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Abstract 

Background:  Hysteroscopy is a commonly used technique for diagnosing endometrial lesions. It is essential to 
develop an objective model to aid clinicians in lesion diagnosis, as each type of lesion has a distinct treatment, and 
judgments of hysteroscopists are relatively subjective. This study constructs a convolutional neural network model 
that can automatically classify endometrial lesions using hysteroscopic images as input.

Methods:  All histopathologically confirmed endometrial lesion images were obtained from the Shengjing Hospi-
tal of China Medical University, including endometrial hyperplasia without atypia, atypical hyperplasia, endometrial 
cancer, endometrial polyps, and submucous myomas. The study included 1851 images from 454 patients. After the 
images were preprocessed (histogram equalization, addition of noise, rotations, and flips), a training set of 6478 
images was input into a tuned VGGNet-16 model; 250 images were used as the test set to evaluate the model’s per-
formance. Thereafter, we compared the model’s results with the diagnosis of gynecologists.

Results:  The overall accuracy of the VGGNet-16 model in classifying endometrial lesions is 80.8%. Its sensitivity to 
endometrial hyperplasia without atypia, atypical hyperplasia, endometrial cancer, endometrial polyp, and submucous 
myoma is 84.0%, 68.0%, 78.0%, 94.0%, and 80.0%, respectively; for these diagnoses, the model’s specificity is 92.5%, 
95.5%, 96.5%, 95.0%, and 96.5%, respectively. When classifying lesions as benign or as premalignant/malignant, the 
VGGNet-16 model’s accuracy, sensitivity, and specificity are 90.8%, 83.0%, and 96.0%, respectively. The diagnostic 
performance of the VGGNet-16 model is slightly better than that of the three gynecologists in both classification 
tasks. With the aid of the model, the overall accuracy of the diagnosis of endometrial lesions by gynecologists can be 
improved.

Conclusions:  The VGGNet-16 model performs well in classifying endometrial lesions from hysteroscopic images and 
can provide objective diagnostic evidence for hysteroscopists.
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Background
At the clinic, patients are often diagnosed with suspected 
endometrial lesion due to symptoms such as abnor-
mal uterine bleeding or infertility [1, 2]. Transvaginal 
ultrasound and diagnostic hysteroscopy are common 

gynecological examinations to diagnose endometrial 
lesions conclusively [3–5]. Transvaginal ultrasound is 
usually the first choice, but it has low diagnostic specific-
ity and does not enable physicians to obtain pathological 
tissue specimen; in some cases, further hysteroscopy is 
required. [3–5]. Diagnostic hysteroscopy is a minimally 
invasive examination through which the hysteroscopist 
can directly observe the endometrial lesions and nor-
mal endometrium in the patient’s uterine cavity, so that 
the gynecologist can make a more accurate primary 
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diagnosis [6]. These endometrial lesions include endome-
trial polyps, submucous myomas, intrauterine adhesions, 
endometrial hyperplasia, malignancies, intrauterine for-
eign bodies, placental remnants, and endometritis [6]. An 
accurate primary diagnosis helps gynecologists to explain 
the condition to patients and decide on a primary treat-
ment. However, the diagnostic performance of hysteros-
copy for these lesions depends on the experience of the 
hysteroscopist, resulting in a degree of subjectivity in 
the gynecologist’s diagnosis [7]. A stable and objective 
computer-aided diagnosis (CAD) system could shorten 
the learning curve of inexperienced gynecologists and 
effectively reduce the subjectivity (interobserver error) of 
gynecologist diagnosis.

Deep learning is a discipline that has recently played a 
prominent role in fields such as computer vision, speech 
recognition, and natural language processing [8]. Many 
practices in the medical field have also benefited from 
the use of deep learning, including identifying poten-
tial depression patients in social networks and locating 
the cecum in surgical videos [9, 10]. Convolutional neu-
ral networks (CNNs) are a class of algorithms that excel 
in image classification tasks in deep learning, especially 
for classifying or detecting objects that can be directly 
observed [11]. It has been reported that CNNs can diag-
nose skin cancer at a level no less than that of experts 
[12]. The ability of CNNs to classify laryngoscopic images 
in most cases exceeds that of physicians [13]. There have 
been many other reports of endoscopic CAD systems 
based on deep learning, and excellent results have been 
achieved in cystoscopy, gastroscopy, enteroscopy, and 
colposcopy [14–17]. Deep learning has previously been 
applied in the field of hysteroscopy: Török reported the 
use of fully convolutional neural networks (FCNNs) to 
segment uterine myomas and normal uterine myome-
trium [18], and Burai used FCNNs to identify the uterine 
wall [19].However, no CNN-based CAD system for hyst-
eroscopy has yet been reported.

This study considers the five most common endome-
trial lesions: endometrial hyperplasia without atypia 
(EH), including simple and complex hyperplasia; atypical 
hyperplasia (AH); endometrial cancer (EC); endometrial 
polyps (EPs); and submucous myomas (SMs) [20]. This 
study aimed to construct a CNN-based CAD system that 
can classify endometrial lesion images obtained from 
hysteroscopy and to evaluate the diagnostic performance 
of this model. The results show that the CAD system 
slightly outperforms gynecologists in classifying endome-
trial lesion images. It provides evidence of the feasibility 
of using artificial intelligence to assist in clinical diagnosis 
of endometrial lesions.

Methods
Dataset
This study retrospectively collected images of patients 
who underwent hysteroscopic examination at the 
Shengjing Hospital of China Medical University from 
2017 to 2019, which confirmed the presence of endome-
trial lesions. All images were taken using an Olympus 
OTV-S7 (Olympus, Tokyo, Japan) endoscopic camera 
system with a resolution of 720 × 576 pixels and were 
stored in JPEG format. Images meeting the following cri-
teria were excluded: (a) poor quality or unclear images; 
(b) images with no lesions in the field of view; (c) images 
with a large amount of bleeding in the field of view; (d) 
images from patients with an intrauterine device or who 
were receiving hormone therapy; (e) images from patients 
with multiple uterine diseases; and (f ) images from 
patients without histopathological results. The resulting 
dataset included 1851 images from 454 patients, includ-
ing 509 EH, 222 AH, 280 EC, 615 EP, and 225 SM images. 
We randomly extracted 250 images (50 images for each 
category) from the dataset as the testing and validation 
set, and the remaining images were used as the original 
training set for data augmentation and model training. 
Table 1 shows the detailed dataset partition used in this 

Table 1  Partition details of the endometrial lesion dataset for classification

AH atypical hyperplasia, EC endometrial cancer, EH endometrial hyperplasia without atypia, EP endometrial polyp, SM submucous myoma

Category Dataset Training set Test set

No. of patients No. of images No. of original 
images

No. of augmented 
images

No. of test images

EH 124 509 459 915 50

AH 53 222 172 1032 50

EC 66 280 230 1055 50

EP 148 615 565 825 50

SM 63 225 175 1050 50

Total 454 1851 1601 4877 250
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study. Subsequently, the test set was randomly divided 
into two parts (125 images per part) to explore the role of 
the model in assisting gynecologists to diagnose endome-
trial lesions. This study was approved by the Ethics Com-
mittee of Shengjing Hospital (No. 2017PS292K).

Data preprocessing
All images were manually cropped by gynecologists 
to remove excessive non-lesion regions and retain the 
region of interest, thus preventing irrelevant features 
from disturbing the performance of the deep learning 
model. To improve the generalizability and robustness 
of the deep learning model, we performed data aug-
mentation on the training set, including color histogram 
equalization, random addition of salt-and-pepper noise, 
90° and 270° rotations, and vertical and horizontal flips 
(Fig. 1). The final training set was augmented from 1601 
to 6478 images. The test set was not processed. Finally, all 
images were resized to 224 × 224 pixels and rescaled for 
training, validating, and testing.

Convolutional neural network and transfer learning
We selected VGGNet [21] as the main structure of our 
deep learning model and tuned it to implement transfer 
learning [22]. VGGNet was developed by the Oxford Vis-
ual Geometry Group and won second place in the image 
classification task of the 2014 ImageNet Large Scale Vis-
ual Recognition Challenge (ILSVRC) [23]. It has a top-5 
accuracy of 92.3% in classifying 1000 object categories. 
Compared to AlexNet [24], the winner of ILSVRC 2012, 
VGGNet uses a smaller convolution kernel and deepens 
the network to achieve better results [23]. VGGNet-16 
and VGGNet-19 are commonly used versions of VGG-
Net. There is no significant difference in the effect of the 
two in application, but VGGNet-16 has fewer layers and 
parameters than VGGNet-19 [21]. This provides VGG-
Net-16 with shorter processing time and lower storage 

space usage than VGGNet-19, so we selected VGG-
Net-16 as our model network.

We employed the VGGNet-16 CNN, pretrained on 
ImageNet, and adjusted its 4096 neurons in the fully con-
nected layer to 512 neurons and its 1000-category output 
layer to 5 categories. We added a batch normalization 
layer after each convolutional layer to improve the train-
ing speed of the model [25]. Important training param-
eters were set as follows: (a) the input shape was 224 
pixel × 224 pixel × 3 channel; (b) the batch size was 64; (c) 
the number of training epochs was 200; and (d) the opti-
mizer used was stochastic gradient descent (SGD) with 
a learning rate of 0.00001 and a momentum of 0.9. The 
structure of our CNN is shown in Fig. 2, and a summary 
of the model is shown in Additional file 1: Table S1. The 
CNN for this research was built using the open source 
Keras neural network library [26]. Our fine-tuned VGG-
Net-16 CNN was used for transfer learning and endome-
trial lesion classification task.

Performance evaluation metrics
To evaluate the diagnostic performance of the CNN 
model, one chief physician with more than 20  years of 
experience and two attending physicians with more than 
10 years of experience in hysteroscopic examination and 
surgery diagnosed lesions using all images in the test set 
without knowing the histopathological results. These 
diagnoses were compared with the diagnostic results of 
the CNN model.

To explore the auxiliary role of the model in the diag-
nosis of endometrial lesions by gynecologists, three other 
licensed gynecologists performed direct diagnosis and 
model-aided diagnosis on two randomly divided test sets 
without knowing the histopathological results.

We present the results in two ways: five-category and 
two-category classification. In the first task, each lesion 
was classified as EH, AH, EC, EP, or SM. In the second 

Histogram
equalization

Data augmentation

Random noise 90° Rotate

270° Rotate Vertical flip Horizontal flip

Original image
Cropped image

Resized image

Fig. 1  Example of image preprocessing. We first cropped and resized all images in the dataset. Then, we augmented the resized training set to 
increase the amount of data, allowing us to improve the model’s generalization ability and robustness
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task, lesions were categorized as premalignant/malignant 
(AH and EC) or benign (EH, EP, and SM).

The diagnostic performance of the model and that of 
gynecologists is initially demonstrated using confusion 
matrix, which records the samples in the test set accord-
ing to their true and predicted categories in the form of a 
matrix, but it is not a direct evaluation metric. The actual 
evaluation metrics used in this study were derived from 
the confusion matrix, which shows the numbers of true 
positive (TP), false positive (FP), false negative (FN), and 
true negative (TN) classifications. The secondary evalua-
tion metrics calculated from the primary evaluation met-
rics are as follows:

All calculation and visualization operations were 
implemented in Python Version 3.7.0.

Results
During training, the model’s accuracy changed with 
increase in epochs, as shown in Fig. 3. After 90 epochs, 
the validation accuracy plateaued.

Sensitivity(TPR) = TP/(TP+ FN);

Specificity(TNR) = TN/(TN+ FP);

Precision(P) = TP/(TP+ FP);

F1 - Score = 2× P× TPR/(P+ TPR);

Accuracy = 5×�TPi/�(TPi+ FPi+ FNi+ TNi);

Area under the curve (AUC): the area under the receiver operating characteristic (ROC) curve.

Five‑category classification task
For the five-category classification task, the VGGNet-16 
model achieves an accuracy of 80.8%. The model’s sensi-
tivity and specificity for diagnosing EH lesions are 84.0% 
and 92.5% (AUC = 0.926), 68.0% and 95.5% (AUC = 0.916) 

for AH lesions, 78.0% and 96.5% for EC (AUC = 0.952), 
94.0% and 95.0% for EP (AUC = 0.981), and 80.0% and 
96.5% for SM (AUC = 0.959). The accuracies of the three 
gynecologists were 72.8%, 69.2%, and 64.4%. Detailed 
five-category diagnostic performance evaluation met-
rics are shown in Table 2. The five-category ROC curves 
of the model and gynecologists are shown in Fig. 4. The 
confusion matrices of the VGGNet-16 model and three 
gynecologists are shown in Fig. 5. The VGGNet-16 model 

Block1 Block2 Block5Block4Block3

 AH
EC

EH

EP
SM

Input image Fine-tuned VGGNet-16 convolutional neural network Output probability

Dropout3x3 Convolution
Batch normalization MaxPool Flatten Fully connected

Fig. 2  Structure of the fine-tuned VGGNet-16 model. Our network structure is a tuned VGGNet-16 model. The data stream flows from left to right, 
and the cross-entropy loss is calculated from the prediction results of each category and their corresponding probabilities. The model iterates 
repeatedly to reduce the loss value, thereby improving its accuracy

Fig. 3  Training and validation accuracy by training epochs of 
VGGNet-16 convolutional neural network. During training, the overall 
accuracy of the model on the training and validation sets increases as 
the model iterates. The model’s performance plateaus on the training 
and validation sets at epochs 190 and 90, respectively
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slightly outperforms the three gynecologists in accurately 
diagnosing endometrial lesions.

To directly observe the clustering of the five types of 
lesions, we applied the t-distributed stochastic neighbor 
embedding (t-SNE) [27] dimension reduction algorithm. 
The 512-dimensional output of all images in the test 
set of the last fully connected layer was reduced to two 
dimensions and is displayed in Fig.  6. We can see from 
this figure that most of the images are mapped on their 
own fixed areas, but there is an area of overlap between 
EH, AH, and EC. To deepen our understanding of the 
CNN’s calculation process, we output the sum feature 
maps of an SM image in the test set at each convolutional 
layer, batch normalization layer, and MaxPool layer of the 
VGGNet-16 model and superimposed them on the origi-
nal image after upsampling these sum feature maps. The 
superimposed heatmaps are shown in Fig. 7. Some exam-
ples of the model’s classification are shown in Fig. 8.

Two‑category classification task
When classifying premalignant/malignant and benign 
lesions, the accuracy, sensitivity, specificity, precision, 
f1-score, and AUC of the VGGNet-16 model were 90.8%, 
83.0%, 96.0%, 93.3%, 87.8%, and 0.944. The accuracy of 
the three gynecologists was 86.8%, 82.4%, and 84.8%, and 
their AUCs were 0.863, 0.813, and 0.842, respectively. In 
this task, both the model and the gynecologists improved 
their performance significantly compared with the five-
category classification task. Detailed two-category diag-
nostic performance evaluation metrics are shown in 
Table 3. The two-category ROC curve of the model and 
gynecologists is shown in Fig. 9.

Comparison between model‑aided diagnosis and direct 
diagnosis by gynecologists
After we split the test set equally at random, the test 
sets Part I and Part II were used for direct diagnosis 
and model-aided diagnosis by gynecologists. The accu-
racies of direct diagnosis of test set Part I by the three 

Table 2  Diagnostic performance of the VGGNet-16 model and gynecologists in the five-category classification task

AH atypical hyperplasia, AUC​ area under the receiver operating characteristic (ROC) curve, EC endometrial cancer, EH endometrial hyperplasia without atypia, EP 
endometrial polyp, SM submucous myoma

Category Sensitivity (%) Specificity (%) Precision (%) F1-score (%) AUC​ Accuracy (%)

VGGNet-16

 EH 84.0 92.5 73.7 78.5 0.926 80.8

 AH 68.0 95.5 79.1 73.1 0.916

 EC 78.0 96.5 84.8 81.3 0.952

 EP 94.0 95.0 82.5 87.9 0.981

 SM 80.0 96.5 85.1 82.5 0.959

Gynecologist 1

 EH 70.0 90.0 63.6 66.7 0.800 72.8

 AH 58.0 92.5 65.9 61.7 0.753

 EC 74.0 90.0 64.9 69.2 0.820

 EP 86.0 95.0 81.1 83.5 0.905

 SM 76.0 98.5 92.7 83.5 0.873

Gynecologist 2

 EH 64.0 94.5 74.4 68.8 0.792 69.2

 AH 54.0 90.0 57.4 55.7 0.720

 EC 68.0 92.5 69.4 68.7 0.803

 EP 90.0 87.0 63.4 74.4 0.885

 SM 70.0 97.5 87.5 77.8 0.838

Gynecologist 3

 EH 52.0 95.0 72.2 60.5 0.735 64.4

 AH 54.0 87.0 50.9 52.4 0.705

 EC 66.0 93.0 70.2 68.0 0.795

 EP 80.0 87.0 60.6 69.0 0.835

 SM 70.0 93.5 72.9 71.4 0.818
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gynecologists were 64.0%, 62.4%, and 69.2%, respec-
tively. Subsequently, gynecologists diagnosed the test 
set Part II with the aid of the model, and their accuracies 
were 78.4%, 72.8%, and 77.6%, respectively. The detailed 
comparison of the five-category diagnostic performance 
evaluation metrics is shown in Table 4. The five-category 
ROC curves of the gynecologists’ direct diagnoses and 
model-aided diagnoses are shown in Additional file  2: 

Figure S1. The confusion matrices of the direct diagnoses 
and model-aided diagnoses by gynecologists are shown 
in Additional file 3: Figure S2.

Discussion
This study explored the classification ability of the VGG-
Net-16 model for diagnosis of endometrial lesions using 
hysteroscopic images for the first time, with accuracies of 

a b

c d

Fig. 4  Five-category ROC curves of the VGGNet-16 model and gynecologists. Five-category receiver operating characteristic (ROC) curves: a, b, c, 
and d are the ROC curves of VGGNet-16 and gynecologists 1, 2, and 3, respectively. AH atypical hyperplasia, EC endometrial cancer, EH endometrial 
hyperplasia without atypia, EP endometrial polyp, SM submucous myoma
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80.8% and 90.8% in our five-category and two-category 
classification tasks.

The benefit of CNN model is that the output pro-
vides the probability that a given hysteroscopy image 
belongs to each category. Even if the model makes a 
misclassification, the output contains a specific prob-
ability of the correct label. In contrast, it is difficult for 

hysteroscopists to give specific probabilities for their 
diagnoses. In most cases, gynecologists can only give 
two judgments: yes or no. The ability to harness prob-
abilities is an important reason why the CNN model 
has a significantly higher AUC for each lesion type 
than the gynecologists. In this study, it has been con-
firmed that the model output probabilities can provide 

a b

c d

Fig. 5  Confusion matrices of the VGGNet-16 model and gynecologists. Confusion matrices: a, b, c, and d are the confusion matrices of the 
VGGNet-16 model and gynecologists 1, 2, and 3 in classifying the test set, respectively. The x axes are the predicted labels, which are the diagnoses 
made by the model or gynecologists. The y axes are the true labels, which is the histopathological result. The number in each small square 
represents the corresponding number of images with the same predicted true label and its percentage of the total number of images under the 
true label. AH atypical hyperplasia, EC endometrial cancer, EH endometrial hyperplasia without atypia, EP endometrial polyp, SM submucous myoma
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Fig. 6  Dimension-reduced scatter plot of the last fully connected layer of the VGGNet-16 model. We output the 512-dimensional data of all images 
in the test set at the last fully connected layer of the optimal model and applied the t-SNE algorithm to reduce the data to two dimensions and 
show them in a scatter plot, along with some example images. AH atypical hyperplasia, EC endometrial cancer, EH endometrial hyperplasia without 
atypia, EP endometrial polyps, SM submucous myoma

Block1_Conv_1 Block1_Conv_2 Block1_MaxPool Block2_Conv_1Batch_Norm_1 Batch_Norm_2 Batch_Norm_3Input image

Block3_Conv_1 Block3_Conv_2 Block3_Conv_3Block2_MaxPoolBatch_Norm_4 Batch_Norm_5 Batch_Norm_6Block2_Conv_2

Block3_MaxPool Block4_Conv_1 Block4_Conv_2 Block4_Conv_3Batch_Norm_8 Batch_Norm_9 Batch_Norm_10Batch_Norm_7

Block5_Conv_1 Block5_Conv_2 Block5_Conv_3 Block5_MaxPoolBatch_Norm_12Batch_Norm_1 Batch_Norm_13Block4_MaxPool

Fig. 7  Feature heatmaps of a submucous myoma image output by the VGGNet-16 model. The sum feature maps output by each convolutional 
layer, batch normalization layer, and MaxPool layer of the VGGNet-16 model for a submucous myoma image in the test set were up-sampled and 
superimposed on the original image and displayed as feature heatmaps
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Prediction examples

EH AH EC EP SM

Predicted label

EH

AH

EC

EP

SM

T
lebal eur

Fig. 8  Example classification results output by the VGGNet-16 model. The x axis is the predicted label of the model’s output and the y axis is the 
histopathology result of these images. AH atypical hyperplasia, EC endometrial cancer, EH endometrial hyperplasia without atypia, EP endometrial 
polyp, SM submucous myoma

Table 3  Diagnostic performance of the VGGNet-16 model and gynecologists in the two-category classification task

AUC​ area under the receiver operating characteristic (ROC) curve

Classifier Sensitivity (%) Specificity (%) Precision (%) F1-score (%) AUC​ Accuracy (%)

VGGNet-16 83.0 96.0 93.3 87.8 0.944 90.8

Gynecologist 1 84.0 88.7 83.2 83.6 0.863 86.8

Gynecologist 2 76.0 86.7 79.2 77.6 0.813 82.4

Gynecologist 3 81.0 87.3 81.0 81.0 0.842 84.8
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a convincing diagnostic reference for gynecologists and 
effectively reduce the subjectivity of gynecologists’ diag-
noses. Although the CNN model is difficult to interpret 
[28], visualizing its calculations and outputs helps us to 
understand its working process.

In the absence of dynamic vision, diagnosis based 
only on static local hysteroscopy images led to lower 
sensitivity and specificity of the gynecologists’ diagno-
ses in this study as compared to results reported in a 
meta-analysis [29]. Given the appearance similarities 
of EH, AH, and EC endometrial lesions, it is relatively 
difficult for both the model and the gynecologists to 
distinguish between them. In actual clinical practice, 
hysteroscopists achieve better diagnostic performance 
through retrospective case data and dynamic vision. 
Gynecologists will give full consideration to the specific 
conditions of patients before performing hysteroscopy. 
For these difficult to distinguish endometrial lesions, 
gynecologists will actively advise patients to take path-
ological tissue specimens and submit them for exami-
nation during hysteroscopy to confirm the diagnosis 
and avoid over- or undertreatment. At this stage, the 
VGGNet-16 model in our study can only be used as an 
auxiliary diagnostic tool for gynecologists. Gynecolo-
gists can refer to the probability provided by the model 

and combine it with other clinical data to obtain a more 
accurate preliminary clinical diagnosis before the his-
topathological results are clear. In future research, we 
aim to implement a multimodal deep learning model 
that similarly combines case data and hysteroscopic 
images [30].

Machine learning and deep learning, an important 
branch of artificial intelligence, have also made out-
standing contributions in the medical field, such as 
in clinical prediction models and radiomics [31, 32]. 
Regardless of the research direction, these artificial 
intelligence technologies have considerable clinical 
application value. We believe that each technology plays 
a different role in diagnosis, treatment, and the predic-
tion of clinical outcomes. The integration of an artifi-
cial intelligence system into each medical subdiscipline, 
conforming to the clinical diagnosis and treatment pro-
cess, is the ultimate goal.

The results of this study have demonstrated the feasibil-
ity of applying deep learning techniques to the diagnosis 
of endometrial lesions. Although there is a gap between 
the diagnostic performance of the model and the histo-
pathological results in this study, under the experimental 
conditions of this study, the CNN model’s ability to clas-
sify hysteroscopic images slightly exceeded that of the 
gynecologists and can provide gynecologists with objec-
tive references.

There are some limitations to our research. First, this 
study included only the five most common endome-
trial lesions, and lesions with low incidence were not 
included. Moreover, all images were collected from the 
same endoscopic camera system of the same hospital, 
thus the images may lack diversity. Finally, no prospective 
validation was performed in this study. We speculate that 
by expanding the dataset samples, the retrained model 
should achieve better diagnostic performance and gener-
alization capability. Our group will collect more data at 
multiple centers to retrain the model and implement pro-
spective validation. The model that obtains better diag-
nostic performance will be considered for application to 
clinical practice.

Conclusions
In this study, we developed the first CNN-based CAD 
system for diagnostic hysteroscopy image classification. 
The VGGNet-16 model used in our study shows com-
parable diagnostic performance to expert gynecologists 
in classifying five types of endometrial lesion images. 
The model can provide objective diagnostic evidence 
for hysteroscopists and has potential clinical application 
value.

Fig. 9  Binary ROC curves of the VGGNet-16 model and 
gynecologists. Binary receiver operating characteristic (ROC) curves 
for classifying lesions as premalignant/malignant or benign. The 
model curve is shown as a gold line and the curves for gynecologists 
1, 2, and 3 are marked with purple, blue, and scarlet diamonds, 
respectively
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Table 4  Comparison of  direct/model-aided diagnostic performance of  the  gynecologists in  the  five-category 
classification task

AH atypical hyperplasia, AUC​ area under the receiver operating characteristic (ROC) curve, EC endometrial cancer, EH endometrial hyperplasia without atypia, EP 
endometrial polyp, SM submucous myoma

Category Sensitivity (%) Specificity (%) Precision (%) F1-score (%) AUC​ Accuracy (%)

Gynecologist 4

 EH 59.1 94.2 68.4 63.4 0.766 64.0

 AH 58.6 93.8 73.9 65.4 0.762

 EC 56.5 89.2 54.2 55.3 0.729

 EP 78.3 85.3 54.5 64.3 0.818

 SM 67.9 92.8 73.1 70.4 0.803

Model-aided gynecologist 4

 EH 82.1 93.8 79.3 80.7 0.880 78.4

 AH 47.6 98.1 83.3 60.6 0.728

 EC 77.8 94.9 80.8 79.2 0.863

 EP 92.6 90.8 73.5 82.0 0.917

 SM 86.4 95.1 79.2 82.6 0.908

Gynecologist 5

 EH 68.0 82.5 45.5 54.5 0.754 62.4

 AH 55.2 93.8 72.7 62.7 0.745

 EC 52.2 90.2 54.5 53.3 0.712

 EP 73.9 88.2 58.6 65.4 0.811

 SM 64.3 99.0 94.7% 76.6 0.816

Model-aided gynecologist 5

 EH 82.1 84.5 60.5 69.7 0.833 72.8

 AH 42.9 92.3 52.9 47.4 0.676

 EC 74.1 96.9 87.0 80.0 0.855

 EP 81.5 94.9 81.5 81.5 0.882

 SM 77.3 97.1 85.0 81.0 0.872

Gynecologist 6

 EH 59.1 96.1 76.5 66.7 0.776 69.2

 AH 58.6 85.4 54.8 56.7 0.720

 EC 52.2 92.2 60.0 55.8 0.722

 EP 91.3 93.1 75.0 82.4 0.922

 SM 78.6 92.8 75.9 77.2 0.857

Model-aided gynecologist 6

 EH 75.0 96.9 87.5 80.8 0.860 77.6

 AH 57.1 94.2 66.7 61.5 0.757

 EC 77.8 93.9 77.8 77.8 0.858

 EP 88.9 89.8 70.6 78.7 0.893

 SM 86.4 97.1 86.4 86.4 0.917
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