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Artificial intelligence (AI) refers to the area of knowledge that develops computerised

models to perform tasks that typically require human intelligence. These algorithms

are programmed to learn and identify patterns from “training data,” that can be

subsequently applied to new datasets, without being explicitly programmed to do so.

AI is revolutionising the field of medical imaging and in particular of Cardiovascular

Magnetic Resonance (CMR) by providing deep learning solutions for image acquisition,

reconstruction and analysis, ultimately supporting the clinical decisionmaking. Numerous

methods have been developed over recent years to enhance and expedite CMR

data acquisition, image reconstruction, post-processing and analysis; along with the

development of promising AI-based biomarkers for a wide spectrum of cardiac

conditions. The exponential rise in the availability and complexity of CMR data has

fostered the development of different AI models. Integration in clinical routine in a

meaningful way remains a challenge. Currently, innovations in this field are still mostly

presented in proof-of-concept studies with emphasis on the engineering solutions;

often recruiting small patient cohorts or relying on standardised databases such as

Multi-ethnic Study on atherosclerosis (MESA), UK Biobank and others. The wider

incorporation of clinically valid endpoints such as symptoms, survival, need and response

to treatment remains to be seen. This review briefly summarises the current principles

of AI employed in CMR and explores the relevant prospective observational studies

in cardiology patient cohorts. It provides an overview of clinical studies employing

undersampled reconstruction techniques to speed up the scan encompassing cine

imaging, whole-heart imaging, multi-parametric mapping and magnetic resonance

fingerprinting along with the clinical utility of AI applications in image post-processing, and

analysis. Specific focus is given to studies that have incorporated CMR-derived prediction

models for prognostication in cardiac disease. It also discusses current limitations and

proposes potential developments to enable multi-disciplinary collaboration for improved

evidence-based medicine. AI is an extremely promising field and the timely integration

of clinician’s input in the ingenious technical investigator’s paradigm holds promise for a

bright future in the medical field.
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INTRODUCTION

Artificial Intelligence
(AI) is an academic discipline founded in the early 1950’s
and is considered as any method that allows computers to
accomplish functions, that require human intelligence. AI
introduces speed in performing tedious and time-consuming
tasks, precision in tasks requiring analysis and can draw
sophisticated interconnections/ deep interpretation of digital
data. It is already widely adopted in various scientific fields
including space craftmanship, navigation, meteorology and
every-day tasks including social media, banking, digital voice
assistants (1–3). The clinical uptake of the advances made
by computer scientists and engineers has been progressive
but slow.

Cardiovascular Magnetic Resonance imaging (CMR) is
already an established tool for routine clinical decision-making
including diagnosis, follow-up, pre-procedural planning and
real-time procedures. It is ideally suited for various AI techniques
due to the digitalisation of the MRI signal and the diversity in the
contrast and parametric information that can be obtained from
the images.

This review article explores the basic AI concepts that
are currently adopted in CMR along with relevant clinical
applications.We have only included studies that are prospectively
designed and applied. The aim is to familiarise clinicians with the
basics in AI, demonstrate the feasibility of relevant applications
and discuss current shortcomings that could be addressed in
future work.

AI Basics
Machine learning (ML) is a subcategory of AI that teaches
computers to do what humans and animals naturally do: learn
from experience. ML uses algorithms to find patterns and make
extrapolations from large amounts of data. The algorithms
adaptively enhance their performance as the amount of datasets
for learning expands. In the workflow of ML, feature extraction
is the first step, and this is followed by the development of the
model. The accuracy of the MLmodel is highly dependent on the
features extracted.

ML is further divided into supervised learning, unsupervised
learning and reinforcement learning. The differentiation lies
on the extent and type of supervision that is provided to the
algorithms during training. Supervised learning uses datasets,
annotated by a knowledgeable supervisor, to create models
that predict or categorise future events or identify the most
appropriate patterns to the outcome (4). The progress of
the predictive model is dependent on the diversity of the
data used in training along with the underlying algorithm.
In unsupervised learning the computer programme is able

Abbreviations: AI, Artificial Intelligence; CHD, Congenital Heart Disease; CMR,

Cardiovascular Magnetic Resonance; CNN, Convolutional Neural Network; DL,

Deep-learning; HCM, Hypertrophic Cardiomyopathy; LGE, Late-gadolinium

enhancement; LV, Left ventricle; ML,Machine-learning;MRI,Magnetic Resonance

Imaging; RV, Right ventricle; TA, Texture analysis; TRIPOD, Transparent

Reporting of a multivariable prediction model for Individual Prognosis Or

Diagnosis; 3D, Three-dimensional; 4D, Four-dimensional.

to identify hidden structures in collections of databases,
without previous labelling. The software can potentially
determine novel relationships and clusters inside the data.
Reinforcement learning constitutes a computational path to
learn through interactions with the environment. It is a reward-
based learning model, where positive and negative feedback
contribute to the creation of effective predictive models (see
Figure 1 for a schematic approach to the different types of
ML categories).

Deep learning (DL) is a subset of ML that applies neural
networks with hidden layers to correlate between the given
input and the correct output, so that feature extraction
and model development are performed simultaneously. DL
algorithms are inspired from the network and the connections
of the biological neurons in the brain that enable cognitive
tasks. The nodes in a neural network mimic the neuronal
function, i.e., they receive input signals, that can be excitatory
or inhibitory, causing them to fire or withhold an output
respectively. In mathematical terms, a neuron in the AI field
is a placeholder for a numerical expression, which creates an
output by applying the function on the given inputs. The data are
progressively processed and fine-tuned through this hierarchy to
extract high level features from simplified data. The predictive
properties of the algorithm are learnt through a sequence
of iterations.

Convolutional neural network (CNN) is a popular subgroup
of DL networks, widely applied in CMR, as it is designed to
work with imaging data (Figure 2). Several characteristics have
made this technique more adaptive compared to conventional
ML methods. While in ML methods the learned weights are
manually engineered, after sufficient training, CNN can extract
features automatically (i.e., learn filters), enabling the enhanced
feature extraction to be a section of the classification learning
process. CNN learns multiple features in parallel for a given
input. Therefore, the data-mining needed in a CNN is lower,
in contrast to other algorithms and it requires minimal human
intervention (5). The architecture of CNN consists of three layers:
(1) convolutional (feature extraction), (2) pooling (reduction
in the number of input variables), and (3) fully-connected
layer (connects neurons between layers). The convolutional
layer, being the first layer, applies the mathematical operation
of convolution, that is several filters to the input variable in
order to recognise a large number of relevant features. The
pooling layer minimises the size of the convolved feature map,
thereby reducing the overall computational demands and costs
of the network. The fully-connected layer connects the neurons
between different layers. Based on the type of the data and the
required accuracy, the network is optimised by iterating the
convolution-pooling series numerous times. In any DL method,
evaluating the loss function is a significant process, in order to
warrant that the algorithm will model the data in the expected
way. From a simplified viewpoint, the loss function can be
formulated as a function which determines the relation between
two variables, namely the deviation of the predicted output from
the ground truth output. The training of the convolutional neural
networks comprises multiple iterations (known as epochs),
which compare the performance of the training set against the

Frontiers in Cardiovascular Medicine | www.frontiersin.org 2 January 2022 | Volume 8 | Article 818765

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Fotaki et al. AI in Clinical Cardiac MRI

FIGURE 1 | Simplified graph describing the three principal machine-learning methods. Supervised learning utilises hand-labelled datasets to design algorithms that

predict future events, classify data into defined categories or distinguish the most relevant variables to the output. The predictive model learns through data training

and improves over time. In unsupervised learning the software accomplishes the processing of raw data, finding hidden structures in datasets, without prior

annotation, identifying meaningful relationships and clusters within the data. Reinforcement learning is a reward-based learning. Its foundation lies in the interactions

with an environment, in which positive and negative feedback (reinforcements) contribute to the optimisation of the model.

FIGURE 2 | Pipeline of a convolutional neural network (CNN). A CMR image functions as input to the CNN. The CNN identifies and classifies the various attributes

(features) of the image for analysis in a procedure named Feature Extraction, including a stack of convolutions and pooling operations. In the convolution operation

different-level features, such as edges, colour, gradient orientation are extracted from the input image. The pooling layer reduces the dimensionality of the convolved

features, in order to decrease the computational requirements. The nodes in the fully-connected layer are connected directly to all nodes in the previous layer. This

layer compiles the data extracted by previous layers and applies various filters to form the final output.

validation one, diminishing the loss function. One epoch means
that a new input sample from the training dataset will be assigned
to the network, thus the weights of each convolutional layer
will be optimised (6). Learning curves, which depict loss vs.
epochs and accuracy vs. epochs, are utilised to optimally train
the network.

Present Clinical Motivation
CMR offers comprehensive assessment of cardiovascular disease
and is a rapidly expanding imaging modality. A recent study
showed a 10-year increase of 573% in the number of scans

performed in UK (7). This rise comes with an exponential
increase in the resources required to support this, including
availability and time of experts for image acquisition, post-
processing and reporting, along with scan-time cost. Novel
developments in CMR, including high resolution, contrast- free
coronary artery and congenital heart disease (CHD) imaging,
quantitative multi-parametric and perfusion MRI and MRI-
derived biomarkers necessitate a cost-effective and time-efficient
strategy for their successful integration in clinical routine
(8). AI can have a significant role in this, in view of its
potential to accelerate MRI scanning, image post-processing and
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reporting, introduce novel biomarkers and incorporate those
in decision-making and prognostication models. Acceleration
in image acquisition can have additional benefits for patients
with claustrophobia, anxiety and inability to follow breath-
holding commands.

Furthermore, recent data illustrate disparities with regards to
the access to CMR services around the globe. Scan and post-
processing acceleration along with automated analysis through
AI can facilitate wider availability of sustainable, faster and
cheaper CMR, resulting in improvement in patient care in less
privileged areas (9).

Clinical Applications
ML algorithms have been optimised and introduced in all aspects
of the imaging workflow and implemented prospectively
in diverse patient cohorts (10). Extensive applications
have been investigated in undersampled image-acquisition,
automated analysis and post-processing and development of
predictive models.

Time-Efficiency
Acquisition and Reconstruction
AI applications in CMR have contributed significantly to
the acceleration of image acquisition and analysis. Neural
networks have been applied to reconstruct data from rapidly
acquired undersampled MRI images across different sequences.
A deep-learning based, super-resolution CMR Angiography
framework has enabled reconstruction of low resolution 1.2 x 4.8

x 4.8mm3 data acquired in 50 s scan time (11). The proposed
method showed similar quantitative and perceivable image
quality of the high resolution 1.2 mm3 images, achieving 16 x
acceleration in acquisition time (Figure 3). Similar results have
been attained with a Multi-Scale Variational Neural Network
undersampled reconstruction (12), achieving 9x acceleration,
in CMR Angiography 1.2 mm3 acquisition outperforming
compressed sensing (CS) reconstruction. Steeden et al. (13) has
successfully employed a subset of convolutional neural network,
specifically the 3D residual U-net to perform super-resolution
reconstruction on low-resolution three-dimensional whole heart
balanced Steady State Free Precession (bSSFP) datasets, achieving
similar diagnostic confidence and accuracy with high-resolution
whole heart bSSFP in patients with CHD, Figure 4. Besides
acquisition speed, AI has the potential to reduce breath-holds.
Kuestner et al. (14) has introduced 9–15x acceleration in 3D
cine images in a single 10–15 s breath hold utilising a DL-
based approach. For a more detailed technical review of these
methods, we refer the reader to a recent review by Alzubaidi
et al. (15). Zhang et al. (16) developed an AI-based virtual
native enhancement (VNE) imaging technology, using streams
of CNN to employ and optimise the acquired signal from native
T1 mapping and cine imaging sequences, depicting them as
LGE-analogous images. This technology allows for contrast-free
and efficient tissue characterisation, achieving high agreement in
the quantification of tissue burden and superior image quality
compared to the late gadolinium enhancement (LGE) images (see
Figure 5) (16).

FIGURE 3 | Prospective super-resolution reconstruction: coronal and coronary reformat of low-resolution acquisition (1.2 × 4.8 × 4.8 mm3 ) acquired in ∼50 s

compared to high-resolution acquisition (1.2 mm3 ) acquired in ∼7min. Bicubic interpolation (1.2 mm3 ) and proposed super-resolution reconstruction (1.2 mm3 ) in a

patient with suspected CAD for a prospective acquired low-resolution scan (prospective cohort). Magnified image of RCA shows comparable image quality to the

high-resolution acquisition in significantly shorter scan time. Küstner et al. (11). The article is published Open Access under a CC BY licence (https://

creativecommons.org/licences/by/4.0/).
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FIGURE 4 | Representative image quality of the coronaries from a prospective, clinically integrated study, that utilised a residual U-Net network to facilitate

super-resolution reconstruction of rapidly acquired low-resolution three-dimensional whole-heart balanced Steady State Free Precession datasets. Multi-planar

reformats of the coronary artery from the respective conventional high-resolution acquisition, low-resolution acquisition, and the corresponding super-resolution

reconstruction dataset. Sharpness of vascular borders is enhanced and image distortion is attenuated in the super-resolution reconstruction dataset vs. the

low-resolution volume. This is particularly beneficial in the delineation of small vessels, such as the coronary arteries. Qualitative image quality analysis demonstrated

no statistically significant differences between the super-resolution and the high-resolution data. Steeden et al. (13). The article is published Open Access under a CC

BY licence (https://creativecommons.org/licenses/by/4.0/).

Segmentation
Manual delineation of image contours by experts is currently
the standard clinical practise in CMR. However, this is laborious
and prone to intra- and inter-observer variability. Various
AI models have been proposed and clinically validated to
accelerate the segmentation of right and left ventricles in

adult populations (17–19). Limitations include the training
in homogenous datasets like the UK Biobank (20) or cardiac
atlas project, that include adult patients, the majority being
with structurally normal hearts. Winther et al. (21) performed
experiments utilising datasets from four independent sources
for training and for validation of the network. The network
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FIGURE 5 | Examples to demonstrate the image quality and opticospatial correlation between VNE and conventional LGE images. T1 colormaps (top row) were

adjusted to show the T1 signals that pair with the VNE signals. The bottom 2 rows visualise myocardial lesion regions by VNE and LGE using progressive thresholding

(full width, at half, a quarter, and eighth maximum) displayed with different colours. In (A–F), high visuospatial agreement was noted between VNE and LGE. White

arrows point to the lesions. Yellow arrows point to slightly different depiction of the right ventricular wall in VNE and LGE, suggesting patient movement between

acquisitions. (G), An example of VNE displaying subtle changes in the distribution and quantification of the lesion clearer than LGE. LGE, late gadolinium enhancement;

VNE, virtual native enhancement. Zhang et al. (16). The article is published Open Access under a CC BY licence (https://creativecommons.org/licenses/by/4.0/).

proved to be capable of reliably producing high quality
segmentations, independent of aspects such as different
image acquisition techniques, and diverse MRI protocols
and vendors. The neuronal network performed equally or
outperformed the human cardiac expert in all parts of left
ventricle (LV) and right ventricle (RV) volumetry and mass
measurements. Bidhendi et al. (22) expanded the approach
and created a fully convolutional network that was applied
successfully in paediatric patients with CHD and proved to be
superior to the algorithms clinically used in a commercially

available platform. An extensive review on these techniques
is presented in Chen et al. (23). In a recent study, employing
deep fully convolutional neural network, an automated
segmentation for the quantification of tissue characterisation
for native T1 mapping in patients diagnosed with hypertrophic
cardiomyopathy (HCM) has been developed; showing robustness
in inter-observer variability and minimising analysis time to
under a second (24). A similar approach was employed for
automatic quantification of LV mass and scar volume on
LGE images and has been successfully applied in patients
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FIGURE 6 | DL-based computation of global and segmental circumferential strain is compared to the clinician-assisted DENSE analysis. The AI-based end-systolic

circumferential strain (Ecc) maps (left column), segmental (middle column) and global (right column) circumferential strain–time curves for a healthy subject (A) and a

heart failure patient (B) demonstrate very close agreement with the conventional segmentation in the depicted mid-ventricular slices. Ghadimi et al. (26). The article is

published Open Access under a CC BY licence (https://creativecommons.org/licenses/by/4.0/).

post myocardial infarction (25). Additional applications of
convolutional neural networks include automated phase velocity
estimation and four-dimensional flow dataset segmentation
along with the estimation of global and segmental myocardial
strain in Displacement Encoding with stimulated echoes
(DENSE) images, Figure 6 (26, 27). Significant benefits include
efficient CMR reporting and high levels of reproducibility in
the measurements.

Novel Imaging Biomarkers
Texture Analysis/Radiomics
A recently applied technique, called texture analysis (TA),
employs various ML algorithms, to quantify the spatial
heterogeneity and relationship of adjacent pixels, in order to
compute sophisticated imaging metrics. Texture features derived
from CMR, have demonstrated potential for further research
and clinical integration. It is assumed that the distribution
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of pixel grey-level values constitutes significant information
beyond the measured mean signal. For instance, although
global T1 and extra-cellular volume can differentiate HCM
and Hypertensive Heart Disease from normal hearts but not
between the two, as values overlap; TA features, generated
though supervised ML models, have been shown to distinguish
and quantitatively evaluate the subtle discrepancies between
the two entities (28). A study, by Wang et al. (29) utilising
similar supervised technique, is going one step further and found
that TA could differentiate between patients with MYH7(b-
myosin heavy chain) gene mutation from those with MYBPC3
(B-myosin binding protein C). A different approach has been
investigated by other groups, who introduced motion features
as a biomarker. Mancio et al. (30) exploited routine cine images

from high dimensional data to objectively characterise and

quantify subtle tissue alterations of the ventricular myocardium

beyond the typical CMR indices in a cohort of HCMpatients. The

proposed method, that exploits a supervised-learning algorithm,

can potentially serve as screening tool identifying HCM patients

with low probability of scar, who constitute around one third

of the total cohort, for whom LGE imaging would not be

necessary (30). Hence, texture feature analysis could contribute to
reducing patient exposure to contrast-agents and the associated
service costs.

New Insights in Predictive Models
Various predictive models, incorporating different clinical and
imaging parameters, have been introduced in cardiovascular
medicine over the last decades to estimate the personalised
risk for an individual patient to develop a certain outcome.
A major challenge for CMR is to incorporate imaging
biomarkers in clinically relevant predictive models. For the
effective characterisation of cardiac disease phenotype, the use of

conventional parameters of cardiac output like ejection fraction
might be insufficient (31). Refined ventricular shape and motion
analysis could potentially accomplish profound evaluation of
cardiac motion and the extraction of its spatiotemporal patterns,
which are attributed to specific diseases. Dawes et al. (32)
performed computational analysis of RV 3D longitudinal,
circumferential and radial motion, relative to its long-axis
(defined from the tricuspid orifice and RV apex) between end-
diastole and end-systole. The derived data, which represented
the systolic displacement of the right ventricle and septum,
were then analysed by a supervised ML algorithm, with the
aim, to identify those 3D cardiac motion patterns in this
high-dimensional dataset, which were more closely linked to
survival. The ML survival model showed that altered contraction
pattern in distinct segments of the RV free wall and septum is
associated with poor prognosis and has incremental predictive
performance when added to conventional biomarkers (32). In
a similar direction, a fully convolutional neural network was
trained to perform cardiac segmentation from hand-labelled
CMR images, computing smooth time-resolved 3D renderings
of the cardiac motion. Those 3D representations were employed
as input data to a supervised denoising autoencoder prediction
network, designed to capture robust discriminative features for
survival prediction in patients with pulmonary hypertension
(33). The predictive accuracy for the deep-leaning based survival
model outperformed benchmarkmodels of volumetricmanually-
derived CMR parameters. In a different patient group, a U-
net algorithm, based on CNN architecture, was designed to
automatically trace the endocardial border and calculate right
atrial area and feature-tracking based strain measurements from
CMR cine images in the four-chamber view and short-axis view
at the papillary muscles level. Those indices, computed directly
from raw medical images, correlated significantly with prognosis

FIGURE 7 | An illustrative overview of the explainable MRI concept. The user has insight in the features that influence the decision of the model.
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in a cohort of patients with repaired Tetralogy of Fallot (34).
Knott et al. (35) applied a convolutional- neural network for
automated quantitative myocardial perfusion analysis, in the
first prospective two-centre outcome study, evaluating global
mean stress myocardial blood flow and myocardial perfusion
reserve with AI-based techniques. Cox hazard regression
analysis demonstrated that stress myocardial blood flow and
myocardial perfusion reserve were associated with events after
adjusting for potential confounders and concluded that those
parameters are predictive of adverse outcomes surpassing
the performance of conventional cardiovascular risk factors
(35). A differentiated approach was adopted by MacGregor
et al. (36) who in addition to incorporating ML-derived
measurements in predictive models, proposed a deep-learning
based predictive clinical algorithm, advancing previously applied
statistical predictive models. This preliminary investigation
showed that the regional distribution patterns of machine-
detected, CMR-derived, regional contractile injury could have
predictive value with regards to clinical endpoints in Idiopathic
Dilated Cardiomyopathy Heart Failure patients. The regional
strain measurements were the input variables in a deep
neural network algorithm, that could differentiate patients who
responded to medical therapy from those with no response,
with an area under the curve of 0.94 and 85% accuracy (36).
Kotu et al. (37) incorporated CMR image-based texture features
from post myocardial infarction patients, which delineate the
extent, distribution, and heterogeneity of the myocardial scar
in a combination of supervised ML-based algorithms and other
classification methods, to distinguish between high and low
arrhythmic risk group of patients.

Current Challenges
Despite the large volume research that has been performed in
CMR, real world clinical deployment of AI in clinical practise is
still rare.

While AI can extract novel insights from existing data, it is
often difficult to justify why the network reached a certain output;
the so-called “black-box problem” (38). Furthermore, regulations
such as the European General Data Protection Regulation
(GDPR) is enforcing the retraceability of the decision outcomes,
calling into question the use of black-box models in healthcare.
This calls for an approach that supports the interpretability of
the machine decision-making process and the reproduction and
comprehension of both the learning and knowledge extraction
process. Ongoing efforts to face this challenge have resulted in
the design of explainable AI models, that constitute a selection
of procedures and techniques that enable human subjects to
perceive and trust the outcome and the prediction derived by ML
methods. In explainable AI, the expected impact and potential
biases of the AImodel are described. Holzinger et al. (39) presents
a very helpful overview of current research topics in explainable
AI. Neural network models with incorporated quality control
layers are proposed. A schematic representation of the network
is shown in Figure 7. Puyol-Antón et al. (40) demonstrated a
novel framework to predict response to cardiac resychronisation
therapy of patients with cardiomyopathy from cine cardiac
imaging. The proposed model allows the extraction of visual

features in the image domain of the secondary categorisation
task so that the reviewer can appraise whether the learned
features correlate with the clinical domain knowledge. In this
method, a weakly supervised network was taught the concept
of septal flash, which corresponds to a favourable response to
cardiac resychronisation therapy and was able to illustrate this,
by disentangling the latent space. An additional study, utilising
CNNs in cardiac cine image segmentation, incorporated robust
Quality Control in two distinct phases; an initial pre-analysis
assessment of image quality, employing two additional CNNs,
was followed by the image segmentation and computation of
cardiac functional parameters. The final step was a post analysis
qualitative evaluation of the output, thus allowing automated
processing of considerable numbers of CMR studies, obviating
the requirement for clinician’s input (19).

A different approach to this problem employs the use of
predictive uncertainty estimates of the segmentation model (41).
The key idea is that the model generates confidence intervals
of the predictions, giving insight into why the network has

FIGURE 8 | Schematic representation of three proposed strategies to

introduce fairness in AI algorithms. First, pre-processing modifications in the

training dataset can eliminate bias before training. In each training dataset, the

data are initially classified by the protected attribute(s) (such as sex, race,

ethnic origin, religious and political beliefs, age, socioeconomic background

and so forth). Samples are stratified to establish equitable representation of all

protected groups in the training. Alternatively, alterations in the AI algorithm

can train a model to overcome discrimination and optimise the performance

both in the prevalent and unprivileged group(s). The third approach attempts

to train distinct models for each protected group.
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decided the output. Segmentation outputs with low uncertainty
are likely correct while outputs with high uncertainty are
likely problematic. This may improve workflow efficiency
and accuracy by guiding the reviewer to focus mainly on
problematic segmentations.

Limitations Paving the Steps Forward
The greater part of AI research has utilised retrospectively
acquired data. The term “AI chasm” has been introduced
to express the case that the predictive accuracy of an AI
model does not epitomise clinical effectiveness (42). This
is because, despite the favourable results, outlining excellent
network performance in preliminary, single institutional, proof-
of concept studies, the adoption in clinical practise is limited and
the generalisability has not been proven. Fewmulti-centre, multi-
vendor studies have been attempted with good results that were
retrospective in nature showing the feasibility of the design and
encouraging the execution of similar prospective studies (43). To
enhance the validity and clinical acceptance of AI applications,
multi-institutional prospective studies across different clinical
teams and vendors should be designed, ultimately followed by
randomised controlled trials. To the best of our knowledge,
in clinical CMR there is currently no prospective randomised
control trial published demonstrating the clinical benefit that
AI applications could potentially accomplish. Challenges that

need to be faced include the lack of standardisation in image
acquisition, reconstruction and analysis along with optimisation,
transparency and adherence to reporting standards on trial
design and methodology. Few randomised controlled trials have
been conducted for different clinical applications, showing that
incorporation of AI systems did not have superior outcomes
when compared to the current clinical practise or decisions made
the by senior clinicians (44). Lin et al. (45) showed that AI
achieved high patient satisfaction due to shorter examination
times, however further research is warranted as to investigate
whether AI solutions can be an alternative triage tool, when
a senior consultant is not available. The critical appraisal of
the current studies has raised additional confounding factors
influencing the methodological approaches in AI randomised
control trials that could be considered for improvement in
future work (46). Future directions to minimise bias would
include methods to warrant effective blinding for the clinicians,
inclusion of adequate number of clinicians with different levels of
experience and expertise and the design of long-running studies
to allow for clinicians to comprehend, adapt and utilise the AI
systems effectively.

Recent studies have introduced the significance of “fairness” in
DL models (47), demonstrating that training data imbalance, can
lead to statistically significant differences in the performance of
the proposed models between different racial groups, potentially

FIGURE 9 | Brief chart on the framework of “clinician in the loop.” Clinicians are provided with action choices. Data labelled from clinicians contribute to the training of

the network.
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exacerbating disparities in healthcare (47). DL algorithms can be
optimised to address this issue. Potential strategies to minimise
bias include the modification of the training dataset to mitigate
discrimination (pre-processing strategies), modifications
of the learning algorithm to diminish bias (in-processing
strategies) or lastly correcting the output of the applied
algorithm to meet the fairness prerequisites (post-processing
strategies). Figure 8 shows an example of the different bias
mitigation strategies.

Meticulous clinical reporting of studies, that adopt AI
methods, is critical to adequately evaluate image quality, interpret
the results and assess the potential usefulness of prediction
models, in order for them to be embraced in clinical routine.
Forthcoming studies should include patients from diverse
backgrounds and report performance per gender and race to
minimise bias. It has been often stressed that the area under
the curve of a receiver operating characteristic curve is not
the optimal metric to assess clinical performance and is not
readily comprehensible by many clinicians, although it is widely
used in AI studies (48). Sensitivity and specificity should be
determined at the defined model operating point (required to
transform the continuous model outcome variables into discrete
decision groups) and positive and negative predictive values
should be reported. Published papers should include information
on several measures, summarising the performance of a model,
as no single measure captures all the necessary and clinically
relevant properties. In addition to the extensive analysis of the
results, significant attention should be paid to the practical
implementation of the model and whether this achieves a
favourable shift in the current patient care pathway. Hence, this
is ultimately reflective of the clinical relevance of the study.
For instance, various ML–based algorithms have been developed
to predict hospital readmissions, showing superior predictive
accuracy to conventional parameters, including initial diagnosis
and demographic factors. Nevertheless, their clinical uptake is
currently limited, because they fail to incorporate and measure
competing parameters like clinician’s time, staff availability,
socio-economic background and so on (49). To progress the
comprehension and clinical integration of ML research studies,
researchers are asked to adhere to best practise guidance, such as
the Transparent Reporting of a multivariable prediction model
for Individual Prognosis Or Diagnosis (TRIPOD), developed
to support the thorough and transparent reporting of studies
that design, validate or update a prediction model (50). An
additional version of the TRIPOD statement that is tailored to
ML prediction algorithms (TRIPOD-ML) is in progress. This
will be intended for the development of a robust framework to
provide methodological and reporting guidance for ML studies
in healthcare (51).

A recently introduced concept, that is promising and, as
far as we know, has not yet been adopted in cardiac MRI
is the so-called clinician in-the-loop (52). This is a type of
reinforcement learning, where the model keeps learning based on
the input of the clinician (Figure 9). Further studies are required
to investigate whether this method can improve the quality
of AI applications in different tasks, including segmentation

and development of predictive models along with gaining
clinicians’ trust.

Clinician Engagement
At present, clinician’s input is mandatory not only in labelling
the data and appraising the developed frameworks, but more
importantly in the decision-making process. Most clinicians are
currently far away from entrusting computers to match the
comprehensive skills of a radiologist. While it is important to
encourage the adoption of an AI curriculum for medical students
and practising clinicians to allow them to critically review,
evaluate and apply AI tools safely in clinical routine, excessive
confidence in AI technology is not yet topical. Clinical skills,
starting from elaborate history taking, to physical examination
along with the enriching and therapeutic patient-physician
relationship have been the mainstay of medicine for centuries
and should constantly be fostered and harnessed in the parallel
development and application of AI tools.

In the years to come, a dedicated collaboration between
computer scientists, medical imaging physicists and clinicians in
CMR is promising exciting strides in this field. Explainable AI
techniques are expected to enable faster integration of AI models
into the clinical practise, and will aid in fostering the necessary
integrity and trust with their users.

CONCLUSION

AI is envisaged as a useful tool to accelerate CMR imaging
acquisition, analysis and reporting, while introducing new
diagnostic and prognostic biomarkers. Careful design and
assessment of future studies alongside improved interpretability
of the algorithms and enhanced clinician’s input will accelerate
potential clinical adoption.
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