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Introduction

The majority of health systems worldwide have demon-
strated their fragility in the face of the COVID-19 pandemic.1 
Approximately 770 million cases and more than 6 million 
deaths have been confirmed worldwide by October 2023.2 It 
is devastating effect on human health would be related to the 
uncontrolled immune response. Indeed, a systematic review 
found that increased cytokine levels posed a risk factor for 
worse outcomes in COVID-19 patients.3 In this scenario, due 
to the regulating role of vitamins on immunity, they may 
influence clinical outcomes among infected patients.

The effects of vitamins go beyond boosting the immune 
system, as they may improve the symptoms of COVID-19 or 
perhaps treat it. Homocysteine (Hcy) and its cofactors, 
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vitamin B12 and folate, are involved in crucial biological 
processes. Vitamin B12 is involved in the regulation of the 
immune system and antiviral activity, inhibiting inflamma-
tion by modulating growth factors, cytokines, and other sub-
strates with anti-inflammatory properties.4 Folic acid 
(vitamin B9) inhibits furin, causing the virus to be unable to 
enter the cell because it prevents the binding of the angioten-
sin-converting enzyme 2 receptor to the SARS-CoV-2 spike 
protein on the cell surface.5 Both cell-mediated and humoral 
immunity are affected in folate and vitamin B12 deficiency 
states.6 Overall, the deficiency of either folate or B12 leads 
to an increase in Hcy, a sulfur amino acid. In high levels, it 
exerts deleterious effects on the vascular endothelium and 
induces excitotoxic effects in immune-competent cells.7,8 As 
well, it increases serum levels of inflammatory proteins and 
other cytokines.9,10 All in all, high and low levels of these 
macromolecules can drastically alter the immune response, 
predisposing to worse outcomes among COVID-19 patients.

Despite the vitamin supplementation in COVID-19 
patients has not yet been proven to be effective in reducing 
the risk of infection, the basal levels may influence the clini-
cal outcomes.11,12 As well as certain biomarkers, vitamins 
may predict clinical endpoints among infected patients.13–17 
Indeed, two systematic reviews found that low vitamin lev-
els aggravated the clinical status.18,19 High serum levels of 
Hcy, as well as low levels of vitamin B12 and folate, have 
been associated with worse clinical outcomes; however, the 
studies are not conclusive.19,20 Hence, we aimed to conduct a 
systematic review to evaluate the association between serum 
levels of Hcy, Vitamin B12, and folate in the mortality and 
severity among adults with COVID-19.

Methodology

Report guidelines and protocol register

The protocol of our systematic review was registered in the 
International Prospective Register of Systematic Reviews 
(PROSPERO) with registration number CRD42022361678. 
We followed the methodological guidelines of the Cochrane 
Handbook, and for writing the manuscript, we adhered to the 
Preferred Reporting Items for Systematic Reviews and 
Meta-analysis (PRISMA) statement.21

Search strategy

The search strategy was built following the guidelines of the 
Peer Review of Electronic Search Strategies (PRESS).22 We 
developed a formula for Pubmed using MeSH and free terms. 
Then, that formula was adapted for the other search engines. 
Supplemental Table S1 displays the search formulas used.

Systematic search and databases

The systematic search was simultaneously run in all search 
engines on 10 May 2023. We did not apply language 

restrictions for this systematic review. We searched through the 
following databases: Scopus, Web of Science, PubMed, 
Embase, and Ovid Medline. Likewise, we performed a manual 
search in CINAHL, China National Knowledge Infrastructure, 
Wangfang Data, Research Square, and medRxiv.

Eligibility criteria

We sought studies that evaluated the values of vitamin B12, 
folate, or homocysteine with the mortality or severity of 
COVID-19 patients. Inclusion criteria were: (i) case-control, 
cross-sectional, and cohort studies, (ii) studies conducted in 
adult patients (⩾18 years), and (iii) studies that assessed the 
values of vitamin B12, folate, or Hcy in the mortality or 
severity of COVID-19 patients. We excluded narrative 
reviews, conference abstracts, systematic reviews, dupli-
cated studies, and scoping reviews. Our primary outcome 
was the COVID-19 severity, and COVID-19 mortality was 
the secondary outcome.

Study selection process and data extraction

We use Rayyan QCRI (Rayyan Systems Inc©) to collect 
records from search engines and to remove duplicate 
records.23 The Rayyan software was also used for screening 
by title and abstract. This process was independently per-
formed by four authors (A.A-C, E.A.H-B, E.A.A-B, and 
J.R.U-B). The full text from the remaining records was inde-
pendently reviewed by these authors. We resolved by con-
sensus any conflict or discrepancy concerning the inclusion 
of articles. Then, two authors (J.C.C-G and M.A.H-C) 
extracted independently the data from each of the included 
studies in a pre-set Google Sheets©. In the same way, any 
conflict was resolved by consensus. Extracted data were: 
first author, publication date, study design, country, data 
source, sample size, sex, age, and the values of the markers 
in each outcome.

Risk of bias and publication bias

The Newcastle-Ottawa Scale (NOS)24 was used for case-
control and cohort studies. In addition, cross-sectional stud-
ies were evaluated using the adjusted NOS version for 
cross-sectional studies (NOS-CS).25 We categorized the risk 
of bias as either having a high risk of bias (<7 stars) or a low 
risk of bias (⩾7 stars).

The Begg test and funnel plots were used for assessing 
publication bias. The p-values < 0.1 in Begg test were con-
sidered indicative of publication bias. There has to be a mini-
mum of 10 articles in the quantitative synthesis for the 
assessment using funnel plots.

Data synthesis and analysis

We used STATA 17.0 (College Station, TX, USA: Stata 
Press©) for the statistical analysis. Standardized mean 
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difference (SMD) and 95% confidence intervals (CIs) were 
used as the only effect size. The values expressed as medians 
and interquartile ranges (IQRs) were transformed into means 
and standard deviations (SDs) using Hozo’s method.26 We 
carried out a random-effects meta-analysis using the Sidik-
Jonkman method and corrected 95% CI using the truncated 
Knapp-Hartung standard errors.27,28 We analyzed the statisti-
cal heterogeneity in the meta-analysis using Cochran’s Q test 
and the I2 statistic. The p-values > 0.1 in the Cochran’s Q test 
were considered as no heterogeneity.29 The values for I2 sta-
tistic ⩾60% were considered as severe heterogeneity. We 
conducted subgroup analyses according to continents. A sen-
sitivity analysis was conducted, excluding studies that were 
previously identified as having a high risk of bias. The 
p-value < 0.05 was set as the cut-off point of statistical sig-
nificance for the meta-analyses.

Results

Search results

The systematic search identified 2832 records. After remov-
ing duplicates, 632 records were screened by title and 
abstract. Next, 28 records were selected for full-text review, 
and only 13 were deemed eligible for the synthesis.30–42 The 
article by Hemdan et al.32 presents information on vitamin 
B12 values in two different groups (males group and females 
group). The PRISMA flow chart of studies selection is shown 
in Figure 1.

Study characteristics

Thirteen studies were included; eight were cross-sectional, 
four cohorts, and one case-control study. Studies were con-
ducted across various countries, including Turkey (three 
studies), Russia (two studies), Iraq (two studies), Israel 
(one study), Italy (one study), Iran (one study), Saudi 
Arabia (one study), Switzerland (one study), and China 
(one study). Regarding the outcomes, six studies examined 
only severity, and seven studies evaluated only mortality. 
Two thousand one hundred thirty-four adults infected with 
COVID-19 were evaluated (1071 men and 859 women). 
One study did not provide information about the sex of the 
participants.40 These characteristics are summarized in 
Tables 1 and 2.

Using NOS and NOS-C scales, the low risk of bias was 
present in ten studies, and three studies had high risk of bias 
(Supplemental Table S2).

Vitamin B12 values and COVID-19 severity

Four studies (n = 380) evaluated vitamin B12 values and 
COVID-19 severity association. The meta-analysis showed 
no statistical significance in vitamin B12 levels and COVID-
19 severity. (SMD: 1.48; 95% CI: −2.97 to 5.91; p = 0.37, 

I2 = 99%) (Figure 2). The small number of articles included 
did not allow conducting a subgroup analysis. The sensitiv-
ity analysis further confirmed the lack of significant differ-
ence, with persistent, significant heterogeneity observed 
(SMD: 2.21; 95% CI: −5.03 to 9.45; p = 0.32, I2 = 98.9%) 
(Supplemental Figure S1).

Vitamin B12 values and COVID-19 mortality

Six studies (n = 1179) evaluated vitamin B12 values and 
COVID-19 mortality association. The meta-analysis showed 
that adults with COVID-19 who did not survive had higher 
vitamin B12 values compared to those who survived (SMD: 
1.05; 95% CI: 0.31–1.78; p = 0.01, I2 = 91.22%) (Figure 3). In 
the subgroup analysis based on continents (Supplemental 
Figure S2), there were no significant differences in any of 
the subgroups. In the sensitivity analysis, the difference 
remained statistically significant and had high heterogeneity 
(SMD: 1.07; 95% CI: −0.27 to 2.42; p < 0.05, I2 = 95.47%) 
(Supplemental Figure S3).

Folate values and COVID-19 severity

Four studies (n = 380) evaluated folate values and COVID-
19 severity association. The meta-analysis showed that lower 
folate values are present in adults with severe COVID-19 
(SMD: −0.77; 95% CI: −1.35 to −0.19; p = 0.02, I2 = 59.09%) 
(Figure 4). The small number of articles included did not 
allow conducting a subgroup analysis. The sensitivity analy-
sis confirmed the difference being statistically significant 
with high heterogeneity (SMD: −0.7; 95% CI: −1.69 to 
−0.29; p = 0.04, I2 = 63.91%) (Supplemental Figure S4).

Folate values and COVID-19 mortality

Three studies (n = 888) evaluated folate values and COVID-
19 mortality association. The meta-analysis showed no sta-
tistically significant differences between folate levels and 
COVID-19 mortality (SMD: −0.39; 95% CI: −1.18 to 0.39; 
p = 0.16, I2 = 62.8%) (Figure 5). The small number of articles 
included did not allow conducting a subgroup and sensitivity 
analysis.

Homocysteine values and COVID-19 severity

Four studies (n = 534) evaluated homocysteine values and 
COVID-19 severity association. The meta-analysis showed 
no statistically significant differences between homocyst-
eine levels and the severity of COVID-19. (SMD: 1.69; 
95% CI: −2.39 to 5.76; p = 0.28, I2 = 99.4%) (Figure 6). The 
small number of articles included did not allow conducting 
a subgroup analysis. The sensitivity analysis did not show 
statistically significant differences either (SMD: 2.57; 95% 
CI: −3.08 to 8.23; p > 0.05, I2 = 98.67%) (Supplemental 
Figure S5).
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Homocysteine values and COVID-19 mortality

Three studies (n = 295) evaluated homocysteine values and 
COVID-19 mortality association. The meta-analysis showed 
no statistically significant differences between homocysteine 
levels and COVID-19 mortality (SMD: 0.56; 95% CI: −1.67 
to 2.79; p = 0.34, I2 = 90.5%) (Figure 7). The small number of 
articles included did not allow conducting a subgroup and 
sensitivity analysis.

Publication bias

Due to the small number of included studies (<5 studies), 
only the Begg test was conducted for the assessment of 

vitamin B12 and mortality of COVID-19 patients, and no 
evidence of publication bias was found (p > 0.1). 
Furthermore, the unavailability of sufficient studies of the 
outcomes had more than 10 studies for each outcome–
impeded the generation of funnel plots. 

Discussion

Our study aimed to synthesize the available evidence on 
vitamin B12, folate, and Hcy levels and their association 
with COVID-19 mortality and severity in adults. Non-
survivor patients with COVID-19 exhibited higher vitamin 
B12 levels compared to survivor patients, while patients 

Figure 1.  PRISMA flow diagram.
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with severe COVID-19 had lower folate levels in compari-
son to non-severe COVID-19 patients. There were no statis-
tically significant differences in vitamin B12 and Hcy levels 
concerning COVID-19 severity. Similarly, there were no sig-
nificant associations found between folate and Hcy levels in 
relation to COVID-19 mortality. However, it is important to 
note that the associations identified are characterized by sub-
stantial heterogeneity, and the number of included studies 
was limited.

Previous systematic reviews have assessed the role of 
another vitamin on clinical outcomes of patients infected 

with COVID-19,18 and the risk of acquiring infection.43,44 In 
addition, there are systematic reviews that have evaluated 
the supplementation of these vitamins in COVID-19 patients, 
although no favorable results were found.45,46 Nevertheless, 
to the best of our knowledge, this is the first study to sys-
tematize the available evidence of vitamin B12, folate, and 
Hcy on mortality and severity of COVID-19. Although the 
data on the efficacy of vitamins for COVID-19 treatment is 
inconsistent, vitamins have been proposed as viable thera-
peutic options with plausible mechanisms of action.47 To 
date, more than 3 years after the start of the pandemic, 

Table 1.  Characteristics of the included studies that evaluated severity.

Author Year Country Median/mean/
range age 
(IQR/SD)

Participants 
(male/female)

Marker 
analyzed

Marker mean 
(SD) in severe 
patients

Marker mean 
(SD) in non-
severe patients

Unit of 
measurement

Assay 
method

Keskin 
et al.30

2022 Turkey 71.22 (11.22) 117 (66/51) Homocysteine 15.62 (1.37) 12.73 (0.54) μmol/l ECLIA
Folate 4.59 (0.41) 4.7 (0.3) mg/l ECLIA
Vitamin B12 531.5 (62.2) 290.73 (27.1) pg/ml ECLIA

Al-Alwan 
et al.42

2020 Iraq 53.24 (6.6) 88 (56/32) Homocysteine 3.45 (3.83) 10.86 (10.84) nmol/ml ELISA
Folate 4.22 (1) 7.61 (5.03) nmol/L ELISA
Vitamin B12 474.83 (65.74) 535.69 (105.91) pmol/L ELISA

Itelman 
et al.35

2020 Israel 52 (20) 118 (69/49) Folate 9.5 (4.29) 17.42 (7.92) NR NR
Vitamin B12 877 (620) 437.25 (260.7) NR NR

Voelkle 
et al.36

2022 Switzerland 67 (60–74.2) 57 (34/23) Folate 10.75 (4.59) 17.15 (9.33) nmol/l CLIA
Vitamin B12 334.25 (205.1) 344.25 (294.07) pmol/l CLIA

Kryukov 
et al.37

2021 Russia 61 (51–67.5) 56 (43/13) Homocysteine 8.12 (4.37) 7.85 (2.22) μM HPLC

Yang 
et al.38

2020 China 53.5 (1.9) 273 (134/139) Homocysteine 10.7 (0.5) 9.3 (0.2) μmol/l NR

NR: not reported; CLIA: chemiluminescence immunoassay; ECLIA: electrochemiluminescence immunoassay; ELISA: enzyme-linked immune-sorbent assay.

Table 2.  Characteristics of the included studies that evaluated mortality.

Author Year Country Median/mean/
range age 
(IQR/SD)

Participants 
(male/female)

Marker 
analyzed

Marker mean 
(SD) in non-
survivor patients

Marker mean 
(SD) in survivor 
patients

Unit of 
measurement

Assay 
method

Dalbeni 
et al.31

2021 Italy 72 (22) 49 (32/17) Homocysteine 11 (1.4) 9 (1.2) μmol/l NR
Folate 5.7 (6.1) 6.1 (7.7) ng/mL NR
Vitamin B12 1315 (1087) 583 (295) pg/ml NR

Hemdan 
et al.32

2022 Saudi 
Arabia

NR 135 (135/0) Vitamin B12 961.13 (374.26) 555.93 (151.16) pg/ml NR

Hemdan 
et al.32

2022 Saudi 
Arabia

NR 58 (0/58) Vitamin B12 1039.84 (410.68) 450.04 (117.94) pg/ml NR

Borzouei 
et al.33

2022 Iran NR 98 (48/50) Vitamin B12 233.8 (224.3) 93.85 (185.6) pg/ml ELISA

Ersöz 
et al.34

2021 Turkey 57.02 (18.28) 310 (161/149) Folate 8.76 (6.7) 10.77 (10.25) ng/ml CLIA
Vitamin B12 956.72 (1141.1) 405.86 (327.26) pg/ml CLIA

Ali et al.39 2021 Iraq 60.3 (13.97) 42 (24/18) Homocysteine 20.85 (9.17) 23.32 (12.33) μmol/l ELISA
Neymark 
et al.40

2022 Russia 65 (22–97) 204 (NR/NR) Homocysteine 11.42 (7.03) 9.17 (2.88) μmol/l EIA

Keskin 
et al.41

2022 Turkey 62.8 (15.12) 529 (269/260) Folate 7.3 (3.93) 10.4 (5.19) ng/mL NR
Vitamin B12 279.5 (259.04) 300.4 (220.27) pg/mL NR

NR: Not reported; CLIA: Chemiluminescence immunoassay; ECLIA: Electrochemiluminescence immunoassay; ELISA: Enzyme-linked immune-sorbent 
assay.
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well-designed clinical trials and even observational studies 
are still lacking.

Non-survivor COVID-19 patients showed significantly 
elevated levels of vitamin B12 compared to those who sur-
vived. The mechanisms by which excess vitamin B12 is 
associated with increased mortality in patients with COVID-
19 are not fully understood; however, these results are not 
surprising. Similar results have been found in patients in the 
general population48 and in patients in an intensive care 
unit.49 In these patients, various explanations have been pro-
posed that could also explain our results. High vitamin B12 
plasma concentrations may represent a response to increased 
release of vitamin B12 from liver storage, decreased clear-
ance, upregulation of haptocorrin and transcobalamin syn-
thesis, or diminished affinity of vitamin B12 for transporter 
proteins.50,51 Those situations are often present because of 
liver damage or chronic kidney disease, which could 

be represented by the baseline association of high plasma 
concentrations of vitamin B12 with elevated concentrations 
of hepatic enzymes.50,51 Likewise, increased plasma cobala-
min might be related to functional deficiency. The high 
cobalamin levels are not a guarantee for normal physiologi-
cal function, so decreased intracellular cobalamin levels may 
parallel increased plasma levels.52 In this sense, evaluation 
of the functional cobalamin status can be achieved by meas-
uring the activities of the cobalamin-dependent enzymes.52

Patients who experienced severe COVID-19 exhibited 
lower folate levels compared to those with non-severe 
COVID-19. However, it is important to note that this conclu-
sion is based on a pooled estimate derived from the analysis 
of only 380 subjects. As a result, the generalizability of these 
findings is limited; the study is prone to inflated type 1 errors 
and imprecise estimation of heterogeneity between studies.53 
Consequently, careful consideration is necessary when 

Figure 2.  Vitamin B12 values in severe vs non-severe COVID-19 patients.

Figure 3.  Vitamin B12 values in survivors versus non-survivors COVID-19 patients.
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interpreting our results. Nevertheless, some mechanisms 
could explain this association. Some studies have demon-
strated that the binding of SARS-CoV-2 spike proteins, 

which facilitate the entry of the virus into cells, can be hin-
dered by folic acid.54–56 All in all, to confirm our findings, 
future studies should incorporate a larger sample size.

Figure 4.  Folate values in severe vs non-severe COVID-19 patients.

Figure 5.  Folate values in survivors versus non-survivors COVID-19 patients.

Figure 6.  Homocysteine values in severe versus non-severe COVID-19 patients.
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Homocysteine is a biomarker related to many diseases; its 
high serum levels have been mainly related to cardiovascu-
lar, neurological, and metabolic diseases.57 Homocysteine is 
produced as part of the metabolism of methionine. Elevated 
serum levels of homocysteine are associated with vitamin 
B6, B12, and folate deficiency, genetic polymorphisms, kid-
ney failure, chronic inflammatory diseases such as rheuma-
toid arthritis or inflammatory bowel disease, and the intake 
of certain medications such as metformin or methotrexate.58 
Various studies relate high serum homocysteine values to 
mortality from all causes.59 The toxic effect of hyperhomo-
cystinemia is related to damage to the vascular endothelium. 
Cellular dysfunction in the endothelium causes a state of 
hypercoagulability due to platelet activation and thrombus 
formation.60 It is believed that hyperhomocysteinemia may 
limit the bioavailability of nitric oxide by changing the prop-
erties of the elastic wall due to smooth cell proliferation.61 In 
relation to SARS-Cov-2 infection, it is well known that the 
spike protein binds to angiotensin-converting enzyme 2 
(ACE2) and uses it as a receptor to enter cells, especially 
lung cells.62 This binding with ACE2 would lead to a pro-
inflammatory state and activation of a cytokine cascade.63 
Likewise, SARS-Cov-2 would be involved in the activation 
of the angiotensin type 1 (AT1) receptor, which has opposite 
biological effects to ACE2. It has been postulated that hyper-
homocysteinemia could generate activation of AT1. 
Likewise, homocysteine has three biologically active forms 
(reduced, oxidized, and free) that could interact differently 
with the AT1 receptor and generate different cardiovascular 
effects.

In our meta-analysis of four studies, we found no associa-
tion between serum homocysteine levels and COVID-19 
mortality or severity and showed critical heterogeneity. 
Studies such as that of Yang et al.38 and Kenkin et al.30 found 
higher serum homocysteine values in patients with severe 
disease; in the other two studies evaluated, one shows oppo-
site findings, and the other shows no association.37,42 Yang 

et al.38 explains their findings because homocysteine values 
are related to progression on chest computed tomography 
(CT). However, attributing only the progression of chest CT 
to disease severity, given the presence of multiple related 
factors, may be controversial. In relation to mortality, the 
meta-analysis of three studies shows no association between 
serum homocysteine levels and mortality and presents criti-
cal heterogeneity, and only Ali et al.39 study does not show 
an association between homocysteine and mortality. Despite 
these findings, the evidence is not conclusive due to the 
small number of studies found and the heterogeneity. 
Likewise, studies are necessary that can define a cut-off 
point for hyperhomocysteinemia to establish better compari-
sons with mortality and severity.

Strengths and limitations

This study has limitations. First, due to the limited number of 
included studies, subgroup and sensitivity analyses were 
only performed when evaluating the association between 
vitamin B12 and COVID-19 outcomes. Moreover, the statis-
tical power was low, and the studies were conducted in Asian 
and European countries. In this regard, it is not possible to 
extrapolate our findings to other populations. Second, due to 
the cross-sectional nature of the majority of the articles 
included, establishing causality was not possible. Thus, our 
findings are merely constrained. Third, there was high het-
erogeneity in the assessment of the association between vita-
min B12 values and COVID-19 severity and mortality, 
which may introduce potential sources of bias and reduce the 
overall reliability and generalizability of the findings. Future 
studies should perform subgroup analyses according to the 
study design and measurement method in an attempt to 
reduce heterogeneity. On the other hand, our study has some 
strengths. Various databases were searched, ensuring a com-
prehensive synthesis of the existing evidence. To our current 
knowledge, this study represents the initial attempt to 

Figure 7.  Homocysteine values in survivors versus non-survivors COVID-19 patients.
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systematically gather and analyze the existing evidence on 
the association of vitamin B12, folate, and Hcy levels on the 
mortality and severity of COVID-19 patients.

Conclusion

In COVID-19 patients, non-survivors had higher vitamin 
B12 levels compared to survivors, and severe cases exhib-
ited lower folate levels compared to non-severe cases. 
Nevertheless, the severity of COVID-19 did not yield sig-
nificant differences in the levels of vitamin B12 and Hcy in 
the bloodstream. Similarly, the levels of folate and Hcy did 
not demonstrate significant associations with COVID-19 
mortality. Further studies are warranted to explore other 
potential factors influencing vitamin B12, Hcy, and folate 
levels in relation to COVID-19 severity and mortality. 
Possible factors to consider include genetic variations, die-
tary patterns, and the impact of comorbidities. Additionally, 
longitudinal studies examining the dynamics of these vita-
mins throughout the course of COVID-19 infection will 
larger sample sizes would provide valuable insights into 
their clinical significance and potential therapeutic 
interventions.
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