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Pears (Pyrus sp.) are widely cultivated in China, and their yield accounts for more than 
60% of global pear production. The fungal pathogen Valsa pyri is a major causal agent 
of pear canker disease, which results in enormous losses of pear production in northern 
China. In this study, we characterized a Zn2Cys6 transcription factor that contains one 
GAL4 domain and a fungal-trans domain, which are present in VpxlnR. The vpxlnR gene 
expression was upregulated in the invasion stage of V. pyri. To investigate its functions, 
we constructed gene deletion mutants and complementary strains. We observed that 
the growth of the vpxlnR mutants was reduced on potato dextrose agar (PDA), Czapek 
plus glucose or sucrose compared with that of the wild-type strain. Additionally, vpxlnR 
mutants exhibited loss of function in fruiting body formation. Moreover, vpxlnR mutants 
were more susceptible to hydrogen peroxide (H2O2) and salicylic acid (SA) and were 
reduced in their virulence at the early infection stage. According to a previous study, 
VpxlnR-interacting motifs containing NRHKGNCCGM were searched in the V. pyri genome, 
and we obtained 354 target genes, of which 148 genes had Clusters of Orthologous 
Groups (COG) terms. PHI-BLAST was used to identify virulence-related genes, and 
we found 28 hits. Furthermore, eight genes from the 28 PHI-BLAST hits were further 
assessed by yeast one-hybrid (Y1H) assays, and five target genes, salicylate hydroxylase 
(VP1G_09520), serine/threonine-protein kinase (VP1G_03128), alpha-xylosidase 
(VP1G_06369), G-protein beta subunit (VP1G_02856), and acid phosphatase 
(VP1G_03782), could interact with VpxlnR in vivo. Their transcript levels were reduced in 
one or two vpxlnR mutants. Taken together, these findings imply that VpxlnR is a key 
regulator of growth, development, stress, and virulence through controlling genes involved 
in signaling pathways and extracellular enzyme activities in V. pyri. The motifs interacting 
with VpxlnR also provide new insights into the molecular mechanism of xlnR proteins.
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INTRODUCTION

Pear is the third most highly produced fruit in China. Valsa 
canker disease is one of the most destructive diseases in most 
orchards of northern China. The disease is caused by the fungal 
pathogen Valsa pyri, which belongs to Ascomycetes in the 
Valsaceae family (Sordariomycetes, Diaporthales; Yin et  al., 
2015). This fungus can infect pear trees from natural wound 
sites on the bark and then form cankers, which result in great 
yield loss or tree death [3, 4]. Although Valsa mali and V. 
pyri are similar species, they diverged 5  million years ago 
(Wang et  al., 2014). Valsa pyri is a necrotrophic pathogen 
that can penetrate the phloem and xylem (Yin et  al., 2015). 
Previously, it was shown that transcription factors (TFs), cell 
wall-degrading enzymes, and genes involved in nitrogen 
metabolism might be  important for the virulence and growth 
of V. pyri strains (He et al., 2018; Xu et al., 2018). TFs, especially 
fungal-specific TFs, function as important regulators in fungal 
pathogens. However, very few studies have been conducted to 
investigate the roles of TFs in the pathogenesis of V. pyri.

Transcription factors can control the transcript levels of 
many target genes (Cho et  al., 2013; He et  al., 2016; Luo 
et  al., 2016; Ishikawa et  al., 2018; Oka et  al., 2019). However, 
each gene can also be  regulated by different TFs (Aro et  al., 
2001; Ishikawa et  al., 2018). TFs and target genes constitute 
a network to regulate epigenetic modification, cell growth, cell 
differentiation, and stress responses (de Vries et  al., 1999; 
Rauscher et  al., 2006; Choi et  al., 2009; Cho et  al., 2013; Wu 
et  al., 2018; Feng et  al., 2020). To control gene expression, 
TFs generally possess one or more typical DNA-binding domains, 
and they are activated by themselves or other enzymes to 
bind promoter regions and induce mRNA transcription (Shelest, 
2017; Ishikawa et  al., 2018). Recently, as the full genomic 
sequences of more fungi became available, fungal TFs have 
been well characterized in different studies. According to a 
recent report, there are approximately 80 TF families in fungi, 
and many of them are fungus-specific TFs (Shelest, 2017). 
Fungus-specific TFs generally contain a typical fungal-trans 
domain, most of which contain other Zn2Cys6 clusters, and 
only a small portion of fungus-specific TFs contain C2H2 Zn 
fingers (MacPherson et al., 2006; Shelest, 2017). There are more 
than 100 fungus-specific TFs in most filamentous fungi (Shelest, 
2017; He et al., 2018). Interestingly, many Zn2Cys6 TF orthologues 
exhibit various expression levels in different fungi, suggesting 
that they may have different roles in these fungi (He et  al., 
2018). Moreover, many TFs have been identified in many 
pathogenic fungi, and their roles and regulated genes have 
been well studied (Guo et  al., 2011; Katz et  al., 2013; Lu 
et  al., 2014; He et  al., 2016; Wu et  al., 2018). For example, 
homeobox TFs are essential for conidiation and appressorium 
development (Kim et  al., 2009). Hsf1 is a critical regulator of 
virulence traits (Veri et  al., 2018), and VmSeb1 regulates 
development in V. mali (Wu et  al., 2018), while VdMcm1 
controls conidiation, microsclerotium formation, pathogenicity, 
and secondary metabolism (Xiong et  al., 2016).

Although there are a large number of fungus-specific TFs, 
only a few are involved in virulence (Abe et  al., 2007; 

Choi et  al., 2009; Zhao et  al., 2011; Cho et  al., 2013; He 
et  al., 2016; Wu et  al., 2018). In previous studies, the fungus-
specific TF AbPf2 and its orthologues were found to be involved 
in regulating fungal development, metabolism, and virulence 
in Alternaria brassicicola, Verticillium dahlia, and 
Parastagonospora nodorum (Cho et  al., 2013; Luo et  al., 2016; 
Rybak et  al., 2017; Zhang et  al., 2018). Due to the similar 
consensus sequences in the orthologues in various fungi, they 
generally have similar functions. Nevertheless, they also exhibit 
some unique roles in different isolates. For example, EBR1 
orthologous gene FOXG_05408-knockout mutants in Fusarium 
oxysporum f. sp. lycopersici showed reduced virulence compared 
with the ebr1-deletion mutant in the PH-1 strain. These results 
indirectly proved the hypothesis that abundant Zn2Cys6 TFs 
may function in different processes and exhibit diverse functions 
in different fungal strains (Zhao et  al., 2011; He et  al., 2018). 
To control various aspects of fungal lifestyle, Zn2Cys6 TFs were 
previously reported to bind DNA motifs containing a CGG 
triplet (Cho et  al., 2013; Luo et  al., 2016; Raulo et  al., 2016; 
Ishikawa et  al., 2018). Thus, with high-throughput sequencing, 
such as transcriptome analysis or ChIP-seq, different motifs 
were found to interact with Zn2Cys6 TFs. In brief, Zn2Cys6 
TFs bind a great number of genes to control fungal life.

XlnR, which contains one Zn2Cys6 cluster, has been 
characterized in several filamentous fungi and has vital roles 
in sugar metabolism in fungi (van Peij et al., 1998; MacPherson 
et  al., 2006; Rauscher et  al., 2006; Fujii et  al., 2014). Its 
orthologues exhibit similar roles in several fungi. Thus, they 
can also regulate different genes in several fungi (Hasper et al., 
2000; Calero-Nieto et  al., 2007; Klaubauf et  al., 2014; Llanos 
et  al., 2019). The common function of XlnR in Aspergillus 
spp., Trichoderma reesei, Fusarium species, Magnaporthe oryzae 
(Pyricularia oryzae), and Neurospora crassa is to control 
xylanolytic and cellulolytic gene expression (Marui et al., 2002; 
Rauscher et  al., 2006; Tamayo et  al., 2008; Sun et  al., 2012; 
Battaglia et al., 2013). XlnR regulates gene expression by binding 
to the CGGNTAAW motif as a monomer and by binding to 
the TTAGSCTAA motif as a dimer in A. oryzae (Ishikawa 
et  al., 2018). These studies indicate that XlnR could function 
as a monomer and a dimer to control gene expression. Until 
now, the xlnR TF was only found to be  involved in early 
infection by F. graminearum. However, its orthologous genes 
in Valsa species have not been identified. In this study, 
we  discovered its roles in the pathogenicity of V. pyri and 
explored its molecular mechanism in controlling gene expression.

MATERIALS AND METHODS

VpxlnR Identification and Its Expression 
Pattern in the Valsa pyri Infection Stage
The TF open reading frame (ORF) sequence was obtained 
from the RNA-seq database (He et  al., 2018), and the protein 
sequences were predicted using ORF finder.1 The hypothetical 
protein was characterized using BlastP, and its orthologues, 

1 https://www.ncbi.nlm.nih.gov/orffinder/
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including VmxlnR (KUI73112.1), hypothetical proteins 
(ROV95313.1, ROW10257.1, KAB5560083.1, XP_030979480.1, 
XP_016619423.1, and XP_001394612.2), TlxlnR (KAF3060643.1), 
BbxlnR (KAF1730510.1), MpxlnR (KLU82989.1), VlxlnR 
(KAG7119801.1), VdxlnR (XP_009650488.1), FoxlnR 
(RKL21210.1), and CgxlnR (KAF3801118.1), were acquired 
from the NCBI website. Similar to VpFSTF1, a phylogenetic 
tree was constructed using the hypothetical protein and its 
orthologous sequence by MEGA 7.0 (Kumar et  al., 2016) and 
the hypothetical protein named VpxlnR. Furthermore, all protein 
sequences were submitted to the pfam database2 by researching 
the protein domain, and later, the domains were drawn according 
to the research results. The transcript levels were evaluated as 
described previously (Kange et  al., 2020).

Generation of Deletion Mutants for VpxlnR 
and Complementary Strains
DNA sequences approximately 2 kb upstream or downstream 
were acquired through BLASTn to V. pyri genomes, and primers 
20 bp from a cassette containing the hygromycin 
phosphotransferase (hph) gene were designed. The primer pair 
of the cassette was also set with an 18–20 bp joint of upstream 
or downstream DNA sequences. We  extracted Vp297 genomic 
DNA through the cetyltrimethylammonium bromide (CTAB) 
protocol (Umesha et  al., 2016). Then, the upstream sequence, 
hph cassette and downstream sequence were amplified using 
the 1/2, 3/4, and 5/6 primer pairs (Supplementary Table S5), 
respectively. Then, the PCR products were purified using a 
PCR kit. Based on a previous study (He et  al., 2016), the 
VpxlnR allele construct was amplified using the upstream 
sequence, hph cassette, and downstream sequence at a ratio 
of 1:3:1, and a 1/6 primer pair and primers were designed 
(Supplementary Figure S2; Supplementary Table S5). The 
VpxlnR allele was purified, and the purified product was 
transferred to the protoplast of the wild-type strain Vp297 
using an improved polyethylene glycol (PEG)-mediated fungal 
transformation protocol (He et  al., 2016). The VpxlnR deletion 
mutants were obtained on PDA medium after adding 50 mg/l 
hygromycin B, and approximately 120 primary transformants 
were acquired. To confirm whether the gene was deleted in 
these transformants, a partial DNA fragment from the ORF 
of VpxlnR was amplified using primer 7/8 primer pairs, and 
further, the hph fragment was amplified using 9/10 primer 
pairs (Supplementary Figure S2; Supplementary Table S5). 
Additionally, allele site replacement was ascertained using the 
9/12 and 11/10 primer pairs (Supplementary Figure S2; 
Supplementary Table S5). In addition to genomic PCR, 
quantitative reverse transcription PCR (RT–qPCR) was carried 
out to evaluate the expression level of VpxlnR in the candidate 
mutants using the 15/16 primer pairs (Supplementary Figure S2; 
Supplementary Table S5).

We selected the vector pFL2 (Li et  al., 2015a) as the 
overexpression plasmid, which was driven by the strong promoter 
RP27. The VpxlnR gene was amplified using primer pair 17/18, 

2 http://pfam.xfam.org/

which contains a 20 bp sequence joint from the pFL2 plasmid, 
and then purified using a PCR kit (AxyPrep PCR Cleanup 
Kit, Suzhou, China). The resulting PCR product was constructed 
into XhoI-digested pFL2 through an one-step clone kit (Vazyme, 
Nanjing, China), and the recombinant vector was then 
transformed into Escherichia coli (DH5a cells). Later, the vector 
was extracted using a method described by a previous study 
(Kange et al., 2020). The plasmids were assessed by sequencing 
(GenScript, Nanjing, China), and the correct plasmids were 
used for further study. Then, the plasmid was transferred to 
protoplasts of the mutant m-56 by PEG-mediated transformation 
(He et  al., 2016). The transformants were screened on PDA 
amended with 75 mg/L G418, and several positive transformants 
were further confirmed by genomic PCR and RT–qPCR.

Mycelial Growth and Fruiting Body 
Formation
Mycelial growth of the deletion mutants was characterized on 
PDA or Czapek media with different carbon sources, including 
glucose, sucrose, cellulose, sodium, pectin, and the control 
consisting of null sugar. Fruiting bodies were induced in the 
wild-type and complementary strains as reported in a previous 
study (He et  al., 2016). The colony sizes of the wild-type 
Vp297, mutant and complementary strains grown on PDA 
media were measured at 36 h, and images were captured at 
the same time. Additionally, the colony sizes of the strains 
on Czapek media amended with glucose, sucrose, pectin, 
cellulose sodium, and null sugar were measured at 48 h, and 
later, these data were calculated using GraphPad prism 7.0. 
Every treatment was replicated on at least three agar plates.

Pathogenicity Assay
Pathogenicity assays were performed according to a previous 
study (Kange et  al., 2019). Lesion development on inoculated 
leaves was observed daily, and images were captured at 3 and 
5 days post-inoculation (dpi). Lesion lengths on inoculated 
branches were also observed daily, and images were captured 
at 2 and 4 dpi. Each experiment was duplicated with eight 
leaves and 13 branches, and the lesion size was calculated 
using GraphPad prism 7.0.

Host Mimic Stresses
Mycelial growth on PDA under H2O2 and SA stresses was 
used to assess the sensitivity of the mutants to host mimic 
stresses. The protocol used was similar to that used in a previous 
study (Kange et  al., 2020). Colony sizes were measured at 
36 h, and images were captured at the same time. Each experiment 
was repeated on at least three plates.

VpxlnR-Binding Promoter and 
Virulence-Related Gene Prediction
We first obtained all of the genes predicted in a previous 
study (Yin et al., 2015). Then, 2 kb predicted promoter sequences 
upstream of the initial gene codes were acquired. Later, according 
to the CGG triplet-containing DNA motif predicted by previous 
studies, we  searched all predicted promoter sequences using 
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Regular Expression, and candidate promoters were further 
obtained (Cho et al., 2013). Moreover, candidate genes controlled 
by these promoters were acquired, and their DNA binding 
sites were also predicted using the Berkeley Drosophila Genome 
Project (BDGP, https://www.fruitfly.org/seq_tools/promoter.html). 
Additionally, their expression levels in the V. pyri infection 
stage were predicted according to V. pyri transcriptome analysis 
(He et  al., 2018). The genes that were upregulated in the 
infection stage were selected, and later, their COG functional 
annotation was analyzed according to the gene annotation in 
V. pyri transcriptome analysis (He et  al., 2018). Based on the 
gene annotation, we  drew a COG term enrichment graph. 
Furthermore, to explore genes participating in virulence, all 
of the candidate genes were blasted to the PHI database, and 
genes with PHI hits were used for further identification.

Yeast One-Hybrid Assay
Based on COG annotation and PHI analysis, we  selected eight 
genes, including salicylate hydroxylase (VP1G_09520), serine/
threonine-protein kinase (VP1G_03128), alpha-xylosidase 
(VP1G_06369), G-protein beta subunit (VP1G_02856), acid 
phosphatase (VP1G_03782), serine/threonine-protein kinase 
KIN28 (VP1G_04075), serine/threonine-protein kinase GCN2 
(VP1G_10966), and putative phosphotransferases (VP1G_03516), 
for the yeast one-hybrid (Y1H) assay. Of these genes, a 1,500–
2,000 bp DNA sequence upstream of the start codon of each 
gene was amplified using genomic PCR, and then, the PCR 
products were purified using a PCR kit. The VpxlnR gene was 
ligated to a linearized pGADT7 vector. The promoter region 
of each gene was cloned into the pHIS2 vector, which was 
linearized by SmaI digestion. Positive clones were further 
confirmed by sequencing, and plasmids were obtained from 
the GenScript Company (Nanjing, China). The pAD::VpxlnR 
vector and the pHIS2::promoter vector were cotransformed 
into AH109 Gold yeast competent cells. Positive clone screening 
and confirmation were performed in accordance with a previous 
study (Kange et  al., 2019).

Expression Levels of the Target Genes 
Controlled by VpxlnR
According to the Y1H results, we analyzed the transcript levels 
of eight genes (VP1G_06369, VP1G_03128, VP1G_03782, 
VP1G_09520, and VP1G_02856) that were directly controlled 
by VpxlnR and three genes (VP1G_04075, VP1G_03516, and 
VP1G_10966) with negative results of Y1H. The RT–qPCR 
protocol and analysis of the results were the same as those 
in a previous study (Kange et  al., 2019). Each experiment was 
repeated at least three times.

RESULTS

Phylogenetic Analysis and Expression 
Pattern of VpxlnR in Valsa pyri
In previous studies, we  found that many genes in V. pyri were 
annotated as xlnR homologues through RNA-Seq analysis 

(He et  al., 2018), and its unigene (c14467) was reidentified 
through de novo assembly using transcriptome data. The gene 
ORF with a length of 2,625 bp was predicted. Alignment using 
the unigene and genomic gene sequences was performed. As 
a result, we  found that the gene contains four introns; however, 
the genome assembly was missing a 12-bp sequence, which 
might cause the prediction using genomics and transcriptomics 
to vary (Supplementary Figure S1). The xlnR-like protein 
predicted using transcriptomics contains a Zn2Cys6 zinc cluster 
and fungal-trans domain and is highly similar to other xlnRs 
in other fungal species, especially Valsa mali (Figure  1A), so 
we named it VpxlnR. Moreover, the domains of VpxlnR orthologues 
were analyzed. In most selected fungi, orthologues have similar 
domains consisting of a Zn2Cys6 cluster and a fungal-trans 
domain, but several VpxlnR orthologues lost the Zn2Cys6 cluster 
in Valsa malicola, Valsa sordida, V. dahlia, Colletotrichum 
gloeosporioides, and Aspergillus niger (Figure  1A), which may 
be caused by alternative splices or natural selection. These results 
suggested that VpxlnR is a fungus-specific transcription factor.

To further study the transcript levels of VpxlnR, total RNA 
samples of mycelia and mycelial infection pear bark were 
acquired [0–48  h post-inoculation (hpi)], and RT–qPCR was 
performed. At the early infection stage, VpxlnR expression was 
upregulated until 6 h after inoculation, but its transcript levels 
were downregulated at 12 h after inoculation. Furthermore, its 
transcript level restored the upregulation at the late infection 
stage (Figure  1B). These results suggest that the expression 
of the VpxlnR gene can be  induced by pear plants.

Generation of VpxlnR Deletion Mutants 
and Complementary Strains
To determine the functions of VpxlnR in V. pyri, two VpxlnR 
deletion mutants were generated using PEG-mediated 
transformation (Supplementary Figure S2). The deletion mutants 
were selected on PDA medium containing 50 mg/L hygromycin 
B. The VpxlnR gene in the two mutants was successfully replaced 
by a hygromycin-resistant cassette, which we  named m-7 and 
m-56 (Supplementary Figure S2A). Furthermore, 
we  constructed two complementary strains using protoplasts 
of the m-56 mutant as the target cells by PEG-mediated 
transformation, and the PCR amplification results showed that 
the VpxlnR gene was successfully amplified in these 
complementary strains (Supplementary Figure S2A). To examine 
the expression levels of vpxlnR in these mutants and 
complementary strains, RT–qPCR assays were performed, and 
the results showed that the expression of the vpxlnR gene was 
not detected in the two mutants, while the transcript levels 
of vpxlnR were normal in the two complementary strains 
(Supplementary Figure S2B). Taken together, these data indicate 
that we  successfully acquired vpxlnR-knockout mutants and 
complementary stains of V. pyri.

VpxlnR Controls Mycelial Growth and 
Fruiting Body Formation
To characterize the morphological features of the vpxlnR mutants, 
we recorded mycelial growth on PDA, pear branch agar (PBA), 
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CM media, or Czapek media containing different carbon sources 
for fruiting body production. In the mutants cultured on both 
PDA, PBA, and CM media, 36 h later, the colony sizes of the 
vpxlnR mutants were significantly smaller than those of the 
wild-type (Vp297) and the VpxlnR-overexpressing complementary 
strains (Figure 2A). Because we added equal amounts of glucose 
to the three media, the growth ratios of the stains were similar 
on the three media. We  speculate that the deletion of VpxlnR 
might weaken the ability of V. pyri to use carbon resources. 
To evaluate the abilities of vpxlnR mutants in the utilization 
of carbon resources, the mutants were grown on Czapek media 
with pectin, sucrose, glucose, and cellulose and with no sugar 
as the control. We  found that the colony sizes of the mutants 
were obviously smaller than those of the wild-type or 
complementary strains (Figure  2B) on the five media. These 
results suggest that VpxlnR may determine glucose and sucrose 
assimilation, which results in a low growth ratio of the mutants. 
Furthermore, the mutants and other strains were cultured under 
light conditions. After 20 days, the mutants failed to produce 
fruiting bodies, while the wild-type and complementary strains 
produced fruiting bodies, indicating that VpxlnR affected fruiting 
body formation (Figure  2C). Taken together, these results 
demonstrated that VpxlnR plays important roles in the growth 
and development of V. pyri.

VpxlnR Regulates Virulence of Valsa pyri
To assess the effect of VpxlnR on virulence, mycelial agar 
plugs of the wild-type, mutant, and complementary strains 
were inoculated on detached pear leaves and branches. The 

diameters of the lesions on leaves were measured at 2, 3, 4, 
and 5 dpi. We  found that the lesion sizes produced by the 
vpxlnR mutants were significantly smaller than those produced 
by the wild-type and complementary strains at 2–5 dpi 
(Figures  3A,B). Accordingly, the lesion length caused by the 
mutants on the inoculated branches was significantly smaller 
at each time point (2–6 dpi; Figures 3C,D). These results suggest 
that VpxlnR may play an important role in the determination 
of infection progression at the invasion stage on pear trees.

The vpxlnR Mutants Are Sensitive to Host 
Mimic Stress in a 
Concentration-Dependent Manner
Pathogens must overcome stresses, especially reactive oxygen 
species (ROS) or immune signalling chemicals such as salicylic 
acid (SA), from plants to invade successfully. Because the 
pathogenicity of the vpxlnR mutants was significantly reduced 
on pear branches and leaves, they may be  more sensitive 
to host immune responses such as ROS burst and SA 
accumulation. To evaluate whether the mutants could resist 
host-derived stresses, we  recorded the growth status on PDA 
media amended with different concentrations of H2O2 or 
SA. With increasing SA concentration, the colony size of 
all of the strains was reduced at 36 h post-inoculation (hpi) 
on PDA. Compared with the wild-type strain, the mutants 
(m-7 and m-56) showed higher inhibited ratio on the plates 
adding 1.0 and 2.0 mM SA, and their growth was completely 
inhibited by 4.0 mM SA. However, the complementary strains 
restored deficiencies of the mutants and exhibited similar 

A B

FIGURE 1 | VpxlnR characterization and its expression pattern during infection. (A) Phylogenetic tree of xlnR orthologues in different fungi. The VpxlnR gene 
sequence was obtained from Valsa pyri transcriptomics data, and sequences of xlnR orthologues were downloaded from the NCBI database. Sequence alignment 
was carried out using ClustalW, and a phylogenetic tree was generated via the neighbor-joining method using MEGA 7.0 software. The confidence values above the 
nodes were acquired from 1,000 bootstrap analyses. The domain architecture of VpxlnR and its orthologues were searched with the Pfam database. The domains 
were manually drawn according to the search results. (B) Transcript levels of VpxlnR during V. pyri infection. The relative expression levels of VpxlnR in V. pyri were 
quantified by quantitative reverse transcription PCR (RT–qPCR) and normalized to the transcript levels of the V. pyri actin gene. Fold changes were calculated by the 
2-∆∆Ct approach. Each experiment was performed three times.
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or lower inhibited ratio with increasing SA concentration 
(Figure  4A). These results indicate that VpxlnR has a large 
impact on SA stress. Similar to the SA stress assays, the 
mutants exhibited increased susceptibility to H2O2. With an 
increasing concentration of H2O2, the inhibited ratio of the 
mutants were greatly increased compared with those of the 
wild-type and complementary strains (Figure  4B). When 
the H2O2 concentration was 2 mM, mycelial growth of the 
m-56 mutant was completely inhibited. Similarly, the growth 
of the m-7 mutant was also significantly reduced, and its 
colony became abnormal, showing a thinner layer than the 
wild-type and the complementary strains (Figure  4B). These 
results indicate that VpxlnR is involved in H2O2 stress in 
V. pyri. Taken together, these results demonstrate that VpxlnR 
functions in response to overcoming host immunity to 
aid infection.

Prediction of VpxlnR Binding Promoters
To characterize genes controlled by VpxlnR, we  obtained 
candidate promoter sequences (2000 bp upstream region from 
the initial codon of each gene) by searching CGG triplets or 

TTAGSCTAA in V. pyri. As a result, we  found 354 promoters 
that have similar motifs, among which 268 promoters were 
present on the antisense strand, and 86 promoters were present 
on the sense strand (Supplementary Table S1). The genes 
downstream of each promoter were also obtained using Seqhunter 
1.0, and the COG functional annotations were analyzed. A 
total of 148 genes had COG terms, and the most enriched 
terms were involved in “carbohydrate transport and metabolism,” 
“lipid transport and metabolism,” “secondary metabolite 
biosynthesis, transport, and catabolism,” and “general function 
prediction only” (Figure  5; Supplementary Table S2), which 
suggests that VpxlnR controls carbon resource utilization. 
However, there is limited information on the genes involved 
in virulence. To explore genes involved in virulence, we selected 
all 354 genes and performed PHI-BLAST. We  obtained 28 
proteins from the PHI-BLAST hits. Thirteen of them play an 
important role in virulence in other fungi because the 
corresponding mutants showed reduced virulence, and 15 were 
annotated as fatal (Supplementary Table S3). These data indicate 
that these genes may contribute to virulence downstream of 
VpxlnR in V. pyri.

A B

C

FIGURE 2 | Characterization of growth and development of the vpxlnR mutants. (A) Colony growth on potato dextrose agar (PDA), pear branch agar (PBA), and CM 
media. Mycelial agar plugs of wild-type (WT), vpxlnR mutants (m-7 and m-56), and VpxlnR complementation (C-320 and C-326) were placed on PDA, PBA, and CM 
media. Colony diameter was measured at 36 h, and images were captured at the same time. (B) Radial growth of WT, vpxlnR mutants, and complementation on carbon 
sources. Colony diameters were measured at 36 h. Czapek’s medium supplemented with glucose, sucrose, pectin, and cellulose, and Czapek only served as the 
control. The plates were incubated at 25°C in the dark for 48 h. Typical images of the colonies were captured at 36 h. (C) Fruiting body formation. Fruiting bodies were 
induced under 16-h light/8-h dark for 20 days on PDA medium. Each strain was cultured on three agar plates. Images were captured at 20 days. In the image, ns 
indicates a value of p > 0.05, * indicates a value of p < 0.05, ** indicates a value of p < 0.01, and the statistical analysis was performed using two-way ANOVA.
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Identification of Virulence- or 
Growth-Related Genes Binding to VpxlnR
According to gene annotation and PHI-BLAST analysis, 
we chose the promoters of the eight genes encoding salicylate 
hydroxylase (VP1G_09520), alpha-xylosidase (VP1G_06369), 
G-protein beta subunit (VP1G_02856), acid phosphatase 
(VP1G_03782), putative phosphotransferases (VP1G_03516), 
and three serine/threonine-protein kinases (VP1G_03128, 
VP1G_04075, and VP1G_10966) for further characterization. 
To confirm whether VpxlnR binds to the promoter regions 
of virulence- or growth-related genes in vivo, we  performed 
Y1H assays. The Y1H results showed that VpxlnR could bind 
to the promoter regions of the genes encoding salicylate 
hydroxylase (VP1G_09520), serine/threonine-protein kinase 
(VP1G_03128), alpha-xylosidase (VP1G_06369), G-protein 
beta subunit (VP1G_02856), and acid phosphatase 
(VP1G_03782; Figure 6), suggesting that VpxlnR may determine 
virulence or growth by controlling the expression of extracellular 
proteins and signaling pathways. VpxlnR did not bind to the 
promoters of the other three genes (data not shown). 

Furthermore, we  predicted that the DNA-binding motifs of 
all three target genes (VP1G_09520, VP1G_03782, and 
VP1G_02856) contain the degenerate sequence MBSGTCCGY 
(Supplementary Table S4). Another two genes (VP1G_03128 
and VP1G_06369) contain a motif including a GGC triplet; 
however, they were not the same as the reported motif 
interacting with xlnR orthologues (Supplementary Table S4). 
These results suggest that VpxlnR could interact with motifs 
consisting of MBSGTCCGY and GGC triplets in vivo.

Expression Levels of the Target Genes 
Controlled by VpxlnR
To assess whether the expression levels of five target genes 
were affected by VpxlnR deletion, we  analyzed their transcript 
levels by RT–qPCR. Based on RT–qPCR results, we  found that 
the expression levels of two genes (VP1G_06369 and 
VP1G_03128) were only reduced in one mutant (m-7) and 
not in m-56 (Figures  7A,B). These results demonstrated that 
these two genes (VP1G_06369 and VP1G_03128) might also 
be  controlled by regulators other than xlnR. The other three 

A B

C

D

FIGURE 3 | Effect of VpxlnR on virulence. (A) Virulence of the vpxlnR mutants on pear leaves. Mycelial agar plugs of the strains, including WT, vpxlnR mutants, and 
complementation, were inoculated on pear leaves. Photos were taken at 3 and 5 dpi, respectively. Lesion diameters were measured at 2–5 dpi. (B) Lesion diameters 
on pear leaves. Lesion diameters were collected on eight leaves. (C) Pathogenicity of the vpxlnR mutants on pear branches. Related strains were inoculated on 
wounded 1-year-old branches, and branches were incubated at 25°C in the dark. Branch images were captured at 2 and 4 dpi. Lesion diameters were measured at 
2–6 dpi. (D) Lesion lengths on pear branches. Lesion lengths were obtained from 13 inoculated branches. Bar = 1 cm, ns indicates a value of p > 0.05, * indicates a 
value of p < 0.05, and ** indicates a value of p < 0.01; the statistical analysis was performed by two-way ANOVA.
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A B

FIGURE 4 | Susceptibility of the VpxlnR mutant to host mimic stresses. (A) Effect of SA stress on strain growth. Wild-type (WT), VpxlnR deletion mutant (m-7 and 
m-56), and complementation (C-320 and C-326) strains were grown on PDA medium supplemented with the indicated SA concentrations and incubated at 25°C 
for 36 h. (B) Impact of oxidative stress on colony growth. Strains were cultured on PDA medium supplemented with H2O2 and incubated at 25°C for 36 h. Each 
treatment was repeated three times, and colony diameters were recorded at 36 h. The data were recorded at 36 h. The statistical analysis was performed by two-
way ANOVA, ns indicates a value of p > 0.05, * indicates a value of p < 0.05, and ** indicates a value of p < 0.01.

FIGURE 5 | COG annotation of the predicted target genes. Approximately 148 target genes have COG terms. COG terms are indicated on the image. X-axis: COG 
classes. Y-axis: shown in the image.
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genes were downregulated in the two mutants (m-7 and m-56; 
Figures  7C–E), suggesting that VpxlnR could regulate the 
expression levels of these genes by directly binding gene 
promoters. These results demonstrated that VpxlnR could 
positively control the transcript levels of virulence-related genes 
to contribute to virulence in V. pyri.

DISCUSSION

Valsa pyri is a woody pathogen causing trunk canker disease 
on pear trees in most orchards of northern China. The 
fungus can infect pear or apple trees, leaves, and fruits, 
resulting in great yield loss or tree death (Abe et  al., 2007; 
Xu et  al., 2018). Valsa pyri is a necrotrophic fungus that 
can penetrate the phloem and xylem. Transcriptomic analysis 
also showed that cellulose- or pectin-degrading enzyme-
encoding genes were significantly upregulated in the infection 
stage (He et  al., 2018). However, cellulase and pectinase 
were not the key factors determining virulence in V. mali 
(Yin et  al., 2015). Previous studies showed that several 
proteins secreted by V. mali function as effectors, which 
could cause cell death or change the immune system in 
Nicotiana benthamiana (Li et  al., 2015b; Feng et  al., 2018; 

Zhang et  al., 2019). However, the deletions of these protein-
encoding genes in V. mali did not lead to a great virulence 
reduction. Moreover, woody plants are obviously distinguished 
from herbs, especially trunk diseases. Therefore, studying 
woody plant pathogens faces greater challenges. VpxlnR and 
its orthologues generally contain the GAL4 domain and 
have important roles in controlling xylanolytic activity (van 
Peij et  al., 1998), degradation of the polysaccharides xylan 
and cellulose (Hasper et  al., 2000), and virulence (Calero-
Nieto et  al., 2007). Due to its potential function in the 
degradation of xylan and cellulose, which are key chemical 
components in the trunk or branches of pear trees, VpxlnR 
may contribute greatly to virulence in V. pyri.

The VpxlnR gene contains four introns, and the genome 
sequence is not well assembled at its location (Yin et al., 2015); 
thus, the transcriptome de novo analysis results provide more 
clues to identify this gene (Supplementary Figure S1). The 
xlnR protein predicted in the V. pyri genome lost a GAL4 
domain. However, our study showed that it contains a GAL4 
domain. Additionally, most xlnR orthologues represent one 
zinc cluster, especially VmxlnR, which shares high identity 
with VpxlnR. We deduced that xlnR proteins generally contains 
the GAL4 domain, and those orthologues with the GAL4 
domain lost may because of the wrong prediction. Therefore, 

A

D E

B C

FIGURE 6 | Assessment of VpxlnR binding activity using yeast one-hybrid (Y1H). Genes were selected from PHI-BLAST analysis, including (A) VP1G_09520: 
salicylate hydroxylase, (B) VP1G_03128: serine/threonine-protein kinase, (C) VP1G_06369: alpha-xylosidase, (D) VP1G_02856: G-protein beta subunit, and (E). 
VP1G_03782: acid phosphatase. VpxlnR and pHis2::P coexpressed in yeast cells were cultured on SD/−Leu/His plates, and positive clones were screened on 
SD/−Trp/−Leu/-His plates with 3AT plates. TF: VpxlnR, P: promoter. Empty pGADT7 (−) and empty pHIS2 (−) plasmids, and pGADT7::VpxlnR/empty pHIS2 vector 
and empty pGADT7/pHIS2::P were used as controls. (+) indicates that the yeast cells expressed VpxlnR or contained gene promoters. The liquid cultures 
(OD600 = 0.5) were diluted as shown in the image. Positive yeast clones were formed after culture on SD/−Trp/−Leu/-His/3AT for 3 days, and images were captured.
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we  think predictions for xlnR orthologues should be  rigorous, 
and the genomes are not sufficient to identify this gene in 
other fungus.

The main functions of xlnR orthologues in Aspergillus spp. 
are to regulate xylose and other polysaccharides (van Peij et al., 
1998; Hasper et  al., 2004; Noguchi et  al., 2011; Ishikawa et  al., 
2018; Khosravi et al., 2019). However, AnxlnR was not involved 
in glucose or sucrose utilization. This result implies that xlnR 
is involved in many aspects of fungal life. In our study, we found 
that the growth ratio of the VpxlnR deletion mutants was 
significantly increased on glucose compared with the no-glucose 
control, but compared with the wild-type, their growth ratio 
was greatly reduced. Thus, VpxlnR should be  a key regulator 
controlling growth by acquiring glucose from the environment 
or host. When sucrose was added, the results were similar to 
those of the control, which indicates that VpxlnR does not 
participate in sucrose utilization. Similar to a previous study 
(de Souza et  al., 2013; Kowalczyk et  al., 2015; Llanos et  al., 
2019), the colony size of the mutants did not decrease significantly 
on pectin or cellulose plates compared with Vp297, which 
implies that the mutants may grow normally in the infection 
stage because of their abilities to utilize cell wall components 
such as pectin and cellulose. These outcomes are partially in 
agreement with previous studies and provide new insights into 
the function of xlnR orthologues.

Previously, FoxlnR did not affect the virulence of F. oxysporum 
on tomato fruits, but it actually affected the pathogenicity of 
F. oxysporum on tomato roots before 10 dpi (Calero-Nieto et al., 
2007). It mainly controls the transcript levels of 

xylanase-encoding genes (Calero-Nieto et  al., 2007). In our 
study, deficiency of the VpxlnR deletion mutants on infection 
was detected on pear branches or leaves (Figure  3). Moreover, 
the VpxlnR deletion mutants were also sensitive to H2O2 stress 
and SA stress in a concentration-dependent manner (Figure 3). 
Interestingly, the ΔxlnR strains of A. niger were sensitive to 
oxidative stress when grown on media supplemented with 
glucose (Raulo et  al., 2016). Additionally, the mutants reduced 
their abilities to utilize glucose or sucrose (Figure 2B). We believe 
that host extracellular glucose or sucrose might induce 
intracellular ROS levels in fungi, which leads to growth limitation 
of the xlnR mutants. In the early infection stage, the extracellular 
space of the host cell contains glucose, sucrose, and host defense 
chemicals such as ROS and SA, which may impair infectious 
growth of the mutants in host tissue. However, when they 
overcome innate immunity, they can break the host cell wall 
and use pectin, cellulose, and xylose and then exhibit restored 
virulence. In brief, the VpxlnR deletion mutants exhibit 
susceptibility to the host defense response, resulting in reduced 
virulence at the infection stage of V. pyri.

Zn2Cys6 TFs control target genes by binding a motif including 
a CGG triplet (Cho et  al., 2013; Luo et  al., 2016), while XlnR 
interacts with promoters containing not only CGG triplets but 
also TTAGSCTAA motifs (Ishikawa et  al., 2018). To broadly 
explore the target genes of VpxlnR, we  obtained all of the 
promoters containing NRHKGMCCGM in the V. pyri genome 
(Cho et  al., 2013; Ishikawa et  al., 2018). Eight promoters more 
than 1,500 bp in length were identified and five of them could 
interact with VpxlnR in Y1H assays. These results suggest that 

A B C

D E

FIGURE 7 | RT–qPCR test of target genes controlled by VpxlnR. (A) Salicylate hydroxylase encoding gene (VP1G_09520), (B) serine/threonine-protein kinase 
encoding gene (VP1G_03128), (C) alpha-xylosidase encoding gene (VP1G_06369), (D) G-protein beta subunit encoding gene (VP1G_02856), and (E) Acid 
phosphatase encoding gene (VP1G_03782). The transcript level of each gene was normalized to actin expression. Each test was repeated three times, and the 
statistical analysis was performed using one-way ANOVA. ns indicates a value of p > 0.05, * indicates a value of p < 0.05, and ** indicates a value of p < 0.01.
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the motif consisting of MDSGTCCGY is very likely to interact 
with VpxlnR. Moreover, VpxlnR also recognizes a motif containing 
GGC triplets, although no specific feature was observed in 
the 3′ flanking sequence of the GGC triplet. These results 
extend the binding site of xlnR and provide new clues for 
studying zinc cluster-type TFs.

Genes directly controlled by VpxlnR contain secreted proteins 
such as alpha-xylosidase and acid phosphatase, signaling 
transduction regulators including G-protein beta subunit and 
serine/threonine-protein kinase, and salicylate hydroxylase 
(Figure 6). There were also three genes encoding putative serine/
threonine-protein kinase KIN28 (VP1G_04075) and GCN2 
(VP1G_10966) and putative phosphotransferases (VP1G_03516) 
that could not interact with VpxlnR, but their transcript levels 
were significantly reduced in the deletion mutants 
(Supplementary Figure S4). These results suggest that they 
might function downstream of VpxlnR in regulating virulence. 
However, there are very limited reports on the function of these 
two secreted proteins in fungal virulence. G-protein and its 
regulators could regulate conidiation, antioxidant capacity, and 
virulence in M. robertsii, Mucor circinelloides, Cryphonectria 
parasitica, and Ustilago maydis (Segers et al., 2004; Moretti et al., 
2017; Tong et al., 2020; Valle-Maldonado et al., 2020). Moreover, 
the serine/threonine-protein kinase ChSch9 participated in the 
virulence of Colletotrichum higginsianum (Sohail et  al., 2021). 
Therefore, we  deduced that VpxlnR responds to H2O2 stress, 
virulence, and fruiting body formation by controlling the G-protein 
and serine/threonine-protein kinase encoding genes. Additionally, 
whether the two secreted proteins contribute to the virulence 
of V. pyri should be  confirmed in the future.
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Supplementary Figure S1 | Distinct sites of the sequences predicted in 
transcriptomics and genomics of V. pyri. VP1G_03432 was characterized using V. 
pyri genomics. The sequence of VpxlnR was obtained from de novo 
transcriptomics. The line shown in the figure indicates the gaps of the 
two sequences.

Supplementary Figure S2 | Constructs for VpxlnR replacement and 
complementation. VpxlnR deletion constructs were generated by triple joint PCR 
amplification (described in the “Materials and Methods” section). The arrows 
indicate primer sites. The numbers (1–12) represent the primers (Supplementary 
Table S5) used for deletion construct generation and genomic PCR identification.

Supplementary Figure S3 | The mutant was confirmed by genomic PCR and 
RT–qPCR. (A) Genomic PCR identification for fragments in replacement sites. 
Primer pairs with numbers are shown in the right panel, and numbers are the 
same as in Supplementary Figure S1. WT, wild-type strain (Vp297); m-7 and 
m-56, VpxlnR deletion mutants; C-320 and C-236, VpxlnR complementation 
strains. (B) VpxlnR expression level in deletion mutant. Transcript levels were 
quantified by RT–qPCR and normalized to actin gene expression. Each test was 
repeat three times. The relative transcript level of the gene at time point 0 was set 
as 1.0. The data were analyzed using one-way ANOVA. ns indicates a value of 
p > 0.05, ** indicates a value of p < 0.01.

Supplementary Figure S4 | RT–qPCR test of nontarget genes controlled by 
VpxlnR. (A) Serine/threonine-protein kinase KIN28-encoding gene (VP1G_04075); 
(B) serine/threonine-protein kinase GCN2-encoding gene (VP1G_10966); 
(C) putative phosphotransferase-encoding gene (VP1G_03516). The transcript level 
of each gene was normalized to actin expression. Each test was repeated three 
times, and the data were analysed using one-way ANOVA. ns indicates a value of 
p > 0.05, * indicates a value of p < 0.05, and ** indicates value of p < 0.01.
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