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Aquaporins (AQPs) are integral membrane proteins and found in all living organisms
from bacteria to human. AQPs mainly involved in the transmembrane diffusion of water
as well as various small solutes in a bidirectional manner are widely distributed in various
human tissues. Human contains 13 AQPs (AQP0–AQP12) which are divided into three
sub-classes namely orthodox aquaporin (AQP0, 1, 2, 4, 5, 6, and 8), aquaglyceroporin
(AQP3, 7, 9, and 10) and super or unorthodox aquaporin (AQP11 and 12) based on their
pore selectivity. Human AQPs are functionally diverse, which are involved in wide variety
of non-infectious diseases including cancer, renal dysfunction, neurological disorder,
epilepsy, skin disease, metabolic syndrome, and even cardiac diseases. However, the
association of AQPs with infectious diseases has not been fully evaluated. Several
studies have unveiled that AQPs can be regulated by microbial and parasitic infections
that suggest their involvement in microbial pathogenesis, inflammation-associated
responses and AQP-mediated cell water homeostasis. This review mainly aims to shed
light on the involvement of AQPs in infectious and non-infectious diseases and potential
AQPs-target modulators. Furthermore, AQP structures, tissue-specific distributions and
their physiological relevance, functional diversity and regulations have been discussed.
Altogether, this review would be useful for further investigation of AQPs as a potential
therapeutic target for treatment of infectious as well as non-infectious diseases.

Keywords: human aquaporins, aquaporins and infectious diseases, water homeostasis, functional regulation,
drug targets

INTRODUCTION

Aquaporins (AQPs) are channel-forming integral membrane proteins and found in all living
organisms from bacteria to human (Agre et al., 1998; Azad et al., 2011b, 2016, 2018, 2021) and even
in chlorella virus (Gazzarrini et al., 2006). AQPs mainly facilitate the transmembrane diffusion of
water as well as various small solutes and are involved in cellular trafficking and many physiological
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processes (Hedfalk et al., 2006; Törnroth-Horsefield et al., 2006;
Azad et al., 2008; Törnroth-Horsefield et al., 2010; Janosi and
Ceccarelli, 2013; Kaptan et al., 2015; Pelagalli et al., 2016;
Canessa Fortuna et al., 2019). Functionally diverged human
AQPs are involved in wide variety of non-infectious diseases
including cancer, renal dysfunction, neurological disorder,
epilepsy, skin disease, metabolic syndrome, and even cardiac
diseases (Verkman et al., 2008a,b, 2014; Verkerk et al., 2019).
Growing data suggest their possible involvement in cell volume
regulating events associated with various non-infectious diseases
(Verkman et al., 2014; Pelagalli et al., 2016; Meli et al.,
2018). Consequently, AQPs have become a potential drug
target in clinical medicine (Verkman, 2012; Verkman et al.,
2014; Esteva-Font et al., 2016; Méndez-Giménez et al., 2018;
Abir-Awan et al., 2019).

Many studies and several reviews have been done on the
involvement of AQPs and their regulations in non-infectious
diseases. However, limited studies have been done involving
AQPs in infectious diseases although studies on plant-pathogens
interactions involving AQPs have been advanced (Wang R.
et al., 2018; Zhang et al., 2019; Li et al., 2020; Xu and
Zwiazek, 2020). An infectious disease, an illness caused by
bacteria, virus, fungi or parasite, is one of the foremost
reasons of morbidity and mortality in individuals worldwide.
The pathogen can spread and shed in different parts of
the body as shown in Figure 1 and develop systematic or
localized infection. Furthermore, dysbiosis of human microbiota
imparts significant metabolic and immunologic perturbations
on the host leading to many local and systemic diseases
(Liang et al., 2018). Both acute and chronic inflammatory
processes induced by microbial infections involve disbursement
of huge metabolic energy, loss of function, tissue damage
and destruction, vascular leakage and hemorrhages (Akıncı
et al., 2013; Molinas et al., 2016; Meli et al., 2018). Infection-
induced cell migration, production, and accumulation of effector
molecules to the infected sites change the cell morphology,
volume and movement, which are associated with alteration of
cellular and tissue homeostasis (Medzhitov, 2008). The inability
of cells to regulate fluid movement through the biological
membranes results in imbalanced homeostasis and leads to severe
alteration of cell physiology (Meli et al., 2018). Cells regulate their
shapes and volume, and control homeostasis by utilizing water,
the most abundant molecule in the body. Therefore, AQPs might
have crucial roles for controlling cellular volume and homeostasis
in infectious diseases.

Based on the recent studies so far done on the involvement
of AQPs in infections, we herein discuss the potential roles
of AQPs in infectious diseases, infection-induced inflammatory
process, and in maintenance of infection-mediated loss of cellular
homeostasis or tissue damage. Furthermore, the structural and
functional diversity of human AQPs and their roles in non-
infectious diseases, and finally AQPs as the potential drug targets
are also discussed. Discussions on the roles of AQPs in infectious
and non-infectious diseases in the same review will stimulate
researchers to focus and explore AQPs in infectious diseases. To
the best of our knowledge, it is the first review to focus on the
involvement of AQPs in infectious diseases.

STRUCTURAL PROPERTIES OF HUMAN
AQUAPORINS

Although the amino acid sequences differ substantially, the
structure of AQPs is highly conserved having a common
tetrameric arrangement; each subunit behaves as a functional
channel (Murata et al., 2000; Gomes et al., 2009; Schenk et al.,
2010; Azad et al., 2016, 2018). However, a fifth pore is formed
in the center of the tetramer. Each monomer is constituted of
six transmembrane (TM) α-helices (H1–H6) with five connecting
loops (loops LA–LE) and cytoplasmic N- and C-termini and
form an individual pore that specifies the transport activity
(Figure 2). There are two main constrictions in the channel. The
first constriction is formed by two highly conserved Asn-Pro-
Ala (NPA) motifs on loops B and E that is involved in proton
exclusion (Sui et al., 2001; Tajkhorshid et al., 2002). Both NPA
motifs protrude into the membrane from opposite side and form
the seventh pseudo TM helix. The second constriction, called
the aromatic/arginine (ar/R) selectivity filter, is formed by four
residues from helix H2 and H5, and loop E (LE1 and LE2)
(Fu et al., 2000; Heymann and Engel, 2000; Sui et al., 2001;
Tajkhorshid et al., 2002; Kitchen et al., 2019). Substitutions at
this ar/R selectivity filter are thought to determine the broad
spectrum of substrate conductance (Beitz et al., 2006; Azad et al.,
2012). While all AQPs share the same structural core architecture,
there are some distinct structural variations in loops and the N-
and C-termini suggesting their functional and/or regulatory roles
(Gonen and Walz, 2006; Azad et al., 2021).

TISSUE-SPECIFIC DISTRIBUTION AND
PHYSIOLOGICAL RELEVANCE OF
HUMAN AQUAPORINS

The complete tissue-specific distribution of AQPs throughout the
human body and their physiological relevance are summarized
(Figure 1 and Table 1). Several AQP isoforms (AQP1, 3, 4, 5,
7, 8, 9, and 11) are expressed in the brain and nervous system,
however, AQP1 and AQP4 show relatively higher expression in
the brain (Filippidis et al., 2016; Shchepareva and Zakharova,
2020). AQP1 is expressed in epithelial cells of the choroid plexus
and plays a role in cerebrospinal fluid (CSF) formation (Brown
et al., 2004). AQP1 is also present in primary sensory neurons
and is proposed to be involved in pain perception (Borsani,
2010; Zhang and Verkman, 2010). AQP4 is found at the border
between parenchyma and fluid-filled compartments and, more
specifically, in astrocyte cell membranes, ependymal cells, and
osmosensory areas of the hypothalamus (Jung et al., 1994; Xu
et al., 2017). Eight (AQP0, 1, 3, 4, 5, 7, 9, and 11) of the 13 human
AQPs are found in the eye (Figure 1; Tran et al., 2013; Schey
et al., 2014). These AQPs perform various physiological roles such
as maintenance of transparent cornea and lens, corneal wound
healing, maintaining tear film osmolarity and retinal homeostasis
(Schey et al., 2014). Nine AQPs (AQP1, 2, 3, 4, 5, 6, 8, 10,
and 11) have been reported in human ear which are involved
in neuronal signal transduction, regulating cell movement and
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FIGURE 1 | Infection route, spreading and shedding at different organs of the body and tissue-specific distribution of AQPs. The roles of AQPs in non-infectious
diseases such as different cancers and tumors, cerebral edema and ischemic stroke, obesity, renal and skin diseases, and cataracts have been widely studied. At
least 10 AQPs of different organs are associated with bacterial, viral, and parasitic infections. Expressions of AQPs in infectious diseases are summarized in Table 2
of the current review.

lipid metabolism as well as immunological functions (Jung
et al., 2017). Six AQPs are found in the skin, which are
distributed to epidermis (AQP1, 3, 7, and 10), dermis (AQP1,
3, and 5), and hypodermis (AQP7) (Patel et al., 2017). Skin
AQPs are associated with skin hydration, cell proliferation and
differentiation, migration, immunity, and wound healing (Boury-
Jamot et al., 2009; Sebastian et al., 2015; Bollag et al., 2020).
Specifically, AQP3 is involved in epidermal cell proliferation
and migration; AQP1 controls water movement between blood
and dermis to maintain hydration; AQP5, found in both epical
and basolateral membranes of the sweat gland is involved in
water secretion; AQP7 plays important role to release glycerol
from adipocytes for energy production and AQP9 facilitates the
transport of glycerol, urea, and H2O2 for defense mechanism
(Patel et al., 2017).

Nine AQPs (AQP1, 2, 3, 4, 5, 6, 7, 8, and 11) are expressed
in kidneys to maintain the body water homeostasis, tissue
development together with metamorphosis of various substances.
Kidney AQPs play important roles in both the short- and long-
term regulation of water balance (He and Yang, 2019; Su et al.,
2020). AQP1 is one of the most abundant AQPs in the kidney,
which is involved in water reabsorption in various segment of the
kidney such as loop of Henle, apical and basolateral membranes
of proximal tubules and vasa recta (Su et al., 2020). The remaining
kidney AQPs are found in collecting duct and proximal tubule
(Matsuzaki et al., 2017). Eight AQPs namely AQP1, 3, 4, 5, 7,

9, 10, and 11 are found in cardiovascular system (Figure 1).
These AQP homologs located to the heart, endothelial cells,
and vascular smooth muscle participate in the transportation
of water, glycerol, and lactic acid, which play pivotal roles in
cardiac physiology (Butler et al., 2006; Verkerk et al., 2019;
Montiel et al., 2020). Ten AQPs (AQP0, 1, 2, 3, 4, 5, 7, 8,
9, and 11) expressed in male reproductive system (Figure 1)
act as water, glycerol and ion channel during various process
involved such as spermatogenesis, sperm osmoadaptation, and
folliculogenesis (Day et al., 2014; Carrageta et al., 2020). These
AQPs are localized in various sections of the male reproductive
system including epididymis, testis, efferent ducts, prostate,
seminiferous tubules, seminal vesicles, germ cells, sertoli cells,
spermatids, spermatozoa, and vas deferens (Carrageta et al.,
2020). AQP1, 2, 3, 4, 5, 6, 7, 8, 9, 11, and 12 have been
shown to be expressed in different segments of the female
reproductive system such as vagina, cervix, uterus, oviduct, ovary,
oocyte, embryo, amnion, and chorion (Kordowitzki et al., 2020).
Various types of biological process of the female reproductive
system are conducted through AQPs like vaginal lubrication,
sperm movement and implantation, and follicular development
(Kordowitzki et al., 2020). In human digestive system, eleven
AQP isoforms are found except AQP6 and 12 (Zhu et al.,
2016; Liao et al., 2020). The most prolific AQP in the digestive
system is AQP1 which is found in all organs including small and
large intestine, salivary gland, oral cavity, esophagus, stomach,
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TABLE 1 | Human AQPs major characteristics from chromosomal location to physiological relevance with the pathophysiological phenotypes due to their dysregulation, mutation, and dysfunction.

AQPs Chromosomal
location

Exon
number

Permeability Tissue expression Physiological function Pathophysiological phenotype due to
dysregulation, mutation, and dysfunction

of AQPs

References

AQP0 12q13 8 Water, CO2,
ascorbic acid,

cations

Eye Corneal and lens
transparency and

homeostasis

Cataract Kannan et al., 2001;
Verkman et al., 2008b; Day
et al., 2014; Li and Wang,
2017; Laloux et al., 2018

AQP1 7p14 7 Water, monovalent
cations, H2O2,
CO2, NO, NH3

Brain, eye, kidney,
trachea, heart, lung,
gastrointestinal tract,

salivary gland, pancreas,
liver, ovary, testis, muscle,

erythrocytes, spleen

Osmotic water flux in
tissues including eye,
brain (choroid plexus),

kidney and the vascular
system

Diuresis, reduced tumor angiogenesis, reduced
intraocular pressure, reduced CSF secretion,

reduced nociception, astrocytoma,
cholangiocarcinoma; breast, cervical,
colorectal, lung, ovarian, laryngeal and

nasopharyngeal cancers

Boassa and Yool, 2003;
Day et al., 2014; Li and

Wang, 2017; Laloux et al.,
2018

AQP2 12q13 4 Water Kidney, ear, ductus
deferens

Maintains urine
concentration and water

homeostasis in renal
system

Nephrogenic diabetes insipidus; congestive
heart failure, liver cirrhosis and pre-eclampsia

Radin et al., 2012; Li and
Wang, 2017; Laloux et al.,

2018

AQP3 9p13 6 Water, urea,
glycerol, ammonia,

silicon, arsenite,
H2O2

Kidney, brain, trachea,
heart, ovary, eye, salivary

gland, gastrointestinal
tract, liver, Respiratory

tract, brain,

Water and glycerol
channel, facilitates skin

hydration and also
involved in cell migration

during wound healing

Diuresis, dry skin, reduced growth of skin
tumors, impaired skin wound healing, impaired
regeneration of colonic epithelium and impaired

leukocyte function; colorectal, cervical, liver,
lung, esophageal cancers

Day et al., 2014; Li and
Wang, 2017; Marlar et al.,
2017; Laloux et al., 2018

erythrocyte, fat, spleen

AQP4 18q22 6 Water, CO2 Brain, eye, kidney,
salivary gland, heart,
gastrointestinal tract,

muscle, trachea

Controls brain and kidney
water homeostasis; cell
migration, brain edema,

metabolism and cell
homeostasis

Reduced cytotoxic or increased vasogenic
CNS edema, accelerated obstructive

hydrocephalus, increased seizure threshold and
duration, deafness and anosmia; meningioma,

astrocytoma, breast, and lung cancer

Day et al., 2014;
Papadopoulos and

Saadoun, 2015; Li and
Wang, 2017; Laloux et al.,

2018

AQP5 12q13 5 Water, H2O2, CO2 Salivary gland, eye,
trachea, lung,

gastrointestinal tract,
ovary, kidney

Controls water
homeostasis

Reduced saliva secretion, reduced airway
submucosal secretion, thin cornea and reduced

tear volume; ovarian, breast, colorectal,
cervical, leukemia, liver, lung, esophageal

cancers

Day et al., 2014; Direito
et al., 2016; Li and Wang,
2017; Laloux et al., 2018

AQP6 12q13 4 Water, urea, anion,
ammonia, CO2,

glycerol

Brain, kidney Glomerular filtration,
tubular endocytosis, and
acid-base metabolism

Not yet reported Yasui et al., 1999; Day
et al., 2014; Li and Wang,
2017; Laloux et al., 2018;

Shchepareva and
Zakharova, 2020

AQP7 9p13 10 Water, urea,
glycerol, ammonia,
arsenite, antimonite

and silicon

Testis, heart, kidney,
ovary, fat

Energy homeostasis;
spermatogenesis;

facilitates glycerol efflux
from adipocytes, prevent
intracellular glycerol, and
triglyceride accumulation

Obesity, insulin resistance, and
hyperglyceroluria

Verkman, 2012; Day et al.,
2014; Li and Wang, 2017;
Iena and Lebeck, 2018;

Laloux et al., 2018

(Continued)
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TABLE 1 | Continued

AQPs Chromosomal
location

Exon
number

Permeability Tissue expression Physiological function Pathophysiological phenotype due to
dysregulation, mutation, and dysfunction

of AQPs

References

AQP8 16p12 6 Water, urea,
ammonia, H2O2,

and glycerol

Testis, liver, pancreas,
ovary, lung, and kidney

Water trafficking from
lumen to the interstitium
by a transcellular route;
modulates membrane

water permeability

Astrocytoma, colorectal and liver cancers,
cerebral edema, inflammatory bowel diseases

Day et al., 2014; Pelagalli
et al., 2016; Laloux et al.,
2018; Prata et al., 2019;

Escudero-Hernández et al.,
2020; Shchepareva and

Zakharova, 2020

AQP9 15q22 6 Water, urea,
glycerol, arsenite,
H2O2, antimonite,
silicon, lactic acid,

and CO2

Liver, spleen, testis, ovary, Regulates neutrophil cell
migration; maintains
energy balance in

neurons by enabling the
diffusion of glycerol and

monocarboxylates;
metabolic regulation in
diabetes and obesity

Hyperglycerolaemia and reduced red cell
glycerol permeability; astrocytoma, liver, and

ovarian cancer

Li and Wang, 2017; Laloux
et al., 2018; Shchepareva

and Zakharova, 2020

leukocyte

AQP10 1q21 6 Water, urea,
glycerol, arsenic,
antimonite, silicon

Intestine, keratinocytes of
the epidermis, adipose

tissue

Carrier and channel for
glycerol and other solutes

transport

Not yet reported Day et al., 2014; da Silva
and Soveral, 2017; Li and
Wang, 2017; Laloux et al.,

2018

AQP11 11q13 3 Water and glycerol Testis, heart, kidney,
ovary, muscle,

gastrointestinal tract,
leukocytes, liver, and

brain

Maintains normal urine
concentration and renal

function

Polycystic kidneys and Day et al., 2014; Li and
Wang, 2017; Laloux et al.,

2018; Han et al., 2019

hepatocyte vacuolization,

chronic kidney disease

AQP12 2q37 4 Not yet reported Pancreas Not yet reported Pancreatitis Ohta et al., 2009; Day
et al., 2014; Li and Wang,
2017; Laloux et al., 2018
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FIGURE 2 | The structure of AQP monomer and homotetramers. A schematic representation of the general structures of AQP is shown (A–C). (A) Each AQP
monomer has six transmembrane domains (1–6) spanning the plasma membrane, which are connected with five loops (A–E). (B) Two conserved NPA motifs in loops
B and E are juxtaposed oppositely to form the channel through which molecules are passed. (C) Each AQP monomer contains independent pore (shown as blue
arrow) and the monomers are assembled as tetramers to form a central pore (shown as green arrow). (D) Side view of the structure of the human AQP1 monomer,
which shows six transmembrane α-helices (TM1-6) including pseudo TM (LE and LB) that are connected with five different loops (A–E). (E) The top view of the human
AQP1 is shown. The residues (F56, H180, C189, and Arg195) in the ar/R constriction and two NPA motifs (yellow and cyan) are shown in sticks. (F) The top view of
the AQP homotetramers with filled amino acid residues is shown. The pore of each monomer and the central pore of the homotetramers are shown as white circles.

liver, gall bladder, bile duct, and pancreas (Zhu et al., 2016;
Liao et al., 2020). Their extensive distribution indicates their
wide range of biological functions like water and glycerol
transportation, saliva excretion, adipose absorption, pancreatic
excretion, cellular proliferation, migration, invasion, apoptosis,
gastric acid secretion, and cellular signaling (Liao et al., 2020).
AQP1, 3, and 4 are expressed in skeletal muscle (Figure 1).
The localization of AQP1 and AQP4 within the muscle tissue
suggests their possible function as water channel during muscular
contraction (Au et al., 2004; Frigeri et al., 2004; Mobasheri et al.,
2004). AQP1 and AQP3 identified within the nucleus pulposus
cells of the human intervertebral disk might be involved in cell
swelling during mechanistic load (Frigeri et al., 2004; Rutkovskiy
et al., 2013). AQP9 is found in osteoclast cells, astrocytes,
and catecholaminergic neurons; however, it is not essential for
osteoclast function or differentiation under normal physiological
conditions (Rutkovskiy et al., 2013; Halsey et al., 2018).

FUNCTIONAL DIVERSITY AND
REGULATION OF HUMAN AQUAPORINS

Aquaporins facilitate the transport of water and other small
solutes such as glycerol, nitrate, urea, ammonia, H2O2, CO2,

O2, arsenic, antimony, silicon, sodium ion, and aluminum
malate (Table 1, Liu et al., 2002; Carbrey and Agre, 2009;
Garneau et al., 2015; Byrt et al., 2017; Wang et al., 2017);
some are physiologically important and some are toxic heavy
metals (Bienert and Chaumont, 2011; Mukhopadhyay et al.,
2014; Perez Di Giorgio et al., 2014; Finn and Cerdà, 2015).
While AQPs play important physiological roles in humans,
their mutations, malfunction or dysfunction, and dysregulation
generate a lot of pathophysiological phenotypes leading to many
severe diseases (Table 1). The transcellular water movement is
strongly organized by the amount and activity of AQPs present
in cellular membranes, and the movement of water molecules
is occurred based on the osmotic gradient (Chaumont and
Tyerman, 2014). All thirteen AQPs reported in human (AQP0–
12) to date, are usually classified into three groups: orthodox
AQPs (AQP0, 1, 2, 4, 5, 6, and 8), aquaglyceroporins (AQP3, 7, 9,
and 10), and the unorthodox AQPs also called superaquaporins
(AQP11 and 12) (Soto et al., 2012; Abascal et al., 2014; Finn et al.,
2014; Finn and Cerdà, 2015). It has been reported that AQP3, 8,
9, and 11 are capable of facilitating the diffusion of H2O2 (Miller
et al., 2010; Hara-Chikuma et al., 2012a; Bienert and Chaumont,
2014; Medraño-Fernandez et al., 2016; Watanabe et al., 2016;
Bestetti et al., 2020; Hara-Chikuma et al., 2020), and the AQP-
facilitated H2O2 transport is involved in psoriasis development
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and teleost spermatozoon motility (Chauvigné et al., 2015; Hara-
Chikuma et al., 2015; Thiagarajah et al., 2017). AQP1, 3, 6, 7, 8, 9,
and 10 are permeable to ammonia (Litman et al., 2009; Finn and
Cerdà, 2015). The ammonia transporting mechanism is not yet
fully resolved but some experimental data show that ammonia is
transported in its neutral form, NH3. Aquaglyceroporins (AQP3,
7, 9, and 10) and AQP6 are also reported to transport the urea,
which might be involved in energy metabolism (Litman et al.,
2009). Human AQPs have been shown to facilitate diffusion of
arsenite at neutral pH. Arsenite is used as a chemotherapeutic
agent for acute promyelocytic leukemia and diseases caused by
protozoan parasites because of its toxic properties to the cells
(Rosen and Tamás, 2010). AQP3, 7, 9, and 10 have also been
reported to facilitate the transport of antimonite (Liu et al.,
2002). The overexpression of AQP has been shown to increase
the uptake of antimonite and hypersensitivity of leukemia as
well as lung adenocarcinoma cell lines (Bhattacharjee et al.,
2004; Mukhopadhyay et al., 2014). Several studies reported that
AQP0, 1, 4, 5, and 6 are involved in CO2 transport (Table 1).
Recently, AQP1 has been shown to facilitate O2 transport by
the spectrophotometric assay using yeast spheroplasts (Zwiazek
et al., 2017). AQP1 is also reported to transport the nitric oxide
(NO) (Herrera et al., 2006). In Xenopus oocytes, human AQP1
led to a PKA-activated and/or cGMP-activated ion permeability
by its phosphorylation (Yool et al., 1996). Additionally, AQP6
acts as an anion channel, which is activated by low pH or Hg2+

(Hazama et al., 2002). The ion channel activity of AQPs could
play a vital role for several pathophysiological processes including
tumor progression (Saadoun et al., 2005a). It is speculated that
the central pore of AQP tetramer could be the channel for
transporting gases and ions (Hub and de Groot, 2006; Hub and
de Groot, 2008). However, gases or ions permeation activities
of AQPs are still controversial and required to be further
investigated to figure out the physiological relevance of these new
putative substrates. Two orthodox AQPs (AQP1 and 5) and four
aquaglyceroporins (AQP3, 7, 9, and 10) expressed in the skin
facilitate the transport of water and some other small solutes such
as glycerol, which play critical roles in regulating numerous skin
parameters (Boury-Jamot et al., 2006, 2009; Patel et al., 2017).

Aquaporins are synthesized and inserted in the endoplasmic
reticulum membrane and finally localized to the target membrane
via the secretory Sec61 translocon present in all domains of life
(Pitonzo and Skach, 2006; Azad et al., 2011a). Their activity needs
to be properly regulated in the target membrane to keep the
nutrient homeostasis in cells (Chaumont and Tyerman, 2014).
Presence of several AQPs in human suggests their multiple
functions in cellular and organs levels. Some AQPs are present
in intracellular vesicles, but can relocate later in the PM. For
instance, AQP2 and AQP8 relocate to the PM from intracellular
vesicles in renal collecting ducts and rat hepatocytes in response
to vasopressin and cAMP, respectively (Marples et al., 1995;
Nielsen et al., 1995). Some AQPs have intracellular functions,
i.e., AQP8 and 9 were detected in the mitochondrial membrane
(Amiry-Moghaddam et al., 2005; Calamita et al., 2005; Molinas
et al., 2012). AQP trafficking is very dynamic process that at
first targets the PM and removes it from the membrane for
degradation or recycling in the endosome. Interestingly, the

mislocalization of AQPs could lead to some human congenital
disorders i.e., nephrogenic diabetes insipidus (NDI) is caused
by AQP2 mislocalization (Bichet et al., 2012). The localization
of AQP4, the predominant AQP isoform in the brain, relies
on two C-terminus motifs namely a tyrosine motif (Yxx8; 8,
V/L/I/F) and a dileucine-like motif. Upon mutation of any of
the two motifs to alanine, AQP4 was relocated to the apical
membrane instead of the basolateral membrane (Matter et al.,
1992; Hunziker and Fumey, 1994). Phosphorylation is one of
the important regulatory mechanisms that is involved in both
gating and trafficking of AQPs (Li and Wang, 2017; Santoni, 2017;
Takano et al., 2017). The precise relocalization of AQP2 to the PM
from intracellular vesicles under vasopressin treatment involves
the phosphorylation of the C-terminus Ser256 (Fushimi et al.,
1997; van Balkom et al., 2002). However, the phosphorylation
of Ser261 was found in vesicle-localized AQP2, which need to
be dephosphorylated for PM relocation (Hoffert et al., 2007; Lu
et al., 2008; Tamma et al., 2011). On the other hand, AQPs
recycling is an important process for cells, and AQPs have been
shown to be ubiquitinated to control its degradation (Leitch
et al., 2001). For example, AQP2 is ubiquitinated at Lys270,
which triggers its internalization in kidney collecting duct cells
(Kamsteeg et al., 2006).

ROLES OF AQUAPORINS IN
INFECTIOUS DISEASES

Pathogenic bacteria, fungi, virus, and parasites can cause systemic
infection and spread to different organs of the body (Figure 1).
Sepsis, the most common cause of death, appears as a clinical
syndrome following a local infection accompanied with an
appropriate inflammatory response and becomes amplified with
detrimental effects on the whole body leading to dysfunction
of numerous organs (Keel, 2014). Sepsis displayed by two or
more systemic inflammatory response syndrome (SIRS) increases
the risk of secondary infection. However, the immune system
becomes stimulated in response to both local and systemic
infection, which may influence the expression and function of
AQPs to maintain cellular and tissue homeostasis (Table 2).

Bacterial Infections and AQPs
Bacteremia or septicemia occurs when bacteria spread in the
bloodstream following a bacterial infection elsewhere in the body,
such as the skin or lungs and so on. This is very precarious as
the bacteria including their toxins can be carried through the
bloodstream to the entire body. Bacteria are a prominent source
of both endotoxins and exotoxins, which lead to severe sepsis and
death (Opal, 2007; Ramachandran, 2014).

Bacterial endotoxins such as lipopolysaccharide (LPS) serve
as an important stimulator to regulate the expression of
human AQPs (Rump and Adamzik, 2018). Vassiliou et al.
(2013) reported that expression of AQP1 is increased twofold
in leukocytes in response to sepsis in patients of intensive
care unit (ICU) (Table 2). They showed in vitro that
LPS stimulates polymorphonuclear granulocytes (PMNs) for
increased expression of AQP1, and the LPS-stimulated PMNs
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TABLE 2 | Regulation of expression of AQPs during infectious diseases.

AQPs Tissue Infectious agents Regulation of
expression

Disease Experimental species References

AQP1 Leukocytes Lipopolysaccharide
(LPS)

↑ Sepsis Human Vassiliou et al.,
2013

THP-1 cells LPS, Terbutaline ↑ Endotoxemia Mice Rump et al., 2013

Kidney LPS Deficient Acute kidney injury (AKI) Mice Montiel et al., 2014

Lung epithelia cells Adenovirus ↓ Bronchitis Mouse Towne et al., 2000

Human liver tissues Hepatitis B virus ↑ Liver cirrhosis Human Xian et al., 2009

Rotavirus ↓ Infantile gastroenteritis Mouse Cao M. et al., 2014

Heart LPS Deficient Cardiac hypertrophy Mice Madonna et al.,
2012

Cervix HPV ↑ Cervical cancer Human Chen et al., 2014

Lung cells LPS ↓ Sepsis Rat Tao et al., 2016

AQP2 Kidney LPS ↓ Endotoxemia-induced
AKI

Rat Grinevich et al.,
2004; Chagnon

et al., 2008; Olesen
et al., 2009

Colon E. coli Mislocalization Diarrhea Mouse Zhu et al., 2016

Colon C. rodentium Mislocalization Diarrhea Mice Guttman et al.,
2007

Kidney LPS ↓ AKI Rat Chagnon et al.,
2008; Cui et al.,
2011; Rodrigues
et al., 2012; Suh

et al., 2015

AQP3 THP-1 cells LPS ↓ Diarrhea Human colon epithelial
cells

Li et al., 2015

Duodenum V. cholera ↓ Diarrhea Human epithelial cells Flach et al., 2007

Squamous epithelial
cells, Lymph node

Epstein-Barr virus Nasopharyngeal
carcinoma and

lymphoma

Human Wang J. et al.,
2018

Colon AQP inhibitor ↓ Diarrhea Rat Ikarashi et al., 2012

HT-29 cells LPS Inhibition Diarrhea Rat Li et al., 2015

Colon E. coli Mislocalization Diarrhea Mouse Zhu et al., 2016

Cervix HPV ↑ Cervical cancer Human Chen et al., 2014

Gastric mucosa H. pylori ↑ Gastric cancer Rat Wang G. et al.,
2012; Wen et al.,

2018

Colon HgCl2 and CuSO4 Inhibition Diarrhea Rat Ikarashi et al., 2012

Colon C. rodentium Mislocalization Diarrhea Mice Guttman et al.,
2007

Liver Plasmodium spp. Relocalization Malaria Human hepatoma cells,
Rat

Bietz et al., 2009;
Posfai et al., 2018,

2020

AQP4 Brain LPS ↑ Brain edema Mice Du et al., 2014

Brain Endotoxin, Systemic
sepsis

↑ Brain edema Animals Davies, 2002

Intestinal epithelial cells Rotavirus ↓ Infantile gastroenteritis Mouse Cao M. et al., 2014

Brain Dengue virus ↑Anti-AQP4 NMOSD Human Lana-Peixoto et al.,
2018

Astrocyte HIV ↑ HIV-Dementia Human St Hillaire et al.,
2005

Brain Herpes simplex virus ↓ Encephalitis Mice Martinez Torres
et al., 2007

Astrocyte SHIV ↓ Cortical degeneration Macaques Xing et al., 2017

Brain (Protective role) P. berghei ↓ Cerebral malaria Mice Promeneur et al.,
2013

Liver S. japonicum ↓ Schistosomiasis Mice Zhang et al., 2015

(Continued)
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TABLE 2 | Continued

AQPs Tissue Infectious agents Regulation of
expression

Disease Experimental species References

AQP5 THP-1 cells LPS ↓ Sepsis Mice Rump et al., 2013

Bronchial epithelial cells LPS ↓ Bronchitis Human bronchial
epithelial cells

Shen et al., 2012

Lung epithelial cells Adenovirus ↓ edema Mouse Towne et al., 2000

Lung cells LPS ↓ Sepsis Rat Tao et al., 2016

AQP6 C3H10T1/2 chimeric
cells

Hazara virus ↓ Severe hemorrhagic
manifestations

Human Molinas et al., 2016

AQP7 Colons Dextran sodium sulfate ↓ Colonic injury Mouse, Human Hardin et al., 2004

AQP8 Lung cells LPS ua Pulmonary injury Rat Kang et al., 2017

Jejunum E. coli and LPS ↓ Diarrhea Piglet Loos et al., 2012;
Hou et al., 2013

Intestinal epithelial cells Rotavirus ↓ Infantile gastroenteritis Mouse Cao M. et al., 2014

Small intestine cholera toxin ↓ Diarrhea Rat Flach et al., 2004

↓ Colonic injury Mouse, Human Hardin et al., 2004

Sperm cells Human papilloma virus Inhibition Male sub-fertility Human Pellavio et al., 2020

Liver LPS ↓ Cholestasis Rat Lehmann et al.,
2008

AQP9 Lung cells LPS ua Pulmonary injury Rat Kang et al., 2017

Brain LPS ↑ Edema Rat Wang et al., 2009

Leukocyte LPS ↑ Endotoximia Human Talwar et al., 2006

Leukocyte N-formylmethiony
lleucylphenylalanine

↑ Systemic inflammatory
response syndrome

(SIRS)

Human Matsushima et al.,
2014

Brain HSV-1 ↑ Encephalitis Rat Jennische et al.,
2015;

Bello-Morales et al.,
2020

Macrophages P. aeruginosa ↑ Bacterial infection Human Holm et al., 2015,
2016

Blood Bacterial LPS ↑ Endocarditis Human Talwar et al., 2006;
Thuny et al., 2012

Liver Plasmodium spp. Relocalization Malaria Mice Liu et al., 2007

AQP10 Duodenum Cholera toxin ↓ Diarrhea Human Flach et al., 2007

↑, up-regulation; ↓, down-regulation; ua, unaffected.

transiently increased cell volume upon hypotonic treatment. LPS
exposure to cell lines also increased the expression of AQP1
but decreased that of AQP3 and AQP5 (Rump et al., 2013; Li
et al., 2015). However, another study showed that LPS decreased
the expression of AQP5, but not AQP3 and AQP4 in human
primary bronchial epithelial cells (Shen et al., 2012). In LPS
induced-endotoxemia, expression of AQP1 in the kidney and
heart might have a protective role because mice deficient in
AQP1 revealed predisposition to endotoxemia-induced acute
kidney injury (AKI) (Wang et al., 2008) and cardiac hypertrophy
(Madonna et al., 2012; Montiel et al., 2014), respectively (Table 2).
However, upon exposure of LPS, expression of AQP1 and AQP5
is decreased in lung cells but that of AQP8 and AQP9 remains
unaffected (Fisher et al., 2012; Ma and Liu, 2013; Tao et al.,
2016; Kang et al., 2017). In animal models, several studies
showed that LPS-induced endotoxemia down-regulated AQP2
expression in kidney (Grinevich et al., 2004; Chagnon et al., 2008;
Olesen et al., 2009). However, pretreatment of model animals
with continuous erythropoietin receptor activator or propofol

or α-lipoic acid prevents AQP2 down-regulation and protects
against endotoxemia-induced AKI (Chagnon et al., 2008; Cui
et al., 2011; Rodrigues et al., 2012; Suh et al., 2015). While LPS-
induced TNF-α down-regulates AQP8 in rat liver (Lehmann
et al., 2008), systemic bacterial LPS stimulates up-regulation of
AQP9 in rat brain (Wang et al., 2009). The LPS-induced TNF-
α-mediated down-regulation of AQP8 in hepatocytes has been
proposed as a potential molecular mechanism for pathogenesis
of sepsis-associated cholestasis (Lehmann et al., 2008; Marinelli
et al., 2011). The up-regulation of AQP9 expression is suggested
to exert important roles in water transport associated with
the pathophysiology of brain edema induced by LPS injection
(Wang et al., 2009). Furthermore, the up-regulation of AQP4
in brain in response to LPS may aggravate the brain edema
(Du et al., 2014). AQPs are supposed to play important role
in septic encephalopathy associated with brain edema (Davies,
2002). It has been shown that AQP9 is up-regulated in blood
leukocytes in response to intravenous bacterial LPS (Talwar
et al., 2006). The expression of this homolog is increased in
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patients SIRS compared to healthy individuals (Matsushima et al.,
2014), and in infective endocarditis patients (Thuny et al., 2012).
Furthermore, Pseudomonas aeruginosa produces quorum sensing
molecules and induce increased expression, distribution and
reorganization of AQP9 in macrophages by changing the cell
volume accompanied water fluxes across cell membrane through
AQP9 (Holm et al., 2015, 2016) (Table 2). These events affect
cell migration and phagocytosis which may have influence on the
immunity, outcome of infection, inflammation, and thus disease
development (Holm et al., 2015, 2016).

Expression of several AQPs is changed during diarrhea caused
by enteropathogenic and enterohemorrhagic Escherichia coli,
their LPS and enterotoxin of Vibrio cholerae (Flach et al., 2007;
Zhu et al., 2016). Bacteria introduced into the body through
oral ingestion of contaminated water or food colonize in the
intestinal epithelial cells and employ different effector proteins in
the host and alter the normal function of cells and cause diarrhea.
Along with several other onset mechanisms of diarrhea such as
reduction of absorptive surface area due to the effacement of
microvilli (Donnenberg et al., 1993), altered ion channel activity
(Guttman et al., 2006) or tight junction disruption resulting in
loss of barrier function (Dean et al., 2006), AQPs are thought
to contribute to the development of diarrhea after pathogen
invasion (Guttman et al., 2007). At least six AQPs (AQP1,
3, 4, 5, 8, and 9) are localized in the apical and basolateral
membranes of the human colon (Liao et al., 2020), which
might be involved in the extraction of water and electrolyte
from solid waste back into the body and thus dehydrate feces
(Ma and Verkman, 1999). Inhibition, reduced expression and
mislocalization of AQPs in the human colon might have roles in
onset of diarrhea. Down-regulation of AQP3 in the duodenum
is associated with acute diarrhea caused by V. cholera (Flach
et al., 2007). In rat, the inhibition of AQP3 by HgCl2 and CuSO4
induced colon diarrhea keeping its expression static both in
mRNA and protein levels (Ikarashi et al., 2012) (Table 2). In the
same model, cholera toxin reduced the expression of mucosal
AQP8 in the small intestine to cause diarrhea (Flach et al., 2004).
Alteration in AQPs localization might be important in the onset
of diarrhea. A mouse model infected with Citrobacter rodentium
demonstrated that the AQP2 and AQP3 mislocalized within
cytoplasm of colonocytes rather than their normal location in
the cell membranes, and the infected mice eventually showed
phenotypic diarrhea (Guttman et al., 2007). In piglet model,
enterotoxigenic E. coli and LPS reduced expression of mucosal
AQP8 in the jejunum and developed diarrhea (Loos et al., 2012;
Hou et al., 2013). Several studies showed that some substances
such as emodin, berberine, and MgSO4 may change and regulate
water transport and absorption activity of AQPs involving the
cAMP-dependent/p-CREB signaling pathway (Ikarashi et al.,
2011; Zhang et al., 2012b; Liu et al., 2014; Zheng et al., 2014).

Helicobacter pylori regarded as the class I carcinogen in the
human stomach and are responsible for the development of
gastric carcinomas in the distal portion of the stomach (Konturek
et al., 2009; Shin et al., 2010). Gastric carcinogenesis might
be initiated from combination of events including increased
DNA damage, decreased DNA repair activity and genetic
instability in gastric cells due to mutation in mitochondrial DNA

following H. pylori infection (Machado et al., 2010). H. pylori
strains produce various toxins including cytotoxin-associated
gene A (CagA) and vacuolating cytotoxin (VacA) to promote
carcinogenesis (Jang et al., 2010). AQPs have shown its potential
roles in tumor cell migration and proliferation (Hu and Verkman,
2006). A study showed that AQP3 and 5 expressed in higher levels
in gastric carcinomas than the normal mucosa were associated
with lymph node metastasis and lymphovascular invasion (Shen
et al., 2010). Another independent study revealed that higher
expression of AQP3 correlated with H. pylori infection status
in gastric cancer tissues in comparison with the normal mucosa
(Wang G. et al., 2012). This study further showed that H. pylori
infection increased expression of AQP3 in gastric mucosa in a
Sprague Dawley rat model. Recently, Wen et al. (2018) proposed
that the up-regulation of AQP3 in gastric carcinoma caused by
H. pylori was associated with the activation of reactive oxygen
species (ROS) pathway (Table 2).

Although there are no enough studies associating infectious
colitis with AQPs, a study showed a significant reduction in the
expression of AQP7 and 8 both in protein and mRNA levels
(Hardin et al., 2004). The down regulation of AQPs in infectious
colitis may be associated with the microbiome of the host (Wang
et al., 2019). Mice deficient in AQP4 alleviates experimental
colitis, and it has been shown that there is significant difference
in the microbiome of AQP4-knockout mice compared to the WT
mice (Wang et al., 2019). The perturbation in the microbiome
is further connected with the levels of inflammatory molecules
such as IL-6, IL-10, and TNF. AQPs may modulate intestinal
inflammation through the regulation of the abundance of
intestinal microbiota (Wang et al., 2019).

Viral Infection and AQPs
As mentioned earlier, AQPs play important roles in cell volume,
cell migration, organelle physiology through regulating cellular
and tissue water homeostasis (Verkman, 2005; Verkman et al.,
2008a; Karlsson et al., 2013a,b; Holm et al., 2015). Several studies
have been done showing the involvement of AQPs with the viral
infections (Table 2).

Very recently, it has been shown that human papilloma
virus (HPV) infection affects the expression and functionality
of AQP8, and lead to male sub-fertility (Pellavio et al., 2020).
AQP8 expressed both in the PM and intragranular membranes
of sperm cells has been suggested to facilitate the transport of
water and H2O2, and the AQP8-mediated H2O2 permeability
might be involved in ROS scavenging and thus detoxification
(Laforenza et al., 2016; Pellavio et al., 2020). However, the
direct interaction between the capsid protein L1 of the HPV
and AQP8 alters the water and H2O2 permeability (Pellavio
et al., 2020). The HPV is a common causative agent of cancer
(Tornesello and Buonaguro, 2020). The HPV infection status
and the overexpression of AQP1 and 3 are associated with
poor outcome of cervical cancer (Table 2); however, their
overexpression levels are not independent risk factors which are
related with the prognosis of cervical carcinoma (Chen et al.,
2014). These AQPs might have influenced the prognosis of
cervical cancer by promoting HPV invasion, tumor growth and
lymphatic metastasis (Chen et al., 2014).

Frontiers in Genetics | www.frontiersin.org 10 March 2021 | Volume 12 | Article 654865

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-654865 March 10, 2021 Time: 14:7 # 11

Azad et al. Potential Roles of AQPs in Human Diseases

In experimental mice model, Herpes simplex virus (HSV)
decreased AQP4 in the acute phase of infection but increased
its expression along with AQP1 in the long-term infection
(Martinez Torres et al., 2007) (Table 2). As the AQP4
is widely expressed in the brain-blood interfaces (Manley
et al., 2000), it might have regulated the pathophysiology
of the acute and chronic HSV encephalitis (HSVE), and
the modulation of AQP4 could be a potential target for
treatment of HSVE (Martinez Torres et al., 2007). AQP4
antibody and concomitant HSV-1 and HSV-1 infections have
been associated with myeloradiculitis and encephalopathy;
consequently AQP4 antibody test could be routinely used for
HSV infection-mediated encephalopathy or neuromyelitis optica
and autoimmune AQP4 channelopathy (Marin Collazo et al.,
2018; Peng et al., 2018). Immunohistochemistry revealed that
the neuronal cell population that conveyed HSV-1 infection
through the anterior commissure in a rat model was positive
of AQP9 (Jennische et al., 2015). This study reports that the
CSF samples from HSVE patients showed higher levels of AQP9
compared to controls, suggesting AQP9 to be involved in viral
spreading and pathogenesis of HSVE (Jennische et al., 2015;
Bello-Morales et al., 2020).

Crimean–Congo hemorrhagic fever virus (CCHFV), a highly
pathogenic arthropod-borne agent, causes infectious disease with
multiple organ failure and severe hemorrhage in vascular system
in humans. Vascular permeability plays a pivotal role in the
development of this disease which is regulated by AQPs. A study
showed that infection by Hazara virus, a model for CCHFV,
reduced cellular and prenuclear AQP6 distribution and changed
the cell volume (Molinas et al., 2016) (Table 2). The viral
infection down-regulated the expression of AQP6 at mRNA levels
in human cells. However, overexpression of AQP8 in human
cells displayed protective roles by decreasing the viral infectivity
(Molinas et al., 2016). Recently, it has been reported that
Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma
(EBVaNPC) and lymphoma (EBVaL) are concomitant with the
single-nucleotide polymorphism locus of AQP3 (rs2231231)
(Wang J. et al., 2018). This study reveals that the homozygous
genotype is commonly detected in patients with EBVaNPC
and EBVaL. Neurological complications with the phenotype of
neuromyelitis optica spectrum disorder (NMOSD) have been
described in two patients with dengue fever following infection
with the Dengue virus (Lana-Peixoto et al., 2018). Both patients
showing brainstem symptoms or isolated unilateral optic neuritis
were positive for serum AQP4 antibody (Lana-Peixoto et al.,
2018), and AQP4 antibodies have been proposed as a pathogenic
and diagnostic biomarker for NMOSD (Berger et al., 2017).
A very recent case report concludes that AQP4 antibody positive
NMOSD co-exists with varicella-zoster virus radiculomyelitis
(Eguchi et al., 2020). It is reported that decrease of AQP4
is concomitant with astrocyte dysfunction for pathogenesis of
cortical degeneration in HIV-associated neurocognitive disorders
(Xing et al., 2017); however, increase of this AQP homolog is
associated with HIV dementia (St Hillaire et al., 2005).

A study in mouse model infected with Rotavirus demonstrates
that the down-regulation of AQP1, 4, and 8 are associated
with Rotavirus diarrhea, a major worldwide cause of infantile

gastroenteritis (Cao M. et al., 2014). Likewise, pulmonary
adenoviral infections in mice down-regulated AQP1 and
AQP5 in lung epithelia cells (Towne et al., 2000). However,
higher expression of AQP1 at both mRNA and protein levels
was reported in cirrhotic liver tissues in patients infected
with Hepatitis B virus compared to normal tissues (Xian
et al., 2009). Interestingly, Chlorella virus MT325 has been
reported to have an AQP gene, aqpv1 which functions as an
aquaglyceroporin in Xenopus oocytes (Gazzarrini et al., 2006).
Co-expression of this viral AQP with its potassium channel in
the Xenopus oocytes synergistically increases the water transport
that could have pathophysiological relevance. However, no
further investigation has been done with this viral AQP to
confirm the pathophysiological relevance and other viral AQP is
not yet reported.

Parasitic Infection and AQPs
Organisms known as parasites depend on a host for feeding
and reproduction include members of numerous taxa mainly
protozoa, helminths, and arthropods. In a global context,
the most important human protozoan parasites including
Leishmania and Plasmodium are transmitted by bloodsucking
arthropods, and Toxoplasma is soil or food-born. Parasites harm
their hosts by causing serious disease or even death (Ni et al.,
2017; Walochnik et al., 2017).

Plasmodium parasite causing malaria disease in human infects
the erythrocyte by passing through the multiple hepatocyte cells
in the liver. In the liver stage, the parasite is matured to its
infectious form merozoite and released to the blood stream to
cause the symptoms of malaria. The obligatory liver stage is the
critical part of this parasite invasion and AQP plays positive role
in the nutrient transfer to the parasite from the host. During
invasion in hepatocyte and blood cells, a parasitophorous vacuole
membrane (PVM) derived from the host is formed around the
parasite and act as an interface between the host cell and the
parasite (Sherling and Ooij, 2016; Nyboer et al., 2018). The
PVM is a prerequisite for Plasmodium growth and development.
A study showed AQP3 localized in the PVM, facilitated the
transport of water and glycerol to Plasmodium, and identified
it as essential to parasite development in hepatoma cells (Posfai
et al., 2018). Several studies revealed that AQP3 is recruited
to the PVM in liver-stage P. berghei schizonts and blood-stage
P. falciparum and P. vivax schizonts, and is thought to facilitate
the transport of water or nutrients between the parasites and the
host cell (Bietz et al., 2009; Posfai et al., 2018, 2020). These studies
discussed that a significantly induced AQP3 expression was
observed in the infected hepatocytes compared to the uninfected
ones (Table 2). However, deletion of AQP3 or treatment with
AQP3 inhibitor can reduce the pathogen burden in the liver and
blood stage of infection (Bietz et al., 2009; Posfai et al., 2018,
2020). Therefore, AQP3 might have played important role in
Plasmodium infection and its modulation would facilitate disease
control efforts. Although human and rats have AQP3, the mice
lack this AQP homolog but possess AQP9 that plays role as
an aquaglyceroporin. AQP9-deficient mice missed the function
of glycerol channel in their erythrocytes, and infected with
P. berghei survived longer compared to the WT mice (Liu et al.,
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2007). This study suggests that the transport pathway through
AQP9 may contribute to the virulence of intraerythrocytic
stages of malarial infection (Table 2). However, AQP4 has
been suggested to play protective roles in murine cerebral
malaria (Promeneur et al., 2007). This study showed that mice
infected with P. berghei and showing cerebral malaria displayed
a reduction of brain AQP4 at transcript and protein levels. In
comparison with the WT mice, AQP4-knockout mice showed
earlier appearance and more severe signs of cerebral malaria
with greater brain edema. Another independent study revealed
that AQP4 has association with the immunoregulation of the
liver granuloma formation during schistosomiasis developed
by a parasite Schistosoma japonicum in mice (Zhang et al.,
2015) (Table 2). S. japonicum-infected AQP4-null mice with
schistosomiasis exhibited greater granulomatous response with
increased accumulation of eosinophils, macrophages and Th2 but
reduced Th1 and T regulatory cells generation. Upregulation of
Th2 and Th17 cells and downregulation of Th1 and T regulatory
cells are the hallmarks of granuloma formation in schistosomiasis
(Baumgart et al., 2006; Turner et al., 2011; Wen et al., 2011).

INVOLVEMENT OF AQUAPORINS IN
NON-INFECTIOUS DISEASES

The AQPs are involved in a wide range of human non-infectious
diseases including cancer, cerebral edema and ischemic stroke,
renal dysfunction, glaucoma, epilepsy, and obesity (Table 1).
Defects in AQP genes may lead to several human diseases like
hereditary NDI (Deen et al., 1994) and congenital cataracts
(Verkman and Mitra, 2000).

AQPs in Cancer
Aquaporins play a key role in cancer pathogenesis and
several tumor-related processes including tumor edema, tumor
cell migration/invasion, tumor proliferation and angiogenesis
(Saadoun et al., 2002a,b, 2005a,b; Hara-Chikuma and Verkman,
2006; Auguste et al., 2007; Warth et al., 2007). About twenty
types of tumors have been shown to be associated with the
expression of AQPs (Khajah and Luqmani, 2016). Astrocytomas
are infiltrating brain tumors that arise from astrocytes, which
are histologically classified as grades II, III, or IV, with the most
malignant grade IV also termed as the glioblastoma. In human
astrocytomas, the expression levels of AQP1, 4, and 9 are largely
increased (Saadoun et al., 2002a,b; Nico et al., 2009; El Hindy
et al., 2013; Jelen et al., 2013), while the level of AQP1 was
shown to be either increased (Mazal et al., 2005) or decreased
(Aishima et al., 2007) in cholangiocarcinoma. In comparison
with the normal tissues, AQP1, 3, and 5 are up-regulated in
colorectal (Moon et al., 2003; Yoshida et al., 2013; Shi et al.,
2014), cervical (Zhang et al., 2012a), and breast cancers (Kang
et al., 2015; Qin et al., 2016) but AQP8 is down-regulated in the
former case (Wang W. et al., 2012). Higher levels of AQP3 and
5, and lower levels of AQP8 and 9 are reported in liver cancer
(Jablonski et al., 2007; Guo et al., 2013). Several studies show
that the overexpression of AQP1, 3, 4, and 5 is associated with
lung cancer (Hoque et al., 2006; Machida et al., 2011; Xie et al.,

2012). Similarly, increased level of AQP5 has been reported in
chronic myelogenous leukemia (Chae et al., 2008), esophageal
cancer (Liu et al., 2013), and pancreatic cancer (Burghardt et al.,
2003). During tumor proliferation, AQP5 interacts with the Ras-
MAPK pathway and cyclin D1/CDK4 complexes in colon cancer
and with the EGFR/ERK1/2/p38 MAPK signaling cascade in lung
cancer, resulting in enhanced proliferation, differentiation and
survival (Kang et al., 2008; Zhang et al., 2010).

AQPs in Cerebral Edema and Ischemic
Stroke
Cerebral edema plays a central role in the pathophysiology
of many neurological disorders, including ischemic injury,
traumatic brain injury, brain tumors leading to elevated
intracranial pressure, decreased cerebral blood flow, ischemia,
cerebral herniation, and death (Zador et al., 2009; Filippidis et al.,
2016). AQP4 expressed in perivascular astrocyte end-feet plays a
homeostatic role in water exchange between brain parenchyma
and CSF in the ventricular and subarachnoid compartments
(Amiry-Moghaddam et al., 2003). In the ischemic stroke
mouse model, the presence of AQP4 was shown to aggravate
post-ischemic cytotoxic edema as measured by post-ischemic
hemispheric enlargement, while AQP4-null mice showed an
opposite effect with an improved neurological outcome (Manley
et al., 2000; Papadopoulos and Verkman, 2007). In the acute
water intoxication model, AQP4-knockout mice had markedly
reduced mortality from hyponatremia compared to WT mice.
The protection attributed by the absence of AQP4 may be linked
to reduced blood-brain barrier water permeability and a reduced
rate of water flux into the brain parenchyma (Papadopoulos
and Verkman, 2007). As a bidirectional water channel, AQP4
facilitates brain water accumulation in cytotoxic edema and
clearance of excess brain water in vasogenic and interstitial
edema (Verkman, 2012). In a mouse model of transient
cerebral ischemia, AQP4 expression was rapidly up-regulated
in perivascular end-feet, reaching the first peak after 1 hour
(h) coinciding with early cerebral swelling in the core and
border of the lesion, and the second peak in the penumbra
after 48 h correlating with the degree of brain swelling (Ribeiro
Mde et al., 2006). This finding suggests that AQP4 could be the
major water channel involved in water movements after transient
cerebral ischemia.

AQPs in Renal Diseases
In the kidney, eight AQPs are expressed in different segments
and various cells to maintain normal urine concentration and
renal function (Noda et al., 2010; Li et al., 2017). Among
them, AQP2 that is crucial for urine concentration function
is regulated by transcriptional factors and post-transcriptional
modifications for its expression and function (He and Yang,
2019). Mutation or functional loss of AQP2 leads to NDI, a
rare disease characterized by polyuria and polydipsia (Kotnik
et al., 2007). The significant up-regulation of AQP5 in the kidney
tissue of diabetic nephropathy (DN) patients leads to polyuria
(Afkarian et al., 2016).
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Chronic kidney disease (CKD) is a multifactorial disorder
playing an important role in diabetes, hypertension, dyslipidemia
and proteinuria (Tsai et al., 2016). A cohort study among 620
patients with CKD revealed that AQP11 rs2276415 variant is
associated with CKD progression (Han et al., 2019). AQP1 is
expressed in the epithelia lining 71% renal cysts in human
autosomal dominant polycystic kidney disease (ADPKD), 44%
of which are derived from the proximal tubules (Bachinsky
et al., 1995). Two-thirds of the cysts express either AQP1 or
renal collecting duct water channel AQP2 (Devuyst, 1998). It
is reported that the overexpression of AQP1 inhibited renal
cyst development by restraining Wnt/β-catenin signaling in an
orthologous ADPKD mice model (Wang W. et al., 2015). On the
other hand, the deletion of AQP1 promoted cyst development in
embryonic kidney with polycystic kidney diseases (PKD) in mice.
Analysis of the renal phenotype of AQP11-null mice showed that
their kidneys are large, anemic and polycystic, which is similar
with PKD in human. The cysts are absent in the medulla but
abundant in the cortex where AQP11 is highly expressed (Li
et al., 2017). The expression of AQP6 becomes changed with the
development of renal cell carcinoma and oncocytoma (Yusenko
et al., 2009; Tan et al., 2010).

AQPs in Obesity
Obesity is defined as the enlargement and inflammation of
adipose tissues, which is one of the most important metabolic
disorders of this century and its deposition in internal
organs is a major risk for the development of diabetes,
dyslipidemia, hypertension, atherosclerosis, cardiovascular, and
neurodegenerative diseases commonly recognized as metabolic
syndrome (Zimmet et al., 2001; Flegal et al., 2012). AQPs
play an important role in adipose tissue biology as well as
the onset of obesity. AQP7, an aquaglyceroporin that can
release glycerol from adipocytes to tissue interstitium (Hara-
Chikuma et al., 2005), has been identified in human and
mice adipose tissues (Kuriyama et al., 1997; Ishibashi et al.,
1998; Rojek et al., 2008) and adipocytes (Kishida et al., 2000;
Miranda et al., 2010). Higher expression of AQP7 was observed
in obese insulin-resistant mice and adipose tissues of type
2 diabetic rats compared to their control groups, suggesting
that dysregulation of AQP7 might be associated with increased
input of glycerol for hepatic gluconeogenesis and increased
glucose level in type 2 diabetes (Kishida et al., 2000; Lee
et al., 2005; Rojek et al., 2008). AQP7-null mice showed
accumulation of cellular glycerol, triacylglycerols (TAG) and
glycerol kinase up-regulation, which leads to development of
progressive adipocyte hypertrophy and early obesity onset (Hara-
Chikuma et al., 2005; Hibuse et al., 2005). However, although
AQP7-null mice in some other studies did not confirm obesity
development, all these studies confirmed the association of AQP7
with glycerol metabolism (Matsumura et al., 2007; Skowronski
et al., 2007). The down- and up-regulation of AQP7 gene by
feeding and fasting concomitant with glycerol production from
endogenous TAG and lipolysis, respectively, are inversely related
with plasma insulin levels (Kishida et al., 2000; da Silva and
Soveral, 2017). In obese individuals, down-regulation of AQP7
in subcutaneous fat is associated with fat accumulation and

adipocyte hypertrophy, however, it’s up-regulation in visceral fat
is correlated with lipolysis (Rodríguez et al., 2011; Madeira et al.,
2015). However, AQP7-null mice still show measurable glycerol
secretion, indicating the presence of other glycerol transporters
rather than AQP7 (Kishida et al., 2000). Indeed, among the
other aquaglyceroporins, AQP3, 9, and 10 are found in the
PM of adipocytes in subcutaneous and visceral adipose tissue,
and additionally AQP3 in intragranular membranes (da Silva
and Soveral, 2017). However, further research is necessary to
investigate whether they are associated with obesity or not.

AQPs in Cataracts
Natural congenital autosomal dominant cataracts are clinically
diverse and genetically heterogeneous due to AQP0 mutations
in humans (Bateman et al., 2000; Berry et al., 2000; Geyer et al.,
2006) and mice [Cataract Fraser (CatFr) (Shiels and Bassnett,
1996); cataract lens opacity (Catlop) (Shiels and Bassnett, 1996);
cataract Tohoku (CatTohm) (Okamura et al., 2003)]. Knockout of
AQP0 in mouse also resulted in cataract (Shiels et al., 2001).

AQPs in Skin Diseases
Skin AQPs aforementioned are expressed in deep to superficial
including hypodermis, dermis and epidermis, and their mutation,
dysregulation, malfunction or dysfunction lead numerous skin
diseases (Patel et al., 2017). Although it is not yet confirmed,
an inflammatory skin disease, erythema toxicum neonatorum
characterized with papules or pustules only in infants is supposed
to be associated with increased levels of AQP1 in epidermis,
dermis, and blood vessels (Marchini et al., 2003; Patel et al., 2017).
A recent study with keratinocyte cell lines has hypothesized that
down-regulation of AQP1, 3, and 9 might be concomitant with
the aging of the skin induced by long-term exposure to blue light
(Avola et al., 2018).

Down-regulation and/or mislocalization of AQP3, the most
abundant and largely studied aquaglyceroporin in the skin, are
associated with psoriasis (Lee et al., 2012; Patel et al., 2017;
Bollag et al., 2020) and vitiligo (Kim and Lee, 2010; Esmat et al.,
2018). However, although some studies have reported increased
mRNA levels of AQP3 in proliferating keratinocytes in psoriasis
(Bowcock et al., 2001; Swindell et al., 2014), its expression is
down-regulated with later differentiation of keratinocytes (Zheng
and Bollinger Bollag, 2003). Another study reported that AQP3-
null mice showed reduced psoriatic lesion development and
epidermal hyperplasia, and suggested that AQP3 levels remained
unchanged in psoriasis (Hara-Chikuma et al., 2015). Therefore,
it is still controversial whether AQP3 is up- or down-regulated
in psoriasis (Patel et al., 2017). Controversial observations are
also reported on non-melanoma skin cancers (NMSC), basal
and squamous cell carcinoma (SCC) involving AQP3. While a
study with immunohistochemical approach revealed the down-
regulation of AQP3 in NMSC and SCC (Seleit et al., 2015),
another study observed up-regulation of this protein in both
diseases (Ishimoto et al., 2012). The later observation was
supported by the study showing AQP3-null mice resistant to
tumor formation in the model of SCC development (Hara-
Chikuma and Verkman, 2008). The up-regulation of AQP3 both
in mRNA and protein levels has been demonstrated in atopic
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dermatitis lesions or eczema in human patients and mouse
models (Olsson et al., 2006; Nakahigashi et al., 2011). The down-
regulation of AQP3 is supposed to be associated with xeroderma
observed in diabetes because streptozotocin-induced diabetic
mice showed decreased levels of AQP3 with reduced dermal
water content (Ikarashi et al., 2017; Bollag et al., 2020). Recent
studies demonstrated that down-regulation of AQP3 might be
involved in some other skin diseases such as bullous pemphigus
(Korany et al., 2019) and symmetrical acrokeratoderma (Rong
et al., 2019); however, it’s up-regulation might be involved in
scleroderma/systemic sclerosis (Luo et al., 2016).

Although limited studies have been done on the association
of other AQPs with skin disorder, in patients with palmoplantar
keratoderma, a skin disease characterized by hyperkeratosis in
the soles and palms, mutations in AQP5 have been identified
(Blaydon et al., 2013; Cao X. et al., 2014; Krøigård et al., 2016).
A study shows that dendritic cells deficient in AQP7 reduce
their antigen presentation (Hara-Chikuma et al., 2012b). The
pathophysiologic phenotypes in the skin due to loss of AQP9 and
10 or their malfunction or dysfunction are not yet known, it is
supposed that these AQP homologs might have shared similar
functions as AQP3 (Patel et al., 2017).

AQUAPORINS AS POTENTIAL DRUG
AND DIAGNOSTIC TARGETS

Aquaporins that facilitate the transport of water, the essential
molecule of life, and some other physiologically important small
molecules, and even ions, are expressed in all the organs of the
human body (Figure 1 and Table 1). Discussion aforementioned
reveals that the dysregulation, mutation, dysfunction and
malfunction of AQPs have been associated as a key event
with different life-threatening infectious and non-infectious
diseases. Consequently, it has been essential to modulate the
function or expression of AQPs during numerous infectious
and non-infectious pathologies including different types of
cancers, edema, obesity, brain injury, glaucoma, type 2
diabetes, NDI, AKI, CDK, DN, skin diseases, sepsis and
sepsis-associated cholestasis, endotoximia and endotoximia-
induced AKI, infective endocarditis, diarrhea, NMOSD, malaria,
schistosomiasis, leishmaniasis, and several other conditions.
Therefore, AQPs have been explored as an important drug and
diagnostic target. Numerous studies have proposed many AQP-
specific modulators and/or inhibitors including heavy metal-
based inhibitors, cysteine inhibitors, small molecule inhibitors to
modulate or inhibit the function and expression of human AQPs
and parasite AQPs (Fadiel et al., 2009; Verkman et al., 2014; Wang
J. et al., 2015; Esteva-Font et al., 2016; Méndez-Giménez et al.,
2018; Abir-Awan et al., 2019; Hara-Chikuma et al., 2020).

Mercury inhibits the water transport function in AQPs with
Cys 189, such as AQP1 (Esteva-Font et al., 2016). Similarly,
heavy metal-based AQPs inhibitors such as silver- and gold-
containing compounds were investigated as potential anticancer
and anti-diabetic drugs in animal or human cell lines (Delporte
et al., 2009; Madeira et al., 2014; Méndez-Giménez et al., 2018).
Mercury and these heavy metals-based compounds interact

with the cysteine in the vicinity of the highly conserved NPA
motifs and inhibit the AQP permeability by causing blockage
of the pore or conformational changes of the channel (Preston
et al., 1993; Niemietz and Tyerman, 2002; Martins et al.,
2012). However, mercury and heavy metals-based compounds
cause irreversible cytotoxicity in human cells, and therefore,
small molecule inhibitors/modulators without heavy metals to
inhibit/modulate the function and expression of AQPs may have
clinical implications against several diseases including cancers,
diabetes and others (Best et al., 2009; Wang J. et al., 2015;
Méndez-Giménez et al., 2018; Abir-Awan et al., 2019). The
currently available AQP inhibitors, their structures, and the
AQPs inhibited by them are listed in a very recent study (Abir-
Awan et al., 2019). Acetazolamide, carbonic anhydrase inhibitor,
used in glaucoma to reduce aqueous humor production,
have been shown as irreversible inhibitor of AQP1 and 4
which protected tumor from cytotoxic edema and promoted
tumor metastasis in glioma (Gao et al., 2006; Wang J. et al.,
2015). Tetraethylammonium inhibits human AQP1, 2 and
4 expressed in Xenopus oocytes (Abir-Awan et al., 2019).
Besides, anti-epileptic drugs such as topiramate, zonisamide,
and lamotrigine are thought as possible inhibitors of AQP1,
4, and 5 although there is no conclusive evidence as safe
AQP inhibitors (Shank and Maryanoff, 2008; Yang et al., 2008).
AQP4-target inhibitor TGN-020 and aquaglyceroporins AQP3,
AQP7 and AQP9-targeted inhibitors phloretin and compounds
DFP00173 and Z433927330 have been identified (Abir-Awan
et al., 2019; Sonntag et al., 2019). Auphen, an inhibitor of
AQP3 that localize in the PVM between the host cell and
the Plasmodium parasite reduces P. vivax liver hypnozoite
and schizont burden, and inhibits P. vivax asexual blood-stage
growth, and thus suggest that the AQP3 may be targeted
for malaria treatment (Posfai et al., 2020). However, while
some molecules are inhibitory in one study have no activity
in other study due to variability within the experimental
methods (Abir-Awan et al., 2019). Moreover, targeting the
mechanism of calmodulin-mediated cell-surface localization of
AQP4 instead of directly targeting the channel activity offers
a new alternative smart approach for anti-edematous therapy
(Kitchen et al., 2020).

It is certainly stimulating that the AQP gene (AQP1-cDNA)
transfer has been developed and is under clinical trial (Baum
et al., 2012). However, more studies are necessary to verify the
efficacy and safety of AQP gene transfer. The recent discovery
of new monoclonal antibody prevented macrophage-dependent
liver injury by inhibition of AQP3-mediated H2O2 transport
(Hara-Chikuma et al., 2020). Although the anti-AQP4 IgG poses
no effect on water transport, it is under clinical trials for
neuromyelitis optica treatments (Levy, 2017). However, AQP4-
IgG possess diagnostics values in patients with NMOSD (Holmøy
et al., 2020). In DN, AQP2 and 5 in urine can be used as potential
novel biomarkers with sensitivity and early appearance (Wu et al.,
2013; Lu et al., 2016; Han et al., 2019). Furthermore, AQP6
has been proposed as a biomarker for renal cancer diagnosis
(Yusenko et al., 2009; Tan et al., 2010). In addition, AQP3,
5, 8, and 9 might be potential biomarker for several cancers
of the digestive system namely colorectal, gastric, esophageal,
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and hepatocellular cancers (Nagaraju et al., 2016). However,
there are still a lot of challenges in the way to develop AQPs-
target modulators. Therefore, more studies with optimum high-
throughput analysis are necessary to identify AQP modulators
which are clinically urgent. Furthermore, AQPs as the potential
diagnostic targets deserve additional studies.

Again, while Plasmodium spp. Toxoplasma gondii express
one and two AQP homologs, respectively, Trypanosoma cruzi
and Leishmania spp. encode up to five AQPs (Von Bülow
and Beitz, 2015). In parasites, these AQPs are involved in
multiple physiological processes such as regulation of osmotic
pressure, nutrient uptake, and metabolic product efflux and/or
host-parasite interactions (Von Bülow and Beitz, 2015; Ni
et al., 2017; Ma et al., 2019). Furthermore, AQPs are the most
abundant proteins in some parasites (Castro-Borges et al., 2011).
Consequently, AQPs in parasites have become an important drug
target (Ni et al., 2017). Although limited studies have been done
on drug-like inhibitors for apicomplexan AQPs (Song et al., 2012;
Meier et al., 2018), PbAQP-null P. berhei showed conspicuously
reduced growth, virulence and progression through the liver
stage (Promeneur et al., 2007; Promeneur et al., 2018). The
TbAQP2 of three AQPs from Trypanosoma brucei plays an
important role to uptake pantamidine, an anti-trypanosomal
drug (Uzcategui et al., 2004; Von Bülow and Beitz, 2015;
Song et al., 2016). AQPs in Leishmania major (LmAQP1) and
Schistosoma mansoni (SmAQP) serve as channels for metalloids
such as As and Sb from the anti-parasitic drugs (Gourbal
et al., 2004; Faghiri and Skelly, 2009; Mukhopadhyay and Beitz,
2010; Mukhopadhyay et al., 2011). Furthermore, the SmAQP
facilitates the transport of glycolytic-end product lactate to
escape from toxicity (Faghiri et al., 2010; Meier et al., 2018).
Substitution of Arg in the selectivity filter of LmAQP1 to Ala
or Lys minimized the transport of As and Sb in cells, and thus
increased the resistance to As and Sb in comparison with cells
expressing the WT LmAQP1 (Figarella et al., 2007). Another
study shows that the side chain of Ala163 in LmAQP1 may
play role in drug resistance due to steric hindrance effect, and
substitution of Thr164 to Cys imparts the mercury sensitivity
by blocking the channel by HgCl2 (Mukhopadhyay et al., 2011).
Very recently, it has been shown that RNA silencing treatment
significantly reduced mRNA of TcAQP1 in adult Toxocara
canis, a neglected parasitic nematode, keeping the phenotypic
characteristics unchanged (Ma et al., 2019). The TcAQP1 has
been suggested as a channel for drug uptake as the TcAQP1-
knockout T. canis compromised the nematocidal activity of
albendazole in vitro. These studies collectively suggest that
parasite AQPs might be important candidate for therapeutic
targets and drug entry routes. However, with human AQPs,
researchers have to find out the specific effectors of pathogen
AQPs with high affinity considering large number of studies.
The physiological role of AQP has been extensively investigated
only in E. coli and in lesser extent in Pseudomonas aeruginosa,
Streptococcus mutans, and Lactobacillus plantarum (Tong et al.,
2019). Therefore, to target the bacterial AQPs, the physiological
role of this protein in bacteria should be established because the
genomes of all bacteria have no AQP gene (Tong et al., 2019).

CONCLUSION AND FUTURE
PERSPECTIVES

Humans and pathogens always struggle each other to survive,
and for this, both parties use a wide range of different strategies
and learn from the counterpart to evolve in close connection.
The host–pathogen interaction is a dynamic, ever evolving
process. Intriguingly, increasing studies aforementioned support
the notion that AQPs are important players in the host–pathogen
interaction. This review will further increase the understanding
about the involvement of AQPs in infectious and non-infectious
diseases. Several physiologically relevant substrates get access to
cells via AQPs that can largely influence the cellular behavior,
which will ultimately determine either the disease development
or cell defense mechanisms. Furthermore, AQPs are the key
players for maintenance cellular and tissue homeostasis during
inflammation, the common event in disease development.
Dysregulation, dysfunction and malfunction of AQPs during
the disease development are therefore assuming an increasing
translational value in pathophysiology with promising medical
applications. The regulatory mechanisms of AQPs in infectious
and non-infectious diseases seem to be tissue- and AQP-specific
(Tables 1, 2 and Figure 1). Therefore, intensive research should
be focused on the functional regulation of AQPs during infectious
and non-infectious diseases. Investigation on the regulation
and functional roles of AQPs would not only provide novel
insights on the diagnosis and prognosis of diseases, but also
facilitate the development of potential therapeutics. Furthermore,
intensive knowledge of AQP physiology would be one of the
key ways to overcome the limitation of currently available
AQP pharmacological modulators/inhibitors. The tissue-specific
distribution of AQPs might suggest the necessity of tissue-specific
or cell-specific discovery of AQP modulators. However, although
the involvement of AQP in different life-threatening diseases
including infectious diseases is quite clear, research on AQP-
specific modulators are not advanced enough. The translation
of AQP research into the drug development would open a new
window to treat the life-threatening diseases. For translating
the AQP research to solve the real life problems, researchers
have to focus the future research for better understanding the
mechanistic relationship between modulation of AQP function
and a reduction in a specific disease. Additionally, targeting
a fundamental cellular process such as altering the subcellular
localization of an AQP, rather than trying to block the substrate
accessible pore, would be a broadly applicable strategy for future
AQP-based drug development (Kitchen et al., 2020). Besides,
their broad range of substrate transport capacity, their additional
involvement in interactome, signaling and trafficking indicates
that researchers need more research for better understanding of
AQP mystery. Furthermore, it is a challenge for researchers to
establish the speculation of gases and ions permeation through
the central pore of the AQP tetramer in addition to the
physiological roles of these substances in the human body.

A mentionable limitation of this review is that several
research outcomes were discussed from model animal studies
for mimicking human physiology due to small numbers of
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studies with humans and human cells. Elucidation of mechanistic
expression and functional regulation of AQPs in human studies
might be helpful for developing tissue- and AQP-specific
novel therapeutics.
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