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Abstract

The whitefly, Bemisia tabaci, is a species complex of more than 40 cryptic species and a

major agricultural pest. It causes extensive damage to plants mainly by transmitting plant

viruses. There is still a lack of genomic data available for the different whitefly species found

in Brazil and their bacterial endosymbionts. Understanding the genetic and transcriptomic

composition of these insect pests, the viruses they transmit and the microbiota is crucial to

sustainable solutions for farmers to control whiteflies. Illumina RNA-Seq was used to obtain

the transcriptome of individual whiteflies from 10 different populations from Brazil including

Middle East-Asia Minor 1 (MEAM1), Mediterranean (MED) and New World 2 (NW2). Raw

reads were assembled using CLC Genomics Workbench and subsequently mapped to ref-

erence genomes. We obtained whitefly complete mitochondrial genomes and draft

genomes from the facultative bacterial endosymbiont Hamiltonella for further phylogenetic

analyses. In addition, nucleotide sequences of the GroEL chaperonin gene from Hamilto-

nella from different populations were obtained and analysed. There was concordance in the

species clustering using the whitefly complete mitogenome and the mtCOI gene tree. On

the other hand, the phylogenetic analysis using the 12 ORF’s of Hamiltonella clustered the

native species NW2 apart from the exotics MEAM1 and MED. In addition, the amino acid

analysis of GroEL chaperonin revealed a deletion only in Hamiltonella infecting NW2 among

whiteflies populations analysed which was further confirmed by PCR and Sanger sequenc-

ing. The genomic data obtained in this study will aid understanding the functions that Hamil-

tonella may have in whitefly biology and serve as a reference for further studies regarding

whiteflies in Brazil.
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Introduction

The whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is an insect pest of signifi-

cant economic importance of a wide variety of agricultural crops such as tomatoes, beans, cas-

sava, cotton and ornamentals [1]. B. tabaci causes damage directly through feeding and

indirectly through the transmission of plant pathogenic viruses, belonging to the genera Bego-
movirus, Carlavirus, Crinivirus, Ipomovirus and Torradovirus [2]. Currently, B. tabaci is classi-

fied as a cryptic species complex composed of at least 40 morphologically indistinguishable

species on the basis of the mtCOI gene [3]. In Brazil, four B. tabaci species have been reported

to date, the natives species from the Americas, New World 1 (NW1) and New World 2 (NW2)

and the exotic species Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED) [4–6].

The exotics, MEAM1 and MED are globally distributed and the most challenging to control

[7,8]. Species of the complex B. tabaci differ in several aspects including the range of host

plants utilized, the capacity to cause plant disorders, attraction of natural enemies, response to

pesticides and plant virus transmission capabilities [1,9]. Brazil it’s a country with extensive

territory and high diversification of the agricultural systems which makes the identification

and tracking of pests more complex. The first report of MED in Brazil [4] followed by a second

incursion of this species associated to ornamentals plants [10] has highlighted the need of ref-

erence data, such as complete mitochondrial genome, to prevent and track the introduction of

exotic pests to the country. In addition, full mitogenome comparisons provides a better under-

standing of evolutionary genetic relationships between members of B. tabaci [11]. Currently,

there are 13 complete whitefly mitochondrial genomes characterized and available on Gen-

Bank [11–14].

The complexity of B. tabaci might also depend on the inherited bacterial endosymbionts

whose functions are not fully understood [15]. The obligatory endosymbionts are essential for

insects to live on nutritionally poor diets [16,17]. In whiteflies, the obligatory endosymbionts is

Portiera aleyrodidarum [13]. In addition, insects often harbor facultative endosymbionts that

can play different roles on the vector such as enhancing insecticide susceptibility [18,19], facili-

tating virus transmission [20,21], conferring tolerance to high-temperature [22] and resistance

to natural enemies like parasitic wasps [23]. These bacteria have probably been acquired more

recently than obligatory endosymbionts [16,24]. In B. tabaci, different facultative symbionts

have been described, including Arsenophonus, Hamiltonella, Wolbachia, Cardinium, Fritschea
and Rickettsia [8,20]. Among the facultative symbionts, Hamiltonella defensa is a maternally

transmitted gamma-proteobacterium found sporadically in sap-feeding insects, including

aphids, psyllids, and whiteflies [25–27]. Previous studies in Brazil have shown that different

species of B. tabaci, such as MEAM1, MED and NW2 harbor Hamiltonella [10,28]. More

recently, a survey has reported that Hamiltonella is highly distributed throughout the Brazilian

territory and was detected in 89,5% of the MEAM1 specimens and approximately 50% of the

MED specimens analyzed [29]. The high incidence of Hamiltonella in populations of whiteflies

in Brazil may have serious implications to virus transmission. The GroEL proteins encoded by

Hamiltonella has been found in Israeli B. tabaci (MEAM1) populations interacting with the

coat protein of begomovirus and therefore facilitating virus transmission [20,24]. The GroEL

produced by other symbionts of B. tabaci (MEAM1 and MED) did not interact with the virus

and therefore were not involved in virus transmission [20]. Hamiltonella can play different

roles depending on the vector species. In pea aphids, Acyrthosiphon pisum (Harris), Hamilto-
nella can block larval development of the solitary endoparasitoid wasps Aphidius ervi and

Aphidius eadyi, rescuing the aphid host [30].

In this study, we sequenced ten transcriptomes of single whitefly specimens from different

Brazilian populations and characterized the full mitochondrial genome belonging to three
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different species (MEAM1, MED and NW2) of the B. tabaci complex followed by phylogenetic

analysis. In addition, the diversity of the facultative endosymbiont Hamiltonella was inferred

analyzing 12 different ORF’s. The GroEL amino acid sequences of Hamiltonella from different

B. tabaci species were also analyzed. Our goal was to add further details concerning phyloge-

netic diversity of mitochondrial genome and Hamiltonella among Brazilian populations of B.

tabaci. In addition, a GroEL protein analysis was carried out that may give further insights

about the functions that Hamiltonella may have in whitefly biology.

Methods

Whitefly sampling

Samples were obtained from pure colonies and straight from the field. Four different B. tabaci
populations (153, 154, 156 and 320) were analysed, including two exotics species: Middle East-

Asia Minor (MEAM1) and Mediterranean (MED); and a native species: New World 2 (NW2).

Populations from colonies were previously identified by sequencing and analysis of the mtCOI

gene using the primers C1-J-2195 and TL2-N-3014 [31].

RNA extraction

The RNA extraction of a single individual whitefly was carried out using the ARCTURUS

PicoPure kit with modifications [32]. Extracted RNA was subjected to DNase treatment using

the TURBO DNA free kit as described by the manufacturer (Ambion Life Technologies CA,

USA). Subsequently, the RNA was concentrated using a vacuum centrifuge (Eppendorf, Ger-

many) at 25˚C for one hour. The pellet was resuspended in 18 μl of RNase free water and

stored at—80 C waiting further analysis. Integrity of RNA was quantified by 2100 Bio-analyser

(Aligent Technologies).

cDNA and Illumina library preparation

Total RNA from each individual whitefly sample was used for cDNA library preparation using

the Illumina TruSeq Stranded Total RNA Preparation kit as described by the manufacturer

(Illumina, San Diego, CA, USA). Later on, sequencing of 10 samples was carried out using the

HiSeq2000 on a rapid run mode generating 2x50 bp paired end reads. Base calling, quality

assessment and image analysis were conducted using the HiSeq control software v1.4.8 and

Real Time Analysis v1.18.61 at the Macrogen Korea.

Trimming and de novo sequence assembly

The raw transcriptome data was trimmed using the software CLC Genomics Workbench

v8.5.1 (CLCGW) with quality scores limit set to 0.01, ambiguous limit set to 2. Trimmed reads

were then assembled into contigs using de novo sequence assembly tool in CLCGW. The

assembly parameters consisted of mismatch cost (2), insertion cost (3), deletion cost (3), length

fraction (0.5), similarity fraction (0.9) and minimum contig length of either 500 bp or 1000 bp.

Obtaining and analysing complete mitochondrial genomes

The whiteflies complete mitochondrial genome was obtained by mapping of the assembled

contigs to reference genomes from GenBank using the software Geneious v9.1.3 [33]. For each

B. tabaci species of the complex, a different reference mitogenome was used: KU877168 for

MEAM1, JQ906700 for MED and AY521259 for NW2. When the mapped contigs did not cov-

ering the full length of the mitochondrial genome of the reference sequence, we resorted to

mapping trimmed reads to the reference sequence and thus the whole length of the reference
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was covered. Mapping was performed with the following setting in Geneious software; mini-

mum overlap 10%, minimum overlap identity 80%, allow gaps 10%, fine tuning set to iterate

up to 10 times at custom sensitivity. A consensus between the mapped trimmed reads and the

reference was used to form new mitochondrial genome. Improvements on the draft mitochon-

drial genomes were carried out using the software Pilon, a tool for genome assembly improve-

ment [34]. Subsequently, mitochondrial genomes were annotated by MITOS [35]. Other

whiteflies mitogenomes sequences were downloaded from GenBank (KJ778614, KX714967,

KY951451, KF734668, KR819174, KY951448, JQ906700, KY951447, KU877168, KY951449.

KY951450, KY951452 and AY521259) [11,12,14,15,36–38] and added to the analysis.

Sequences obtained were aligned using MAFFT v7.309 [39] followed by visualization and anal-

ysis in Geneious software. A total of 19 sequences were aligned and analysed.

Analysing Hamiltonella genetic diversity

Assembled contigs as well as trimmed reads from each sample were mapped to a Hamiltonella
reference genome (CP016303) to obtain the facultative endosymbiont draft genome. Mapping

was performed with the following setting in Geneious software; minimum overlap 10%, mini-

mum overlap identity 80%, allow gaps 10%, fine tuning set to iterate up to 10 times at custom

sensitivity. Afterward, draft genomes were aligned to the reference using the whole genome

alignment tool LASTZ version 1.02.00 [40] within Geneious v. 9.1.8. Genes with full coverage

for all the samples were selected for further Bayesian phylogenetic analysis using the software

ExaBayes version 1.4.1 [41].

Chaperonin GroEL gene analysis

Trimmed reads were mapped onto the reference sequence for chaperonin GroEL gene from

Hamiltonella of B. tabaci (AF130421). As the mapped contigs did not cover the full length of

the coding region of the reference sequence AF130421, we resorted to mapping trimmed reads

to the reference sequence to get the full coverage of the whole length from the reference. A

consensus between the mapped trimmed reads and the reference was used to form new cha-

peronin GroEL sequences, open reading frames (ORF) were predicted in Geneious. In addi-

tion, other chaperonin GroEL sequence from A. pisum was downloaded from Genbank

(CP001277) and added to the analysis. Sequences obtained were aligned using MAFFT v7.309

[39] followed by visualization and analysis in Geneious software. A total of 9 sequences were

aligned and analysed. In addition, primers were designed (GroEL 1,354 For- CCTC TGCG
TCAG ATTG TGGT and GroEL 1,663 Rev–TCAT ACCA TTCA TTCC GCCC A) for a PCR

reaction (95˚C for 5min, 35 cycles at 95˚C for 30 secs, 59.5˚C for 30 secs, 72˚C for 30 secs and

72˚C for 10 min) followed by nucleotide sequencing to confirm the results obtained by NGS.

Bayesian phylogenetic analyses

All the phylogenetic analyses were run on 384 nodes on the Magnus supercomputer (Pawsey

Centre, Western Australia). Mitochondrial genome phylogenetic analysis were performed by

MrBayes 3.2.2. [42]. Analyses were run for 30 million generations with sampling every 1000

generations. Each analysis consisted of four independent runs, utilizing four coupled Markov

chains. The run convergence was assessed by finding the plateau in the likelihood scores (stan-

dard deviation of split frequencies < 0.0015). In each of the runs, the first 25% trees were dis-

carded as burn-in and the posterior probability is shown on each node.

In addition, the Hamiltonella phylogenetic analysis was performed on DNA sequences of

12 protein-coding genes for a dataset with 9 taxa using ExaBayes version 1.4.1; [41]. Bayesian

analysis was carried out for four independent runs for 1 million generations, with trees
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sampled every 500 generations. The run convergence was monitored by finding the plateau in

the likelihood scores (standard deviation of split frequencies< 0.0015). In each of the runs,

the first 25% trees were discarded as burn-in for the estimation of a majority rule consensus

topology and posterior probability for each node. Bayesian run files are available from the

authors upon request. Trees were visualized, edited and rooted using FigTree v1.4.3.

Results

The sequenced number of reads from the 10 samples ranged from 29,840,288 to 64,080,188

among the ten samples and the number of contigs assembled ranged from 7,730 to 41,165

(Table 1).

Hamiltonella genetic diversity

The diversity of Hamiltonella in B. tabaci populations from Brazil was carried out analysing 12

ORF’s from eight single whitefly transcriptomes totalizing an alignment of 6,378bp length.

The analysed ORF’s were: DNA transformation protein tfoX, porin OmpA, acyl carrier, 50S

ribosomal protein L3, 50S ribosomal protein L23, 30S ribosomal protein S17, 50S ribosomal

protein L24, 50S ribosomal protein L5, rpsN, nucleotide exchange factor GrpE, porin and

DNA-binding protein. The phylogenetic analysis from the sequenced accessions separate into

two deeply divergent clades representing the native species from the Americas (NW2) and the

exotics (MEAM1 and MED) (Fig 1). Furthermore, the identity percentages among the 12

ORF’s from Hamiltonella were obtained (S1 Table).

Table 1. Next generation sequencing data from single whitefly transcriptomes of Bemisia tabaci populations collected in Brazil.

Sample

ID

Species Colony / Open

Field

Reference Number of

Reads

Number of Reads After

Trimming

CLC minimum contig

length

Number of

contigs

Contig average

length

153_1 MEAM1 Colony KU877168 36,449,340 36,449,269 Trimmed reads - 143.9

500 25,640 1,240

1000 10,079 2,087

153_2 MEAM1 Colony N/A 44,093,422 41,041,633 Trimmed reads - 146.0

500 31,072 1,228

154_1 MED Colony JQ906700 37,206,396 37,206,313 Trimmed reads - 144.7

1000 9,737 1,983

154_2 MED Colony JQ906700 29,840,288 29,840,226 Trimmed reads - 144.1

1000 7,730 1,947

320_1 MED Open Field N/A 64,080,188 57,947,512 Trimmed reads - 145.5

500 41,165 1,240

320_3 MED Open Field JQ906700 39,894,296 39,894,200 Trimmed reads - 145.1

1000 9,719 1,969

156_2 NW2 Colony AY521259 40,826,418 40,826,334 Trimmed reads - 145.2

1000 11,961 2,232

156_3 NW2 Colony AY521259 43,194,264 42,194,175 Trimmed reads - 145.0

1000 12,802 2,244

156_4 NW2 Colony N/A 48,800,318 45,102,719 Trimmed reads - 145.9

500 34,090 1,298

156_5 NW2 Colony N/A 24,568,460 22,491,230 Trimmed reads - 145.7

500 21,597 1,310

https://doi.org/10.1371/journal.pone.0201411.t001
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GroEL chaperonin analysis

The GroEL (Chaperonin 60) gene was obtained from six B. tabaci single whitefly transcrip-

tomes of Brazil. In addition to the data obtained in this study, the analysis also included Hamil-
tonella GroEL sequences downloaded from GenBank from the pea aphid A. pisum (CP001277)

and from B. tabaci MEAM1 (CP016303). Analysis of the translated proteins revealed a three

amino acids deletion present only in the B. tabaci NW2 species and in the pea aphid A. pisum
(Fig 2). The deletion present in Hamiltonella from NW2 and pea aphid was a sequence of two

glycine and one isoleucine. The nucleotide deletion was confirmed by PCR, which amplified

an 300bp amplicon, followed by nucleotide sequencing.

Fig 1. Phylogenetic analysis from 12 ORF’s of Hamiltonella from Brazilian populations of Bemisia tabaci. Analysis was carried

out using the software ExaBayes version 1.4.1. MEAM1, Middle East-Asia Minor-1; MED, Mediterranean; NW2, New World 2.

https://doi.org/10.1371/journal.pone.0201411.g001

Fig 2. The chaperonin GroEL protein analysis of the Hamiltonella endosymbiont. Analysis was visualized on

Geneious v9.1.3 and revealed a three amino acids deletion only in the Bemisia tabaci New World 2 species and the pea

aphid Acyrthosiphon pisum.

https://doi.org/10.1371/journal.pone.0201411.g002

Transcriptome analysis reveals genetic diversity in the endosymbiont Hamiltonella of Bemisia tabaci

PLOS ONE | https://doi.org/10.1371/journal.pone.0201411 July 27, 2018 6 / 12

https://doi.org/10.1371/journal.pone.0201411.g001
https://doi.org/10.1371/journal.pone.0201411.g002
https://doi.org/10.1371/journal.pone.0201411


Mitochondrial genome

Six complete mitochondrial genomes were obtained from three different species found in Bra-

zil (NW2, MEAM1 and MED). Phylogenetic analysis of the complete mitochondrial genomes

separated different species of the complex in distinct clades (Fig 3). Furthermore, the identity

percentages among all the mitogenomes from B. tabaci were obtained (S2 Table).

Discussion

In this study we present the phylogenetic relationship of B. tabaci and its association with the

facultative endosymbiont Hamiltonella. We show the evolutionary differences between native

populations of B. tabaci species of the Americas and invasive B. tabaci species. From our data

the genetic differences are not confined to the mtCOI gene, but extend to the rest of the mito-

genome and to the facultative endosymbiont Hamiltonella. These findings will contribute to

the understanding about the functions that Hamiltonella may have in B. tabaci biology and

will aid the correct identification of B. tabaci specimens.

Six complete mitochondrial genomes were obtained from three different species of the

complex B. tabaci: MEAM1, MED and NW2. Complete mitochondrial genomes comparisons

are essential for better understanding the evolutionary genetic relationships between members

of the B. tabaci species complex [3,11]. There are 13 complete whitefly mitochondrial genomes

characterized and available on GenBank to date [11,12,14,15,36–38] which is a valuable contri-

bution to a better understanding of the taxonomy of this global pest. The addition of six more

full mitogenomes from B. tabaci to the global database will contribute for more accurate iden-

tification and will serve as references for further full mitochondrial genome phylogenies

Fig 3. Phylogenetic analysis of the complete mitochondrial genome of whiteflies populations from Brazil obtained from single

whitefly transcriptomes. The alignment totalized 19 samples and 16073bp length including references from GenBank. Brazilian

samples obtained in this study were highlighted in green.

https://doi.org/10.1371/journal.pone.0201411.g003
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studies. The phylogenetic analysis of the full mitogenome (Fig 3) conducted in this study sepa-

rated the species in different clades in a similar pattern compared to phylogenetic trees of par-

tial fragment of the mtCOI gene [1]. This reinforces that using a partial fragment of the

mtCOI gene to infer phylogeny in B. tabaci is a reliable way to delimitate the species bound-

aries and it represents the whole mitochondrial genome.

A multilocus phylogenetic analysis was carried out for the facultative endosymbiont Hamil-
tonella. Previous studies in Brazil phylogenetically analyzed Hamiltonella based on 16S rRNA

gene and found genetically homogeneous populations of Hamiltonella from MEAM1 and

MED across Brazil [29]. Another phylogenetic study based on 16S rRNA gene, in Southeast

Europe, have grouped Hamiltonella from both B. tabaci and T. vaporariorum in the same

clades. Our phylogenetic analysis based on 12 ORF’s clustered Hamiltonella from NW2 popu-

lations in a different clade from MEAM1 and MED populations (Fig 1) suggesting that native

populations are infected with a genetically different Hamiltonella from invasive populations,

reinforcing the inexistence of endosymbiont horizontal transmission between invasive and

native species.

The differences of Hamiltonella from native and exotic species extends to the GroEL gene.

Our analysis revealed an amino acid deletion of two glycine and one isoleucine in the GroEL

gene present only in Hamiltonella from native populations (Fig 2). Glycine is a non-essential

amino acid and isoleucine is an essential amino acid for Hamiltonella [43]. The absence of

these amino acids could be affecting the confirmation of GroEL on populations of Hamilto-
nella presenting this deletion. Thus, this deletion in Hamiltonella could imply in biological

changes in populations of whiteflies harbouring this facultative endosymbiont.

It’s known that facultative bacterial endosymbionts are associated with viral transmission

[20,21] and different members of the B. tabaci species complex may transmit the same viruses

with different efficiencies [44]. The facultative endosymbiont Hamiltonella has been identified

as a key driver in the transmission of begomoviruses [24]. Hamiltonella encodes a GroEL cha-

peronin homologue protein that is crucial in safeguarding begomoviruses in the haemolymph

[24]. Several studies have shown the interaction between the begomoviruses Tomato yellow
leaf curl virus (TYLCV) coat protein (CP) and GroEL present in the haemolymph of B. tabaci
[20,45]. Disturbing the association GroEL-TYLCV in vivo by feeding insects with an antibody

raised against Buchnera GroEL leads to the degradation of the virus and to a markedly decrease

in transmission efficiency of the virus [24,45,46].

There is still a lack of knowledge regarding the interactions among vector, symbionts and

whitefly-transmitted viruses within Brazilian populations. Previous surveys conducted in Bra-

zil have found that field populations of MEAM1, MED and NW2 analyzed frequently harbor

Hamiltonella [28, 41]. Therefore, it would be important to find out if there is a relationship

between the diversity of H. defensa found in the current study and biological features of field

populations of B. tabaci. The existence of biological and behavioral differences between the

native species New World and the exotic MEAM1 have been reported already [5,47]. The New

World B. tabaci are found more often colonizing weeds and wild plants [5]. In addition, previ-

ous transmission studies comparing NW2 and MEAM1 species, both harboring Hamiltonella,

have found a different transmission efficiency of Brazilian whitefly-transmitted viruses

between the species [47]. It was found that the begomovirus Euphorbia yellow mosaic virus
(EuYMV) is transmitted more efficiently by NW2 compared to MEAM1 and that the crini-

virus, Tomato chlorosis virus (ToCV) and the carlavirus, Cowpea mild mottle virus (CpMMV)

are transmitted more efficiently by MEAM1 than NW2 [47]. Interestingly, each of these

viruses has a different mode of transmission by the whitefly vector. The begomoviruses,

EuYMV is transmitted in a persistent manner, the crinivirus, ToCV is transmitted in a
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semipersistent manner and the carlavirus, CpMMV is transmitted in a non-persistent mode

[48,49], which is a very unusual mode of transmission among B. tabaci transmitted viruses.

The reasons for a difference in transmission efficiencies by NW2 and MEAM1 are still

unknown but might be related to several factors related to the host, the viruses or other faculta-

tive endosymbiont found in the vector. However, the data found in this study of phylogenetic

differences between insect symbiotic Hamiltonella from NW2 and MEAM1 added to the dele-

tion of three amino acids present in the homologue GroEL Chaperonin protein might aid to

explain the difference in the transmission efficiencies among native and exotic species present

in Brazil if further studies were carried out.

The genomic data obtained in this study from the facultative endosymbionts, Hamiltonella
and the complete mitochondrial of Brazilian B. tabaci populations is unprecedented and essen-

tial to serve as a reference for further studies regarding whiteflies in Brazil. The phylogenetic

and amino acid analysis revealed genetic diversity between Hamiltonella from native and

exotic populations that will aid for better understanding about the functions that Hamiltonella
may have in whitefly biology.

Supporting information

S1 Table. Identity percentage among 12 ORF’s from Hamiltonella from different Bemisia
tabaci species. The identity percentage was obtained on Geneious software v9.1.8.

(DOCX)

S2 Table. Identity percentage among Bemisia tabaci mitochondrial genomes. The identity

percentage was obtained on Geneious v9.1.8.

(DOCX)

Acknowledgments

The analyses were carried out using computational facilities at Pawsey Supercomputing Centre

who are supported by the Australian Government and the Government of Western Australia.

Author Contributions

Conceptualization: Bruno Rossitto De Marchi, Renate Krause-Sakate, Laura Boykin.

Data curation: Bruno Rossitto De Marchi, Tonny Kinene, James Mbora Wainaina.

Funding acquisition: Bruno Rossitto De Marchi, Renate Krause-Sakate, Laura Boykin.

Investigation: Bruno Rossitto De Marchi, James Mbora Wainaina, Laura Boykin.

Methodology: Bruno Rossitto De Marchi, Tonny Kinene, James Mbora Wainaina, Laura

Boykin.

Project administration: Renate Krause-Sakate, Laura Boykin.

Resources: Bruno Rossitto De Marchi.

Software: Bruno Rossitto De Marchi.

Supervision: Renate Krause-Sakate, Laura Boykin.

Validation: Bruno Rossitto De Marchi.

Visualization: Tonny Kinene, Laura Boykin.

Writing – original draft: Bruno Rossitto De Marchi.

Transcriptome analysis reveals genetic diversity in the endosymbiont Hamiltonella of Bemisia tabaci

PLOS ONE | https://doi.org/10.1371/journal.pone.0201411 July 27, 2018 9 / 12

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0201411.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0201411.s002
https://doi.org/10.1371/journal.pone.0201411


Writing – review & editing: Bruno Rossitto De Marchi, Tonny Kinene, James Mbora Wai-

naina, Renate Krause-Sakate, Laura Boykin.

References

1. De Barro PJ, Liu S-S, Boykin LM, Dinsdale AB. Bemisia tabaci: A Statement of Species Status. Annu

Rev Entomol. Annual Reviews; 2011; 56: 1–19. https://doi.org/10.1146/annurev-ento-112408-085504
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