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Abstract. Coronary artery disease (CAD) is the most 
common type of cardiovascular disease and leading cause of 
mortality worldwide. Microarray technology for gene expres-
sion analysis has facilitated the identification of the molecular 
mechanism that underlies the pathogenesis of CAD. Previous 
studies have primarily used variance or regression analysis, 
without considering array specific factors. Thus, the aim of 
the present study was to investigate the mechanism of CAD 
using partial least squares (PLS)‑based analysis, which was 
integrated with the Monte Carlo technique. Microarray anal-
ysis was performed with a data set of 110 CAD patients and 
111 controls obtained from the Gene Expression Omnibus 
database. A total of 390 dysregulated genes were acquired. 
Significantly increased representations of dysregulated genes 
in Gene Ontology items, including transforming growth 
factor β‑activated receptor activity and acyl‑CoA oxidase 
activity, were identified. Network analysis revealed three 
hub genes with a degree of >10, including ESR1, ITGA4 and 
ARRB2. The results of the present study provide novel infor-
mation on the gene expression signatures of CAD patients 
and offer further theoretical support for future therapeutic 
study.

Introduction

Coronary artery disease (CAD) is the most common type 
of cardiovascular disease and leading cause of mortality 
worldwide (1). The disease is mainly caused by the build‑up 
of plaque along the inner walls of heart arteries, which 
narrows the arteries and restricts blood flow. Typically, the 
majority of patients do not exhibit symptoms for decades in 
the progression of CAD. For the majority of individuals, the 

first onset of symptoms is acute myocardial infarction (heart 
attack). Numerous studies have been conducted with the aim 
of proposing promising strategies for the prevention and treat-
ment of CAD. However, the morbidity and mortality rates 
of CAD remain high. Currently available high throughput 
experimental strategies aid the understanding of the patho-
genic mechanism of CAD, constituting a significant advance 
for the development or improvement of novel strategies for the 
noninvasive diagnosis and treatment of CAD.

Previous gene expression studies  (2‑5) have proposed 
distinct gene expression patterns in CAD. Dysregulation of 
various biological processes, including the inflammatory 
process and cell cycle control, have been consistently detected 
in CAD patients  (6,7). These studies used standard vari-
ance/regression analysis to identify differentially expressed 
genes. However, these analyses are unable to remove unac-
counted array specific factors. For example, it is possible that 
specific genes are identified to be overexpressed or down-
regulated due to specific demographic profiles. A previous 
study (8) hypothesized that partial least squares (PLS)‑based 
microarray analysis was robust in detecting disease specific 
genes. The PLS‑based analysis method uses variable selec-
tion according to the analysis of the regression coefficients 
of PLS  (9). Compared with variance/regression analysis, 
PLS‑based analysis has higher sensitivity, reasonably high 
specificity and markedly smaller false discovery (FDR) and 
false non‑discovery rates (8). In multiple regression analysis, 
the Monte Carlo cross‑validation method is a powerful and 
widely used technique which was first reported by Picard 
and Cook (10). The use of Monte Carlo cross‑validation in 
multiple regression analysis has been proposed in previous 
studies (11,12) and integration of the PLS and Monte Carlo 
technique is efficient in variable selection (13). Determining 
the gene expression signatures of CAD with the PLS‑based 
method may further improve the understanding of the 
molecular mechanism and advance preventative or therapeutic 
procedures.

In the present study, using a microarray data set down-
loaded from the Gene Expression Omnibus (GEO) database, 
the pathological mechanism of CAD was investigated using 
PLS‑based analysis. Gene Ontology (GO) items with signifi-
cantly over‑represented dysregulated genes were also acquired 
and protein‑protein interaction (PPI) network analysis was 
performed to identify crucial genes among the dysregulated 
genes.
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Materials and methods

Microarray data. The microarray data set, GSE12288, was 
downloaded from the GEO database (http://www.ncbi.nlm.
nih.gov/geo/). This gene expression profile included 110 CAD 
patients and 112  healthy controls. The Duke CAD index 
(CADi) (14,15) was measured for each subject. The data set 
was based on the GPL96 platform: [HG‑U133A] Affymetrix 
Human Genome U133A Array.

Gene selection. Entire data sets for all the samples were down-
loaded. Robust multiarray analysis (16) was used to normalize 
the raw intensity values. Firstly, the effects of background 
noise and the processing artifacts were neutralized using 
model‑based background correction. Secondly, expression 
values of all the probes were aligned to a common scale using 
quantile normalization. Finally, an expression value for each 
probe was generated via an iterative median polishing proce-
dure. The resulting log2‑transformed expression values were 
then used for subsequent analysis. 

A multivariate linear model was used to analyze the asso-
ciation between gene expression levels and CADi. In the data 
set, the number of probes (n=22,283) was much greater than 
the sample number (n=221; one sample was deleted due to poor 
data quality). PLS, a dimension reduction procedure (17,18), 
was then used to estimate the effects for each gene. PLS latent 
variables derived from the expression profiles on CADi were 
calculated using the non‑linear iterative PLS algorithm (19). 
Next, the variable importance on the projection (VIP) (20) 
was calculated to evaluate the importance of the genes on 
CADi. In addition, permutation tests were used to control the 
FDR. A permutation procedure (performed 1,000 times) was 
performed to obtain the empirical distribution of PLS‑based 
VIP in each replicate. The FDR for each gene was evaluated 
based on the empirical distribution. Candidate genes were 
selected with a cut‑off FDR value of <0.05. 

The best number of latent variables was then determined 
using 4‑fold cross‑validation with root mean square error 
of cross‑validation (RMSECV). Next, regression coefficient 
reliability was introduced using the Monte Carlo method (13). 
Firstly, 100 Monte Carlo sampling subsets, each of which 
included half of the total samples, were used to calculate the 
regression coefficient vector for each sub PLS model. Secondly, 
the regression coefficient reliability was calculated for each 
candidate gene. Regression coefficient reliability revealed 
not only a large coefficient, but also the stability of the genes 
for the disease. This was useful to alleviate deviation of the 
sampling and develop a robust disease prediction model with 
the most reliable target tag genes. An absolute value of regres-
sion coefficient reliability cut‑off was selected according to the 
lowest RMSECV. Finally, genes that had absolute reliability 
values larger than the cut‑off and FDR of VIP values <0.05 
were selected as the target tag gene set.

Enrichment analysis. Probes on the array were annotated 
according to the simple omnibus format in text files. To 
determine the biologically relevant signatures of the selected 
genes, enrichment analysis was performed. All the genes 
were annotated based on the GO database (21). The hyper-
geometric distribution test was then implemented to identify 

pathways that were significantly enriched with the selected 
genes.

Network analysis. PPI is crucial for all biological 
processes  (22). Selected genes that had a large number 
of interactions with other genes were considered to have 
more important roles in the pathogenesis. To visualize the 
interactions among the selected genes and identify the key 
molecules, a network was constructed using Cytoscape 
(V 2.8.3; http://www.cytoscape.org/) (23) and the National 
Center for Biotechnology Information database (http://ftp.
ncbi.nlm.nih.gov/gene/GeneRIF/; accessed on the 25‑2‑2013). 
The degree of a gene was equal to the number of interactions 
the gene exhibited. Genes with a degree of >10 were consid-
ered as critical hub molecules. 

Results

Gene selection. Gene expression profiles of 110 CAD patients 
and 111 healthy controls (one sample was deleted due to low 
quality) were used for subsequent analysis. PLS analysis 
revealed that 1,246 genes were considered as candidate genes 
with FDR of VIP values of <0.05. To avoid model over‑fitting, 
the best number of latent variables was then determined by 
4‑fold cross‑validation with RMSECV. The results indicated 
that RMSECV values exhibited a descending trend with an 
increase in latent variable number, however, the trend decreased 
in strength with latent variable numbers of >8. Therefore, the 
top eight latent variables were selected for further analysis. 
Regression coefficient reliability of each candidate gene 
was calculated and the cut‑off value (1.434) was determined 
according to the lowest RMSECV value. In total, 390 genes 
were selected.

Enrichment analysis. Table I represents the top five GO items 
enriched with the selected genes. Of all the genes in the 
array, 12,291 genes were annotated based on the GO data-
base, including 358 selected genes. Items with significantly 
increased representations of the selected genes included trans-
forming growth factor β‑activated receptor (TGFBR) activity, 
acyl‑CoA oxidase activity, transcription regulatory region 
sequence‑specific DNA binding, erythrocyte differentiation 
and negative regulation of the mitogen‑activated protein 
kinase cascade. 

Network analysis. Fig. 1 illustrates the interaction network of 
the proteins encoded by the selected genes. Hub molecules that 
had a degree of >10 included ESR1, ITGA4 and ARRB2, with 
degrees of 33, 16 and 13, respectively. 

Discussion

CAD is a highly complex disease. Gene expression profiling 
is important for investigating the underlying pathophysi-
ological cascades in CAD. For data analysis, a suitable model 
is required to manage the large number of genes and the 
relatively small sample size. Previous gene expression studies 
on CAD primarily used variance/regression analysis, without 
considering the hidden biological effects. In the present study, 
an integration of the PLS and Monte Carlo technique (13) 



EXPERIMENTAL AND THERAPEUTIC MEDICINE  7:  1151-1154,  2014 1153

was used to identify differentially expressed genes in CAD. 
Biological process and interaction network analysis were also 
used to explore the underlying mechanism.

GO item enrichment analysis revealed that TGFBR 
activity (GO:0005024) was the most significant GO item with 
over‑represented dysregulated genes (Table I). All the dysregu-
lated genes in this item were upregulated in CAD patients, 
including TGFBR1. A previous study revealed that the inhibi-
tion of TGFBR1 results in significant amelioration of deleterious 
cardiac remodeling following myocardial infarction (24). The 
results of the present study indicated that TGFBR1 and other 

TGFBRs may function as potential targets for further treat-
ment investigation studies. Significantly increased numbers of 
dysregulated genes were also identified in the acyl‑CoA oxidase 
activity item. A previous study (25) hypothesized that supple-
mentation with polyphenolic‑rich extract of Angelica acutiloba 
root for high‑fat diet‑induced obese rats significantly decreased 
the CAD risk index by enhancing the expression of acyl‑CoA 
oxidase. The results of the present study confirmed the involve-
ment of acyl‑CoA oxidase in the pathogenesis of CAD.

Interaction network analysis revealed that ESR1 was the 
hub gene with the highest degree (Fig. 1). The protein encoded 

Table I. Top five GO items enriched with the selected genes.

GO identification	 Description	 P‑value

0005024	 TGFBR activity	 8.08E‑06
0003997	 Acyl‑CoA oxidase activity	 1.01E‑05
0000976	 Transcription regulatory region sequence‑specific DNA binding	 1.63E‑05
0030218	 Erythrocyte differentiation	 3.01E‑05
0043409	 Negative regulation of the MAPK cascade	 4.11E‑04

GO, Gene Ontology; MAPK, mitogen‑activated protein kinase; TGFBR, transforming growth factor β‑activated receptor.

Figure 1. Interaction network constructed with the identified differentially expressed genes. Only genes with more than two direct or indirect associations are 
shown. Genes with a higher degree (more associations or interactions) are shown as a larger size. Genes shown in pink are overexpressed, while genes in blue 
are downregulated.
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by this gene is the estrogen receptor. Genetic polymorphisms 
of ESR1 have been shown to be associated with CAD in 
various populations (26‑28) and the results of the present study 
confirmed the involvement of ESR1 in CAD. ITGA4 was 
also identified as a hub gene with the second highest degree 
(Fig. 1). The protein encoded by this gene belongs to the 
integrin α chain family of proteins. No previous studies have 
proposed an association between CAD and ITGA4, however, 
gene targeting experiments in mice have demonstrated an 
essential role of ITGA4 in normal epicardial development (29). 
Therefore, the association between ITGA4 and CAD requires 
further investigation. ARRB2 was also identified as a hub 
gene with a degree of 13. The protein encoded by this gene 
belongs to the arrestin/β‑arrestin protein family. Similarly, no 
previous studies have proposed an association between CAD 
and ARRB2, thus, further study is required to investigate the 
involvement of this gene in the pathogenesis of CAD.

In conclusion, using a gene expression microarray data 
set downloaded from the GEO database, PLS‑based analysis 
integrated with the Monte Carlo technique was performed to 
identify genes which may contribute to the pathology of CAD. 
Further analysis was also conducted to identify biological 
processes and hub genes associated with the disease. Therefore, 
the results of the present study facilitate the disclosure of the 
molecular mechanism underlying CAD.

References

  1.	Thomas AC, Knapman PA, Krikler DM and Davies  MJ: 
Community study of the causes of ‘natural’ sudden death. 
BMJ 297: 1453‑1456, 1988.

  2.	Hiltunen MO, Tuomisto TT, Niemi M, et al: Changes in gene 
expression in atherosclerotic plaques analyzed using DNA array. 
Atherosclerosis 165: 23‑32, 2002.

  3.	Nanni L, Romualdi C, Maseri A and Lanfranchi G: Differential 
gene expression profiling in genetic and multifactorial cardio-
vascular diseases. J Mol Cell Cardiol 41: 934‑948, 2006.

  4.	Randi AM, Biguzzi E, Falciani F, et al: Identification of differen-
tially expressed genes in coronary atherosclerotic plaques from 
patients with stable or unstable angina by cDNA array analysis. J 
Thromb Haemost 1: 829‑835, 2003.

  5.	Seo D, Wang T, Dressman H, et al: Gene expression phenotypes 
of atherosclerosis. Arterioscler Thromb Vasc Biol 24: 1922‑1927, 
2004.

  6.	Cagnin S, Biscuola M, Patuzzo C, et al: Reconstruction and 
functional analysis of altered molecular pathways in human 
atherosclerotic arteries. BMC Genomics 10: 13, 2009.

  7.	Sluimer JC, Kisters N, Cleutjens KB, et al: Dead or alive: gene 
expression profiles of advanced atherosclerotic plaques from 
autopsy and surgery. Physiol Genomics 30: 335‑341, 2007.

  8.	Chakraborty S, Datta S and Datta S: Surrogate variable analysis 
using partial least squares (SVA‑PLS) in gene expression studies. 
Bioinformatics 28: 799‑806, 2012.

  9.	Centner V, Massart DL, de Noord OE, de Jong S, Vandeginste BM 
and Sterna C: Elimination of uninformative variables for multi-
variate calibration. Anal Chem 68: 3851‑3858, 1996.

10.	Picard RR and Cook RD: Cross‑validation of regression models. 
J Am Stat Assoc 79: 575‑583, 1984.

11.	Xu QS, Liang YZ and Du YP: Monte Carlo cross‑validation for 
selecting a model and estimating the prediction error in multi-
variate calibration. J Chemom 18: 112‑120, 2004.

12.	Gourvénec S, Fernández Pierna JA, Massart DL and Rutledge DN: 
An evaluation of the PoLiSh smoothed regression and the Monte 
Carlo cross‑validation for the determination of the complexity of 
a PLS model. Chemometr Intell Lab Syst 68: 41‑51, 2003.

13.	Cai WS, Li YK and Shao XG: A variable selection method 
based on uninformative variable elimination for multivariate 
calibration of near‑infrared spectra. Chemometr Intell Lab 90: 
188‑194, 2008.

14.	Felker GM, Shaw LK and O'Connor CM: A standardized defi-
nition of ischemic cardiomyopathy for use in clinical research. J 
Am Coll Cardiol 39: 210‑218, 2002.

15.	Mark DB, Nelson CL, Califf RM, et al: Continuing evolution of 
therapy for coronary artery disease. Initial results from the era of 
coronary angioplasty. Circulation 89: 2015‑2025, 1994.

16.	Irizarry RA, Hobbs B, Collin F, et al: Exploration, normalization, 
and summaries of high density oligonucleotide array probe level 
data. Biostatistics 4: 249‑264, 2003.

17.	Helland IS: On the structure of partial least squares regression. 
Commun Stat‑Simulation Comput 17: 581‑607, 1988.

18.	Helland IS: Partial least squares regression and statistical model. 
Scand J Stat 17: 97‑144, 1990.

19.	Martins JPA, Teófilo RF and Ferreira MMC: Computational 
performance and cross‑validation error precision of five PLS 
algorithms using designed and real data sets. J Chemom 24: 
320‑332, 2010.

20.	Gosselin R, Rodrigue D and Duchesne  C: A bootstrap‑VIP 
approach for selecting wavelength intervals in spectral imaging 
applications. Chemometr Intell Lab Syst 100: 12‑21, 2010.

21.	Ashburner M, Ball CA, Blake JA, et al: Gene ontology: tool for 
the unification of biology. The Gene Ontology Consortium. Nat 
Genet 25: 25‑29, 2000.

22.	Stelzl U, Worm U, Lalowski M, et al: A human protein‑protein 
interaction network: a resource for annotating the proteome. 
Cell 122: 957‑968, 2005.

23.	Shannon P, Markiel A, Ozier O, et al: Cytoscape: a software 
environment for integrated models of biomolecular interaction 
networks. Genome Res 13: 2498‑2504, 2003.

24.	Ellmers LJ, Scott NJ, Medicherla S, et al: Transforming growth 
factor‑beta blockade down‑regulates the renin‑angiotensin 
system and modifies cardiac remodeling after myocardial 
infarction. Endocrinology 149: 5828‑5834, 2008.

25.	Liu IM, Tzeng TF, Liou SS and Chang CJ: Regulation of obesity 
and lipid disorders by extracts from Angelica acutiloba root 
in high‑fat diet‑induced obese rats. Phytother Res 26: 223‑230, 
2012.

26.	Almeida S and Hutz MH: Estrogen receptor 1 gene polymor-
phisms and coronary artery disease in the Brazilian population. 
Braz J Med Biol Res 39: 447‑454, 2006.

27.	Lawlor DA, Timpson N, Ebrahim S, Day IN and Smith GD: The 
association of oestrogen receptor alpha‑haplotypes with cardio-
vascular risk factors in the British Women's Heart and Health 
Study. Eur Heart J 27: 1597‑1604, 2006.

28.	Wei CD, Zheng HY, Wu W, et al: Meta‑analysis of the association 
of the rs2234693 and rs9340799 polymorphisms of estrogen 
receptor alpha gene with coronary heart disease risk in Chinese 
Han population. Int J Med Sci 10: 457‑466, 2013.

29.	Dettman RW, Pae SH, Morabito C and Bristow J: Inhibition of 
alpha4‑integrin stimulates epicardial‑mesenchymal transfor-
mation and alters migration and cell fate of epicardially derived 
mesenchyme. Dev Biol 257: 315‑328, 2003.


