and 
neutrophil infiltration (254). This clearly established a pathogenic 
role for eosinophils in NMO and highlights mechanisms (ADCC 
and degranulation) by which eosinophils can damage neural 
tissues.

Primary Biliary Cirrhosis
Primary biliary cirrhosis is a chronic disease of the small 
intrahepatic bile ducts that eventually leads to cirrhosis. It 
shows several hallmarks of an autoimmune disease: highly 
specific antimitochondrial autoantibodies, association with 
other autoimmune diseases, a female to male ratio of 10:1, and 
a strong genetic component (255). Histologically, damaged 
biliary epithelial cells and infiltration of the portal area with 
plasma cells, T cells, NK cells, macrophages, neutrophils, and 
eosinophils are visible (255, 256). Cytokine expression in the 

liver of primary biliary cirrhosis patients is similarly mixed. 
Compared to other liver diseases, increased hepatic expression 
of IL-5, IL-6, IFNγ, TGFβ, and IL-2 has been noted (257, 258). 
Recent studies also identified key Th1 and Th17 cytokines 
in the liver (259) and on blood cells (260) and a decreased 
T  regulatory to Th17  cell balance in peripheral blood cells 
(261).

Patients with primary biliary cirrhosis have a higher frequency 
and increased absolute numbers of eosinophils in peripheral 
blood and the liver, particularly around damaged bile ducts 
(262–265). Eosinophil infiltration is higher in the early stages 
of the disease (stages I–II versus III–IV) (263, 265). Increased 
eosinophil infiltration was positively associated with liver IL-5 
expression (258) and mast cell infiltration (264). Infiltrating 
eosinophils are degranulating, releasing ECP, MBP, and EDN, 
which can also be detected in the serum (262, 265). Some patients 
have autoantibodies to EPX (266), although it is unclear whether 
these have any pathologic relevance. Two of the established mouse 
models for primary biliary cirrhosis show eosinophil infiltration 
in the liver and could be useful for further studies on the role of 
eosinophils (267–269).

Ursodeoxycholic acid (UDCA) is the only approved drug 
for primary biliary cirrhosis patients. UDCA can delay disease 
progression and improve liver biochemistry (255). Of note, a 
higher frequency of blood eosinophils is associated with better 
response to UDCA treatment (263). UDCA treatment decreases 
the frequency and number of eosinophils in the blood (263, 270)  
and the liver (265) and decreases degranulation of tissue eosino-
phils and serum MBP and EDN (265). UDCA may suppress tis-
sue eosinophilia by altering dendritic cells and the local cytokine 
milieu (271).

In some cases, eosinophilia may precede the detection of 
liver pathology, suggesting that eosinophils are involved early 
in the disease processes. One study reports on four cases of 
asymptomatic women with eosinophilia detected during random 
investigation. All of them had elevated liver enzymes and were 
diagnosed with primary biliary cirrhosis (272). In another patient 
eventually diagnosed with primary biliary cirrhosis, eosinophilia 
was detected 18  months prior to diagnosis, but liver enzymes 
were still normal 12 months prior to diagnosis, suggesting that 
eosinophilia can precede overt liver pathology (273). In conclu-
sion, there is some evidence for a role of eosinophils in the early 
stages of primary biliary cirrhosis.

Other Diseases
Several rare diseases with a possible autoimmune etiology are 
associated with eosinophils. Usually only case reports or small 
case series are available for these diseases, making it very difficult 
to assign a pathologic or protective role to eosinophils.

Eosinophilic Cellulitis
Eosinophilic cellulitis (Wells’ syndrome) is a very rare skin disease 
characterized by recurrent edematous erythema. Eosinophilic 
cellulitis is potentially associated with EGPA, HES, UC, or other 
causes, but the etiology is unknown (274, 275). The typical 
histopathological sign is flame figures, the focal accumulation 
of disintegrating eosinophils and collagen fibers. Early stages are 
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TABLe 1 | Autoimmune diseases with potential eosinophil involvement.

Disease Level of 
evidence

Potential mechanism eosinophil 
recruitment

Tissue infiltration Blood 
eosinophilia

Bullous 
pemphigoid

Strong Eosinophil-derived proteases degrade extracellular matrix resulting in 
dermal–epidermal separation

Eotaxin-1, 
expressed by 
keratinocytes

Yes Yes, likely 
associated with 
disease severity

Inflammatory 
bowel diseases

Strong Release of eosinophil peroxidase (EPX), major basic protein, IL-22-binding 
protein; increase in mucosal barrier permeability; potential effects on 
enteric nerves

Eotaxin-1 
(eotaxin-2 and -3),  
expressed by 
multiple cell types

Yes, positively 
correlated with 
disease severity

Eosinophilic 
granulomatosis 
with polyangiitis

Moderate Possible direct cytotoxic effects on endothelial cells, nerves, and other 
organs involved; prothrombotic effects

Eotaxin-3, 
expressed by 
various cell types

Yes (diagnostic 
criterion)

Yes (diagnostic 
criterion), 
increased Th2 
cytokines

Eosinophilic 
myocarditis

Moderate Possible direct cytotoxic effects on myocytes, endocardium; prothrombotic 
effects; mast cell activation; release of IL-4 promotes chronic disease

Eotaxin-1, -3 Yes (diagnostic 
criterion)

Not always 
present

Neuromyelitis 
optica

Strong Release of EPX killing astrocytes through antibody-dependent and 
complement-dependent cell mediated cytotoxicity

Eotaxin-2, -3 Yes, particularly in 
early lesions

Primary biliary 
cirrhosis

Weak Unknown, potential cytotoxic effects Yes, particularly in 
early stages

Yes
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characterized by predominantly eosinophilic infiltration (274). 
Blood eosinophilia is present in 15–67% of patients (275). Blood 
eosinophils from patients with eosinophilic cellulitis express the 
high-affinity IL-2 receptor CD25 (276). In vitro, IL-2 treatment 
of CD25+ eosinophils resulted in priming and increased release 
of ECP upon subsequent PAF stimulation. This suggests that 
eosinophils in patients with eosinophilic cellulitis may degranu-
late more easily. Indeed, extracellular MBP staining is readily 
observed in flame figures (277, 278) and may be in amyloid form, 
a sign of large-scale degranulation (279). Eosinophil chemotactic 
factors CCL17 and CCL24 have been detected in lesions (280). 
It is possible that eosinophils play a pathogenic role through 
degranulation.

Eosinophilic Fasciitis
Eosinophilic fasciitis is characterized by thickening and inflam-
mation of the fascia resulting in painful swelling and progressive 
induration of the skin and soft tissues (281, 282). The etiology 
of eosinophilic fasciitis is unknown. Autoimmune disease, infec-
tions, drugs, physical exertion, and other factors are discussed 
as potential triggers (283). There is no clear predominance by 
sex. Antinuclear antibodies are present in 15–20% of patients 
(284). Blood eosinophilia is present in most cases (60–90%), and 
eosinophils infiltrate the fascia and sometimes the perimysium 
(285–287). This increase in eosinophils is not always present and 
may be a transient feature. In one study, blood or tissue eosino-
philia was not associated with the clinical outcome (cure versus 
residual fibrosis) (286).

IgG4-Related Disease
The fibroinflammatory IgG4-related disease can affect multiple 
organs including the pancreas, salivary and lacrimal glands, 
lungs, retroperitoneum, and other tissues (288, 289). While 
it seems to be an immune-mediated disease, no target antigen 
(autoimmune or microbial) has been identified (290). The etiol-
ogy and triggering factors are unknown (289). High serum IgG4 

is present in 60–70% of patients (291), but it is unclear whether 
these IgG4 antibodies are directly pathogenic (289, 290, 292, 293). 
Key histopathological features are a dense lymphoplasmacytic 
infiltrate, storiform fibrosis, and obliterative phlebitis (288). 
Peripheral blood eosinophilia is found in about 30% of patients 
(294). Eosinophils also infiltrate the tissues and are present in 
the majority of lesions. Eosinophil infiltration is usually mild to 
moderate but can be predominant in some cases (288). To date, 
there is no clear evidence for or against a pathogenic role of 
eosinophils. However, several potential mechanisms have been 
hypothesized: antigen presentation, release of profibrotic factors, 
and promotion of plasma cell survival for IgG4 production (290).

AUTOiMMUNe DiSeASeS iN PATieNTS 
wiTH eOSiNOPHiL-ASSOCiATeD 
DiSeASeS

Eosinophils are a key feature of asthma, hypereosinophilic syn-
dromes, and eosinophilic gastrointestinal diseases. An increased 
frequency of autoimmune diseases in patients with these 
eosinophil-associated diseases would be suggestive of a possible 
role for eosinophils in autoimmunity.

Hypereosinophilic Syndrome
There are numerous case reports of patients with hypereosino-
philic syndrome who also suffer from an autoimmune disease 
including ulcerative colitis, autoimmune hepatitis, autoimmune 
thyroiditis, multiple sclerosis, systemic lupus erythematosus, 
antiphospholipid syndrome, myasthenia gravis, and rheumatoid 
arthritis (295–310). Some of these patients had more than one 
autoimmune disease. From these case reports, the overall fre-
quency of autoimmune diseases in HES cannot be determined. It 
is also not clear if HES precedes autoimmune disease or vice versa. 
In a trial of mepolizumab therapy for HES, 5 of 78 patients under 
follow-up developed autoimmune diseases (rheumatoid arthritis, 
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FigURe 2 | Possible mechanisms of eosinophil-mediated damage in different autoimmune diseases. In neuromyelitis optica, eosinophils damage 
astrocytes through antibody-dependent and complement-dependent cell-mediated cytotoxicity. Eosinophil degranulation in damaged bile ducts was shown for 
primary biliary cirrhosis. In bullous pemphigoid, eosinophils release proteases that degrade the dermal–epidermal anchoring complex. Eosinophil infiltration in the 
heart results in damage to the endocardium and myocardium either directly or indirectly through mast cells. Eosinophil-derived IL-4 can drive progression from 
autoimmune myocarditis to DCM. In inflammatory bowel diseases, eosinophils can damage the mucosa through multiple mechanisms. Eosinophil granule proteins 
damage epithelial cells and increase epithelial barrier permeability. Eosinophil-derived IL-22BP blocks the protective effects of IL-22 on epithelial cells. GM-CSF may 
prolong survival and activation of eosinophils in the intestine. In eosinophilic granulomatosis with polyangiitis, eosinophils damage nerves and blood vessels. 
Abbreviations: CNS, central nervous system; AQP4, aquaporin 4; FcR, Fc receptor; BP180, bullous pemphigoid 180; RBC, red blood cell; DCM, dilated 
cardiomyopathy; EPX, eosinophil peroxidase; CRH, corticotropin-releasing hormone; MBP, major basic protein; IL-22BP, IL-22-binding protein; GM-CSF, 
granulocyte-macrophage colony-stimulating factor; Th17, T-helper 17 cell; Th2, T-helper 2 cell.
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polymyalgia rheumatica, temporal arteritis, lichen planus, and 
autoimmune thrombocytopenia) (311). These diseases were 
likely revealed by the tapering of glucocorticoids, but an effect 
of mepolizumab cannot be excluded. It seems that these are in 
excess of the expected prevalence of autoimmune diseases; how-
ever, future studies are required to determine if this is the case.

eosinophilic gastrointestinal Diseases
Autoimmune diseases may be associated with eosinophilic gas-
trointestinal diseases. A recent literature review summarized case 
reports of autoimmune connective tissue diseases (SLE, rheuma-
toid arthritis, systemic sclerosis, and inflammatory myositis) in 
patients with eosinophilic gastroenteritis (312). These patients 
were mostly female even though eosinophilic gastroenteritis 
shows a male predominance. The issue remains that case reports  

do not allow for any conclusion of association. A recent popula-
tion-based cohort study on eosinophilic esophagitis found that the 
risk of several autoimmune diseases was substantially increased 
in patients compared to controls (313). Eosinophilic esophagitis 
patients had an increased risk of celiac disease, Crohn’s disease, 
ulcerative colitis, rheumatoid arthritis, lupus, systemic sclerosis, 
Hashimoto’s thyroiditis, and multiple sclerosis. No increased risk 
was found for pernicious anemia or vitiligo. Whether female 
compared to male eosinophilic esophagitis patients were more 
likely to also suffer from an autoimmune disease was not assessed. 
Genome-wide association studies have identified risk loci for 
eosinophilic esophagitis that were previously associated with 
autoimmune diseases, suggesting a potential common genetic 
cause (314). It will be interesting to see whether eosinophilic 
esophagitis patients with autoimmune comorbidities differ from 
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those without and whether an association of other eosinophilic 
gastrointestinal diseases with autoimmune diseases can be proven.

Asthma
Eosinophils are a prominent feature of allergic asthma and, to 
a lesser extent, non-allergic asthma (315). A potential role for 
autoimmune processes in asthma has been proposed (316). 
Certain autoantibodies are found more frequently in patients 
with asthma than in healthy controls (317), and some studies 
have found a positive association of asthma with autoimmune 
diseases (318–320). However, others report negative associa-
tions between these two conditions (321, 322). It has also been 
suggested that sex hormones may contribute to asthma severity 
(323). Non-allergic asthma has a female predominance, while 
allergic asthma does not (324, 325). Whether autoimmunity plays 
a role in asthma pathology or is increased in affected individuals 
remains controversial.

To date, there is no strong evidence for increased autoimmune 
diseases in patients with HES, asthma, or eosinophilic gastroin-
testinal disease, and only one study determined an increased risk 
in EoE patients. Future cross-sectional or cohort studies will be 
required to determine if the prevalence of autoimmune diseases is 
truly higher in patients with eosinophil-associated diseases.

CONCLUSiON

There is clear evidence for a pathogenic role of eosinophils in 
several autoimmune diseases (Table 1). Protective functions of 
eosinophils have not been identified. Eosinophils contribute to 
autoimmune diseases in vastly different organs, from the CNS to 
the skin, gastrointestinal tract, and cardiovascular system. These 
include tissues where eosinophils reside in healthy individu-
als, such as the intestine, as well as those where eosinophil are 
usually absent, such as the heart or CNS. In all of these organs, 
eotaxins seem to be the main chemokines for eosinophil recruit-
ment. Different eotaxins attract eosinophils to different tissues. 
Eotaxin-1 is essential for eosinophil trafficking to the intestine, 
while eotaxin-3 is most important in EGPA. Both eotaxin-1 and 
-3 attract eosinophils to the heart and eotaxin-2 and -3 recruit 
eosinophils to the CNS in NMO. Eosinophil infiltration into 
tissues is usually accompanied by eosinophilia, which may be 
transient, and is often caused by an increase in serum IL-5 or 
tissue IL-5. Other cytokines like GM-CSF may also be increased 
and contribute to eosinophilia. Compared to healthy controls, 
eosinophils from affected tissues or blood of patients show an 
activated phenotype, upregulating CD11b and CD69, and releas-
ing cytokines such as IL-25, IL-6, IL-8, and IL-1β.

Multiple effector mechanisms have been identified (Figure 2). 
Degranulation of eosinophils is noted most frequently, perhaps 
because it is easily visualized by immunofluorescence or histology 
of biopsies. Degranulating eosinophils are often seen adjacent to 
dying cells, such as endothelial cells of the vasculature and endo-
cardium, nerve cells, dermis, and intestinal mucosa. As a result, 
direct cytotoxicity of eosinophils to other cells has been proposed 
as a mechanism in all autoimmune diseases discussed above. EPX, 
MBP, and ECP all have strong cytotoxic properties, and often 

multiple mediators are released. The ability of eosinophils to bind 
antibodies and subsequently degranulate and kill cells links the 
adaptive autoimmune response to eosinophil effector functions. 
Antibody-dependent cell-mediated cytotoxicity by eosinophils 
was shown for NMO. Antibodies in BP likely cause degranulation 
of eosinophils and blister formation. Eosinophils are frequently 
associated with tissue remodeling. In BP, eosinophil-derived 
MMP9 and neutrophil elastase were shown to degrade extracellu-
lar matrix proteins resulting in dermal–epidermal separation. In 
ulcerative colitis, MBP and corticotrophin-releasing factor from 
eosinophils downregulate tight-junction proteins on epithelial 
cells, which decrease their barrier function. Eosinophil-derived 
cytokines modulating the function of other immune or stromal 
cells also play a role in autoimmune diseases. Eosinophil-derived 
IL-4 is important for chronic disease progression in myocarditis, 
and IL-22BP blocks protective functions of IL-22 in UC. In sev-
eral diseases, eosinophil infiltration was particularly pronounced 
in the early stages. This may hint to a role in initiation of the 
autoimmune response, a hypothesis that is difficult to prove in 
humans.

Particularly for rare diseases, the evidence for eosinophil 
involvement is mostly based on case reports, which makes it 
difficult to exclude associations by chance. Because autoimmune 
disease patients may receive many drugs, it is worth considering 
that hypersensitivity reactions to drugs are often accompanied 
by eosinophilia. On the other hand, it is difficult to ascertain the 
role of eosinophils in patients treated with glucocorticoids, which 
are highly effective at reducing eosinophil numbers in blood and 
organs (326, 327). Eosinophils may be reduced to normal or 
below normal levels in patients under treatment, and this could 
mask any associations. Novel targeted therapeutics that affect 
only specific arms of the immune response and do not dampen 
eosinophils may reveal new associations.

FUTURe ReSeARCH NeeDS

To verify some of the proposed mechanisms and potentially 
identify new mechanisms of eosinophil-mediated pathology or 
protection in autoimmune disease, animal models will aid greatly. 
The lack of in  vitro or animal models has hampered research 
in several autoimmune diseases such as EGPA and primary 
biliary cirrhosis. In addition, epidemiological studies including 
larger patient cohorts will be required to determine whether 
autoimmune diseases are indeed increased in patients with 
eosinophil-associated diseases such as eosinophilic esophagitis, 
hypereosinophilic syndrome, or asthma. Finally, viewing and 
analyzing autoimmune diseases with eosinophil involvement 
as a group with possible shared mechanisms may advance our 
understanding and point to common processes.
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