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Abstract: Viruses encode for structural proteins that participate in virion formation and include
capsid and envelope proteins. In addition, viruses encode for an array of non-structural accessory
proteins important for replication, spread, and immune evasion in the host and are often linked to
virus pathogenesis. Most virus accessory proteins are non-essential for growth in cell culture because
of the simplicity of the infection barriers or because they have roles only during a state of the infection
that does not exist in cell cultures (i.e., tissue-specific functions), or finally because host factors in
cell culture can complement their absence. For these reasons, the study of most nonessential viral
factors is more complex and requires development of suitable cell culture systems and in vivo models.
Approximately half of the proteins encoded by the herpes simplex virus 1 (HSV-1) genome have
been classified as non-essential. These proteins have essential roles in vivo in counteracting antiviral
responses, facilitating the spread of the virus from the sites of initial infection to the peripheral
nervous system, where it establishes lifelong reservoirs, virus pathogenesis, and other regulatory
roles during infection. Understanding the functions of the non-essential proteins of herpesviruses is
important to understand mechanisms of viral pathogenesis but also to harness properties of these
viruses for therapeutic purposes. Here, we have provided a comprehensive summary of the functions
of HSV-1 non-essential proteins.

Keywords: HSV-1 non-essential proteins; HSV-1 egress; HSV-1 envelopment; innate immunity;
HSV-1 based therapies; gene silencing

1. Introduction

The large family of DNA viruses, Herpesviridae, have co-evolved with mammals for
millions of years [1,2]. The family Herpesviridae is further divided into three subfamilies,
Alphaherpesvirinae, Betaherpesvirinae, and Gammaherpesvirinae. Herpes simplex virus type 1
(HSV-1), a member of Alphaherpesvirinae, is one of the most well-studied representatives of
this family of viruses and will be the focus of this review.

HSV-1 is an enveloped dsDNA virus, which has a genome size of about 152 kb
and virion size of about 150–300 nm in diameter [3]. The virion contains the envelope
decorated with viral glycoproteins and a proteinaceous layer known as the tegument, which
surrounds the capsid of the virus containing the genome. HSV-1 is an important human
pathogen, with approximately 80% of the human population infected [3]. Symptoms of
HSV-1 infection vary, from lesions in the oral-facial region (“cold sores”), to herpes keratitis,
the leading cause of infectious blindness, to herpes encephalitis, which can be fatal. When
HSV-1 encounters a host, it will first infect the mucosal epithelial cells in the oral-facial
region (although HSV-1 also causes genital infections). It is in these cells that the virus
undergoes lytic replication. The virus will then infect innervating sensory neurons, travel
anterograde to the trigeminal ganglia (TG), and establish latency, where it will remain
for the life of the infected individual. When HSV-1 undergoes latency there are very few
genes expressed, including an 8.3-kb region known as the latency-associated transcript
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(LAT), which is a long non-coding regulatory RNA spliced to about 1.5- and 2-kb introns
that have regulatory roles on viral genes expression, and a 6.3-kb exon encoding multiple
microRNAs, which target many of the IE genes and other lytic genes, thus suppressing
viral replication [4–10]. It seems that LAT may be important for reactivation of HSV-1
from latency and for blocking apoptosis [11–18]. Periodically, HSV-1 will reactivate from
latency due to stress, immunosuppression, or other stimuli, and newly produced virions
will travel retrograde to the initial site of infection. There is currently no cure for HSV-1
and no vaccine.

There are three classes of viral genes for HSV-1 and they are expressed in a cascade
fashion [19,20]. The virus first encodes the immediate-early (IE) or alpha (α) genes (ICP0,
ICP4, ICP27, ICP22, or ICP47) whose products are important for expression of the next
class of viral genes, the early (E) or beta (β) genes. The early genes encode proteins largely
involved in viral DNA replication and, along with the immediate-early genes, facilitate the
expression of the late class of viral genes. The late (L) or gamma (γ) class of viral genes
express proteins involved in virion assembly and egress. HSV-1 genes are also divided
based on stretches of unique sequences in the genome. Therefore, there are a class of unique
long (UL) and unique short (US) genes depending on which region of the genome the gene
is expressed from. These unique regions are flanked by inverted repeats. Thus, the HSV-1
genome is structured as follows: TRL-UL-IRL-IRS-US-TRS. There are about 58 UL genes and
about 13 US genes that have been characterized for functionality, though there are more
viral genes that have not been well characterized or described (Dolan 1998).

Interestingly, although HSV-1 is known to encode 80 genes, it has also been found
that about half of these genes are non-essential for viral replication in cell culture [21,22].
Essential genes of HSV-1 are involved in viral DNA replication, the transcription of certain
viral genes, genes encoding capsid proteins, genes encoding viral DNA packaging proteins,
and some envelope glycoproteins. HSV-1 genes determined to be non-essential are involved
in nucleic acid metabolism, combating various host responses to infection, facilitating
optimal viral replication, facilitating primary envelopment, virus pathogenesis, or other
functions that are not yet characterized (Table 1). While deletion of the non-essential genes
in cell culture does not inhibit viral replication, these genes are generally essential for
replication in the natural human host as mutant viruses deleted of non-essential genes
have rarely been isolated from a patient. One example are mutants in the viral glycoprotein
gC that have been recovered from patients with recurrent herpes keratitis [23,24].

Table 1. Non-essential genes of HSV-1, corresponding proteins, their location on the HSV-1 virion, and their function. Pink:
tegument proteins, blue: accessory proteins, yellow: envelope proteins, green: capsid proteins.

Gene Protein Location on Virion Function

RL1 or γ134.5 ICP34.5 tegument Prevents host translational shutoff and
autophagy

RL2 or α0 ICP0 tegument

Promiscuous transactivator of genes,
disrupts repressor complexes, E3 ubiquitin
ligase, inhibits innate immunity, modulates

endocytosis, etc.
UL2 uracil-DNA glycosylase accessory nucleic acid metabolism
UL3 accessory
UL4 accessory
UL7 tegument Virion assembly and egress
UL10 gM envelope Host and viral protein trafficking
UL11 tegument Cytoplasmic envelopment
UL12 accessory Nucleic acid metabolism

UL12.5 accessory Involved in depleting mtDNA

UL13 Ser/thr protein kinase tegument Blocking innate immune responses,
supporting viral protein synthesis
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Table 1. Cont.

Gene Protein Location on Virion Function
UL16 tegument Cytoplasmic envelopment
UL20 envelope Glycoprotein trafficking
UL21 tegument Promotes capsid egress to the cytoplasm
UL23 thymidine kinase (TK) tegument Broad spectrum nucleoside kinase
UL24 accessory Glycoprotein trafficking, nucleolus dispersal

UL31 accessory
Component of the nuclear egress complex

(NEC), promotes primary nuclear
envelopment

UL34 accessory
Component of the nuclear egress complex

(NEC), promotes primary nuclear
envelopment

UL35 VP26 capsid Affects DNA packaging, mediates capsid
assembly, trafficking post viral entry

UL39 RR1 (ribonucleotide
reductase) accessory

Part of the ribonucleotide reductase (RR)
complex, converts ribonucleotide
diphosphates to corresponding

deoxyribonucleotides, allowing for virus
replication particularly in non-dividing cells

UL40 RR2 (ribonucleotide
reductase) accessory

Part of the ribonucleotide reductase (RR)
complex, converts ribonucleotide
diphosphates to corresponding

deoxyribonucleotides, allowing for virus
replication particularly in non-dividing cells

UL41 VHS tegument Viral RNase, degrades host transcripts and
blocks antiviral responses

L43 tegument

UL44 gC envelope Mediates viral binding to heparan sulfate,
regulates entry by a low-pH pathway

UL45 envelope Required for syncytia formation during
HSV-1 gB syn infection

UL46 VP11/12 tegument
Regulation of transcription, activates

pathways for cell survival, blocks pathways
for innate immunity activation

UL47 VP13/14 tegument Regulation of transcription, modulating
post-transcriptional processing of mRNAs

UL49 VP22 tegument
Facilitates viral gene expression, protein

expression, and DNA replication; inhibits
inflammasome

UL49.5 gN envelope Binding partner of gM
UL50 tegument Nucleic acid metabolism

UL51 tegument
Participates in cytoplasmic envelopment;
facilitates virus spread from cell-to-cell;

recruits UL7 to tegument

UL53 gK envelope
Participates in virion egress from host cell;
regulates virus entry and fusogenic activity

of the virion; complexes with UL20
UL55 tegument Participates in cytoplasmic envelopment
UL56 tegument Participates in cytoplasmic envelopment

US1 ICP22 accessory

Regulates viral late gene expression;
facilitates formation of complexes important
for protein folding; participates in primary

envelopment; blocks immune responses
US1.5 accessory Participates in viral gene transcription
US2 tegument Protein trafficking

US3 Ser/thr protein kinase tegument
Blocks apoptosis, enhances viral gene

expression, facilitates capsid nuclear egress,
phosphorylates numerous substrates
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Table 1. Cont.

Gene Protein Location on Virion Function

US3.5 Ser/thr protein kinase tegument
Phosphorylates substrates but cannot block

apoptosis and does not facilitate nuclear
egress

US4 gG envelope Regulation of chemokines
US5 gJ envelope Inhibits apoptosis and cell stress pathways

US7 gI envelope

Enhances virus spread from cell-to-cell;
facilitates anterograde transport of virions

after reactivation from latency; important for
neurovirulence

US8 gE envelope

Enhances virus spread from cell-to-cell;
facilitates anterograde transport of virions

after reactivation from latency; important for
neurovirulence

US8.5 accessory Localizes in the nucleoli

US9 tegument

Enhances virus spread from cell-to-cell;
facilitates anterograde transport of virions

after reactivation from latency; important for
neurovirulence

US10 tegument Important for neurovirulence

US11 tegument

Block PKR activation and shutoff of host
translation; block IFN induction; regulation

of virus genes expression; trafficking of
unenveloped capsids

US12 ICP47 accessory Prevents MHC I antigen presentation,
supports neurovirulence

It is of great interest to understand the roles of non-essential genes to better understand
virus–host interactions. Moreover, the non-essential genes have properties that make them
attractive for the development of therapeutics. There are varying degrees of deficiency
of viruses mutated for non-essential genes when grown in cell culture, and for some of
these genes, the defect is cell type specific [25,26]. There is still much to learn about the
non-essential genes of HSV-1. Here, we present a comprehensive analysis of the current
understanding of the roles of non-essential genes of HSV-1. We explore the functions
ascribed to these genes and their corresponding proteins, the potential treatment and
therapeutic avenues that can be explored based on the functions and characterization of
select HSV-1 non-essential genes, and the complex and intricate roles of non-essential genes
in HSV-1 infection.

2. Repressors of Gene Silencing, Viral Transactivators, and Host Evasion Factors
2.1. RL2 or α0 (ICP0)

The infected cell protein 0 (ICP0) of HSV-1 was first reported as a nuclear phosphopro-
tein with an essential role in cell cultures only at low multiplicity of infection (MOI). ICP0
was deemed to be non-essential at high multiplicities of infection in cell cultures, but viral
gene expression was reduced [19,27–33]. In certain cell lines, particularly cancer cell lines,
such as the human osteosarcoma (U2OS), an ICP0-null virus replicates as efficiently as
wild-type virus, which may be due to impaired recruitment of antiviral factors to the sites
of viral gene transcription and DNA replication and/or due to lack of certain restriction
factors [26,28,30,32,34,35]. Genes coding for ICP0 are present in the genomes of simplex
and varicelloviruses, but they are absent from the mardivirus genus. These proteins show
strong sequence homology to ICP0 within the RING (Really Interesting New Gene) finger
domain. Orthologs of ICP0 are also present in lymphocryptoviruses (e.g., EBV) and the
cytomegalovirus (CMV) [36–38]. The functions of ICP0 are broad, from activation of tran-
scription and chromatin remodeling, to evasion of antiviral responses, cell cycle effects,
interfering with DNA damage responses, and endocytosis.
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In early studies, ICP0 was found with ICP4 to stimulate ICP8 expression in transfection
assays [39,40]. Furthermore, it was shown to function as a potent transactivator of different
genes introduced into cells by transfection or infection, including the viral thymidine kinase
(TK) gene and ICP6 gene, the human immunodeficiency virus (HIV) LTR, and several
human papillomavirus (HPV) genes [41–50]. In fact, ICP0 was found to stimulate the
expression of all three classes of HSV genes [31,51]. Therefore, ICP0 was proposed to be a
promiscuous transactivator of gene expression.

ICP0 also functions as an E3 ubiquitin ligase and most substrates ubiquitinated by
ICP0 appear to be targeted for degradation (Figure 1A). This activity of ICP0 was mapped
to residues 116–156, where there is a Zn2+-binding RING finger domain [52–55]. To exert
its E3 ubiquitin ligase function, ICP0 forms a complex with different ubiquitin conjugation
enzymes, including UbcH5a and UbcH6 [52,56–60]. Major targets of ICP0 are components
of the nuclear domain 10 (ND10) bodies. As a DNA virus, the genome of HSV-1 tran-
scribes and replicates in the nucleus. The host attempts to block viral gene expression and
replication by entrapping the viral DNA in promyelocytic leukemia (PML)-nuclear bodies
(NBs) and depositing histones and other repressor complexes on it. The main protein
that orchestrates the formation of ND10 bodies is the PML. Other components of ND10s
include the Sp100, Daxx, Mre 11, ATM, ATRX, p53, and others. ICP0 disrupts the ND10s
by causing degradation of the different isoforms of PML, Sp100, and potentially of other
proteins (Figure 1A) [34,59,61–77] Notably, several components of the ND10 bodies are
interferon inducible genes, which underscores the synergy between gene silencing mecha-
nisms and innate immunity in suppressing HSV-1 gene expression. ICP0-null viruses or E3
ubiquitin ligase mutants have viral DNA entrapped in PML-NBs at low MOI and display
reduced transactivation activity and ability to block antiviral responses [34,64,78–83]. ICP0
E3 ligase-deficient viruses are hypersensitive to interferon, replicate poorly, and fail to
reactivate efficiently from neuronal latency [25,55,67–71]. Based, on these observations,
Dr. Kalamvoki’s group recently developed a high-throughput assay to screen for ICP0-E3
ubiquitin ligases inhibitors [72]. This assay is proximity based and takes advantage of
the fact that ICP0 is autoubiquitinated and degraded during infection and that this ICP0
autoubiquitination can occur in vitro using the purified protein encoded by the exon II of
ICP0 (contains the RF domain), UbcH5a, and Ub [60,73,74]. Screening a small compound
library, Dr. Kalamvoki’s group identified potential scaffolds that can interfere with the
ICP0 E3 ubiquitin ligase activity [72].

ICP0 has seven SUMO-interacting motif (SIM)-like sequences (SLSs), and multiple
ND10 components, including PML and SP100, are SUMOylated; therefore, ICP0 could bind
to them (Figure 1A) [34,56,75–81]. It has been found that inhibition of cellular ubiquitination
led to an increase of SUMOylated proteins that ended up accumulating at PML-NBs [82].
ICP0 utilizes both SUMO-dependent and SUMO-independent mechanisms to degrade
Sp100 and multiple PML isoforms in an effort to prevent restriction of the virus by the
host [34,56,75,76,78,79,83,84]. Other proteins could also be the target of SUMO-dependent
degradation by ICP0 [75,77,81]. Specifically, SUMO-dependent degradation of MORC3
by ICP0, which associates with Sp100, has been observed and this occurs in a RING-
finger-dependent manner and appears to diminish the association of PML-NBs with viral
DNA [85]. Additionally, there has been a function ascribed to ICP0 SUMO–SIM interactions
at the ND10s to modulate the DNA damage response (DDR) during infection [86,87]. For
example, the DNA repair function of the DNA-dependent protein kinase (DNA-PK) is
inhibited by ICP0 through degradation of its catalytic subunit and this facilitates virus
replication [88–90]. Additionally, ICP0 mediates the degradation of two E3 ubiquitin ligases
RFN8 and RFN168 that act as mediators of the ATM pathway and trigger recruitment of
downstream effectors to sites of double-strand DNA breaks [91–95]. More work will need
to be done to characterize the degradation of SUMOylated proteins by ICP0 that are not
related to the ND10s. The ability for ICP0 to interrupt SUMO interactions and to degrade
SUMOylated proteins during infection is likely a strategy to modify the cellular proteome
to both prevent antiviral responses and promote the infection [34,76,83].
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In tandem with the dispersion of ND10 bodies, ICP0 activates the viral chromatin
(Figure 1B). Immediately after its release in the nucleus, HSV-1 DNA associates with
repressive histones and other repressor complexes [96–98]. However, markers of active
gene expression label the viral chromatin during lytic infection, such as tri-methylation
of histone H3 at lysine 4 (H3K4) and acetylation of H3 at lysine 9 and lysine 14 [97–99],
while suppressive epigenetic modifications of histone H3 (H3K9me3 and H3K27me3) are
removed in an ICP0-dependent manner (Figure 1B) [65,100,101]. ICP0 was also found to
associate with class II HDACs in vitro and control their repressor activity [102,103]. In
addition, ICP0 seems to promote histone acetylation, as demonstrated using inhibitors of
histone deacetylases [103–105]. This is also supported by the fact that ICP0 recruits to the
viral genome the histone acetyltransferase CLOCK through interaction with the circadian
regulator protein BMAL1. This leads to recruitment of additional viral transactivators
ICP4, ICP22, ICP27, and part of the host transcription complex TFIID [106–108]. Tandemly,
ICP0 disrupts repressor complexes, such as the REST/CoREST/HDAC complex and
LSD1 [109–112]. ICP0 disperses the REST/CoREST/HDAC1/2/LSD1 through interaction
with CoREST in an effort to promote HSV-1 gene expression and DNA replication (Figure
1B) [78,112–115]. It was also found that the interferon-inducible gene 16 (IFI16), Daxx,
and ATRX proteins serve to restrict the virus, likely through sensing of viral DNA and
obstructing replication and causing deposition of silencing histone H3 [34,65,100,116–120].
ICP0 induces the degradation of ATRX and IFI16 [121–125]. Degradation of ATRX seems
to be secondary to PML degradation, while depletion of ICP0 appears to be both ICP0
dependent and independent.

ICP0 has also been shown to harness cell cycle components to support the infection.
Thus, ICP0 was found to recruit cyclin D3 and the kinase cdk4 to ND10s to enable viral
gene transcription and DNA replication, which was also supported by the fact that ICP0
nuclear-to-cytoplasmic translocation was enabled by cyclin D3 (Figure 1B) [108,126,127].
ICP0 has been found to arrest cells in the G2/M phase to promote virus replication by
activating the checkpoint kinase 2 (Chk2) [128]. Consistent with these roles of ICP0,
it was also found to degrade the centromere proteins CENP-A, CENP-B, and CENP-C,
inducing the interphase centromere damage response (iCDR) (Figure 1A) [129–132]. In
addition to this disturbance to the cell cycle, it has been found that ICP0 degrades the
DNA-interacting protein TPP1, leading to transcription of telomere repeat-containing RNA
activation (TERRA) and increased viral replication [133].

As mentioned earlier, there are interwoven relationships between gene silencing and
innate immunity and it is not coincidence the ICP0 targets them both. ICP0-null and
other ICP0 mutant viruses displayed increased sensitivity to interferon both in vivo and
in vitro [32,70,134,135]. As discussed above, ICP0 blocks the nuclear pattern recognition
receptors (PRRs) IFI16 and DNA-PKs, which may also impact the cGAS and STING DNA
sensing pathway [119,122–124,136,137]. Inhibition of STING-dependent immune responses
involves ICP0 as ICP0-null virus growth is partially rescued in cells with impaired STING
signaling [25,26]. Furthermore, ICP0 was found to reduce the levels of the Toll-like receptor
2 (TLR2) adaptors MyD88 (myeloid differentiation factor 88) and the Mal (MyD88 adaptor-
like protein) TIRAP (TIR domain-containing adaptor protein), thus blocking immune
responses through this pathway (Figure 2A) [138]. Overall, ICP0 has been proposed to
inhibit IRF3 and IRF7-dependent immune responses to sequester these proteins away
from host chromatin [139–141]. ICP0 was also recently found to have a role in autophagy
inhibition through causing the downregulation of p62/SQSTM1 and OPTN autophagy
adaptor proteins in a proteasome-dependent and RING finger-independent mechanism
(Figure 2C) [142]. It was also demonstrated that the cytoplasmic ICP0 is most likely
involved in this function. Another target of ICP0 is the deubiquitylating enzyme USP7
(ubiquitin-specific protease 7) or HAUSP. USP7 appears to bind and stabilize ICP0, but ICP0
degrades USP7 late during infection in a RING finger-dependent manner [58,78,79,143,144].
One reason why the virus could promote degradation of USP7 is because it has a major
role in TLR- and TNFa receptor (TNFR)-induced gene expression [145].
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Most functions of ICP0 discussed above are performed while in the nucleus. However,
ICP0 translocates to the cytoplasm after enabling viral gene expression, where it remains
for the reminder of the infection. The cytoplasmic functions of ICP0 remain unexplored.
Dr. Roizman’s group first described an interaction of ICP0 with the endocytosis adaptor
CIN85 [146]. Dr. Kalamvoki’s group has built upon these findings and reported that
ICP0 promotes endocytosis of the viral entry receptor Nectin-1 (Figure 2A) [147]. This is
perhaps a mechanism that ensures spread of progeny viruses to uninfected cells. CIN85
forms a complex with the Cbl E3 ligase that is involved in endocytosis of multiple surface
components. Thus, ICP0 through CIN85 and Cbl could modulate the surface of infected
cells to suppress antiviral responses.

Finally, the role of ICP0 has also been investigated during the latent stage of the
virus. ICP0 appears to be important for efficient virus reactivation from latently infected
trigeminal ganglia (TG) in mouse ocular infections [67,68,71,148–151]. ICP0 is also required
for VP16-dependent viral reactivation [67,152]. While ICP0 is important for balancing lytic
and latent infection, it is still not fully understood what its specific role is in this process.

Figure 1. Nuclear functions of non-essential HSV-1 proteins. HSV-1 encodes multiple proteins able to counteract antiviral
host responses within the nucleus. (A): ICP0 functions as an E3 ligase ubiquitin ligase that degrades ND10 components that
encapsulate the viral genome in the nucleus, including PML, Daxx, SP100, centromeric proteins, and others. The degradation
of IFI16 involves multiple factors. These events facilitate initiation of viral gene transcription. (B): The viral protein ICP0
is also known to disrupt repressor complexes that silence the viral genome, as well as recruit factors to enable viral gene
transcription. Altogether, ICP0 facilitates permissive histone modifications, while suppressing silencing modifications, to
enable for viral gene expression. (C): The viral kinases US3 and UL13, with ICP22, are known to facilitate viral late gene
expression, which occurs through the recruitment of host factors, such as Topoisomerase IIα and RNA polymerase II, to the
sites of DNA replication in the nucleus. Together, these non-essential viral proteins are important for optimal expression of
other viral genes and for viral DNA replication.
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Figure 2. Cytoplasmic functions of some non-essential HSV-1 proteins. (A): ICP0 participates in two major functions in
the cytoplasm. First, ICP0 degrades the TLR2 adaptors TIRAP and Mal, thus blocking NF-κB activity. ICP0 also binds
to the endocytosis adaptor CIN85 and along with Cbl promotes internalization of the viral entry receptor Nectin-1. This
is a mechanism to promote progeny virus spread to uninfected cells. (B): The tegument protein UL46 blocks STING and
TBK1, which prevents stimulation of interferon-regulated genes. ICP34.5 and US11 are also involved in blocking TBK1,
emphasizing the importance of blocking TBK1 activity during HSV-1 infection. (C): The autophagy pathway is blocked
during HSV-1 infection through binding of ICP34.5 to Beclin-1, thus preventing maturation of the autophagophore to an
autophagosome. ICP0 has also been found to cause downregulation of p62 and OPTN proteins during infection, which
may also serve as another mechanism of blocking selective autophagy. It has also been found that the protein encoded
by UL12.5 causes depletion of mtDNA during infection, which causes damage to mitochondria. (D): HSV-1 prevents
host translational shutoff from occurring during infection. One mechanism is through ICP34.5 binding to both PP1a and
eIF2α, causing dephosphorylation of eIF2α and preventing shutoff of translation. HSV-1 also encodes vhs, which is a viral
RNase that degrades AU-rich element (ARE) containing mRNAs. It has also been shown that vhs prevents the formation
of cytoplasmic stress granules (SGs) during infection, which contain dsRNA that would otherwise cause PKR activation.
HSV-1 also encodes US11, which blocks PKR, thus blocking host translational shutoff and innate immunity activation, as
well as blocking PKR and PACT-induced activation of RIG-I during infection.

2.2. UL46 and UL47 (VP11/12 and VP13/14)

The HSV-1 genes UL46 and UL47 were first described to encode proteins that modulate
UL48 function [153–155]. It was then determined that UL46 encodes the phosphoprotein,
VP11/12, and UL47 encodes the phosphoprotein VP13/14, which are also glycosylated,
and both are non-essential in cell culture, although they have roles in enhancing the trans-
activation of viral genes by VP16 [156–161]. It was also found that UL47, but not UL46,
deletion mutants of HSV-1 demonstrated a significant defect in alpha-TIF (UL48)-mediated
expression of the TK gene, suggesting a supportive role in transcription of viral genes [161].
Homologs of UL46 and UL47 have been identified in multiple alphaherpesviruses, in-
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cluding pseudorabies virus, HSV-2, Marek’s disease virus, and VZV [153,157,162–164].
Homologs of UL47 have been found in bovine herpesvirus and equine herpesvirus, and
UL47 has been found to be abundantly expressed in the viral tegument [153,165,166]. T cell
responses specific to UL46 and UL47 have both been found in patients with intraocular
HSV-1 infection [167].

VP11/12 has since been found to be tyrosine phosphorylated during HSV-1 infection
in multiple lymphocyte cell types but not in epithelia or fibroblasts, and this was found
to at least partly be due to the activity of lymphocyte-specific Src family kinase, Lck [168].
It was then found that HSV-1 infection increases the amount of phosphorylation of Lck
at Y394 in Jurkat T cells, which occurred in a UL46-dependent manner [169]. Moreover,
it was found that the Akt pathway is activated through the PI3 kinase, and UL46 was
found to be involved in the activation of this pathway in HSV-1-infected HEL fibroblast
cells (Figure 2B) [170,171]. VP11/12 was then found to bind to the Src family kinases
Grb2, p85, and Shc, thus leading to Akt activation in a T cell lymphoma cell line, and
in support of this, it was found that infection with UL46-deficient viruses in HFFs led
to reduced Akt activation as compared to infection with wild-type virus [163,172]. In
neuronal cells, it was also found that VP11/12 was necessary but not sufficient during
infection to induce the phosphorylation and activation of the small GTPase Dynamin
2 [173]. UL46 has also been found to interact with the small GTPase Rab27a during HSV-1
infection of oligodendrocytes, as well as with gH and gD, but the significance of these
interactions has not yet been investigated farther than reduced viral growth and infectivity
in Rab27a-depleted cells [174].

It was demonstrated that HSV-1 infection of T cells led to the phosphorylation
and degradation of adaptor complex protein Dok-2, which is involved in T cell regu-
lation [175,176]. The degradation of Dok-2 occurred in a UL46-dependent manner, but
the significance of this degradation has not yet been fully elucidated beyond a potential
immune evasion strategy [177]. It was also recently found that UL46 works with Us3 to
activate mTORC1 in fibroblasts, which supports virus growth [178]. Further supporting
a role for UL46 in both immune evasion and viral growth was the observation that UL46
interacts with the DNA sensor STING (STimulator of INterferon Genes) at its C-terminus,
which prevents the induction of interferon stimulatory genes and blocks type I interferon
response to infection in fibroblasts (Figure 2B) [179]. Furthermore, it was found that UL46
binds to TBK1, TANK-binding kinase 1, at its N-terminus and this was found to also play a
role in blocking the interferon pathway in fibroblasts (Figure 2B) [179,180]. In support of
this, the pseudorabies homolog of UL46 was found to interact with STING [181]. Together,
these results show strong evidence for a role of UL46 in blocking innate immune responses
to HSV-1 infection.

Less work has been done to characterize UL47 or its gene product, VP13/14. It has
been found that VP13/14 is involved in nuclear egress through interactions with the viral
proteins UL34, UL31, and US3 [182]. UL47 was observed in the nucleus of infected cells
during early times post-infection, which is consistent with the interaction of UL47 with
UL48, but was also detected in the cytoplasm at late times post-infection [183–185].

UL47 has also been found, with ICP27, to regulate mRNA processing and transport
by redistributing polyadenylate binding protein (PABP) to the nucleus during infection of
HeLa cells, further supporting a role for UL47 in modulating post-transcriptional processing
of mRNAs [186]. UL47 has also been implicated in the regulation of the viral RNase vhs,
which is discussed later in this review [187]. More work is needed to characterize fully
the role of VP13/14 during HSV-1 infection, but so far it seems that UL47 facilitates viral
infection by supporting viral gene transcription, mRNA processing, and transport.

2.3. UL49 (VP22)

VP22 is a 301-aa tegument protein (Figure 3) that is encoded by the UL49 gene [188],
and has been associated with multiple functions during infection, which result from its
interactions with host and cellular factors [189]. It localizes in multiple areas of the cell
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depending on the time point of the infection, even though its functional role is not always
clear.

Early during infection, VP22 is mostly in the cytoplasm but eventually accumulates in
the nucleus. VP22 is phosphorylated after entry into the cell, and this has been suggested
to trigger its translocation into the nucleus [190,191]. Inside the nucleus, VP22 may be
involved in modulation of nucleosome deposition and repression, which will affect virus
life cycle progression [192]. VP22 may also have a function in the nucleolus, since it localizes
there during early infection, even though it is not required for chromatin marginalization
and HSV-1 replication [193].

VP22 associates with ICP0 in the nucleus, and its overexpression affects the transcrip-
tion of gC and TK1 in the nucleus, suggesting that VP22 affects transcription though an
interaction with ICP0 [194]. VP22 regulates the proper subcellular localization of VP16,
VP26, ICP0, ICP4, ICP27, and Hsc-70 in infected cells [195]. These proteins localize to the
nucleus early during infection and are then translocated to the cytoplasm later in infection.
This translocation relies on specific dileucine motifs on VP22 [195].

VP22 also seems to be required for the expression of the vhs RNase, suggesting that
expression of vhs in the absence of VP22 is lethal [196]. VP22-null mutants accumulate
spontaneous secondary mutations in the UL41 (vhs) gene, therefore VP22 and vhs may
have competitive functions [187]. There is a protein synthesis defect in the absence of
VP22, which can result in a compensatory frameshift mutation in vhs. Mechanistically,
VP22 and vhs interplay functionally at the level of accumulation and translation of viral
mRNAs, indicated by the decrease in mRNA levels and polysome assembly when VP22 is
absent. This phenotype can be rescued by the abovementioned complementary mutations
in vhs [197]. VP22 is required for optimal protein synthesis at late times during infection,
and the accumulation of gE, gD, and vhs mRNAs during early infection [198].

VP22 is not required for the accumulation of other tegument proteins, for virion
assembly, or productive HSV-1 replication, but the size of the plaques of VP22 mutant
HSV-1 strains (lacking the C-terminus) are smaller than the wild type (WT). Therefore,
VP22 is probably required for efficient spread [191]. This effect may stem from the multiple
interactions of VP22 as a tegument protein at sites of HSV-1 cytoplasmic envelopment,
namely the TGN membranes [199]. Optimal packaging of VP22 in virions requires the
amino acids 43–86, which facilitate localization of the protein to the TGN [200], but the
exact order of VP22 packaging may be flexible. Overexpression of VP22 after infection with
a recombinant HSV-1 that has two VP22 copies, resulted in 2–3-fold higher incorporation
of VP22 into nascent virions [201]. In any case, the TGN VP22 mediates proper cytoplasmic
envelopment as it interacts with the cytoplasmic tail of gD, therefore bridging the viral
capsid and the envelope (Figure 3) [202]. Additionally, VP22 interacts with UL16 and
deletion of UL16 results in dramatic reductions of VP22 in released virions [203].

Furthermore, it interacts with gE [204,205]. Deletion of VP22 results in reduced
amounts of ICP0, gE, and gD in the extracellular infectious virions, whose number is also
reduced [206]. Additionally, VP22 bridges a complex between gE/gI and gM, which is
selective in its formation, since it does not include VP16, a close partner of VP22 [207].
This VP22/gE/gI/gM complex also recruits ICP0 in a VP22-dependent fashion. None of
those proteins is absolutely required for the formation of a subcomplex; however, optimal
complex formation results in efficient virus formation (Figure 3) [208].

One important aspect of VP22 is its involvement in cytoskeleton reorganization. VP22
requires microtubule reorganization for its translocation to the nucleus [209], and it also
affects the reorganization and polymerization of the microtubules late during infection,
suggesting a late trafficking role [185]. This occurs independently of virus replication or
other viral factors [209,210].
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Figure 3. HSV-1 egress and relevant non-essential proteins. Essential proteins are not depicted. (A) UL31 and UL34 form
the Nuclear Egress Complex (NEC), which drives the vesiculation of the inner nuclear membrane (INM) and primary
envelopment of HSV-1 capsids. (B) Nuclear de-envelopment is mediated by UL51. Tegument and envelope proteins assemble
in a complex network on membranes derived from the trans-Golgi network. (C) HSV-1 capsids undergo cytoplasmic
envelopment in a process regulated by multiple non-essential proteins, which involves functional redundancy. After
cytoplasmic envelopment, enveloped virions are sorted to the extracellular space, which requires gK. HSV-1 release from
the cell membrane can be inhibited by tetherin, which is counteracted by gM. (D) Depending on cell type (e.g., polarized
epithelial cells), enveloped virions can disseminate through cell-to-cell spread, in a process that requires UL7/UL51 for
sorting of virions towards parts of the membrane that contain gE/gI. Virions may spread to adjacent cells by binding to
gE/gI receptors in adjacent cells. However, such receptors are unknown.

VP22 localization is also affected by motor proteins, like the actin-associated mo-
tor protein non-muscle myosin IIA (NMIIA). Inhibition of the ATPase activity of NMIIA
impaired the perinuclear vesicular pattern of VP22 and the release of virus into the extra-
cellular space, but it did not affect the cell-associated virus. VP22-containing particles line
up along NMIIA-containing filaments that run through protrusions, which can emanate
from infected cells [211]. The interactions of VP22 with the cytoskeleton probably affect
CD1d-mediated activation of natural killer T (NKT) cells. CD1d is an MHC class I-like
molecule that mediates self and microbial lipid presentation to NKT cells. HSV-1 can inhibit
CD1d-mediated antigen presentation to NKT cells by suppressing CD1d recycling to the
cell surface. VP22 is required for this inhibition of CD1d recycling, which probably occurs
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because of the reorganization of the cytoskeleton that VP22 promotes, which consequently
affects CD1d recycling to the plasma surface [212].

An important host factor that VP22 interacts with is the AIM2 inflammasome, pro-
moting the evasion of AIM2-dependent inflammasome activation during infection. The
AIM2 inflammasome is normally activated by DNA, which would be available during
HSV-1 infection since the HSV-1 nucleocapsid has been reported to be degraded in the
cytoplasm [213]. However, HSV-1 infection induces AIM2-independent inflammasome
activation, which is inhibited by VP22. VP22 interacts with AIM2 and prevents its oligomer-
ization, which is the first step in AIM2 inflammasome activation. Mice that lack AIM2 can
support infection of a VP22-null HSV-1 [214]. Considering that VP22 can move between
cells [215], this would be an efficient manner to block inflammatory responses in uninfected
cells adjacent to the infection.

Another property of VP22 is that it can be transported intercellularly using a Golgi-
independent mechanism, which involves the actin cytoskeleton since it is sensitive to
cytochalasin D [215]. The importance of VP22 in spread is most evident in animal models.
VP22 is required for efficient development of corneal lesions in mice following ocular
inoculation (Figure 4) and it is also important for neurovirulence, through two possible
mechanisms [206]. First, two dileucine motifs of VP22 (at positions 235–236 aa and 251–252
aa) are required for spread of viral antigens in the mouse brain and efficient virulence.
These two motifs have been associated with proper cytoplasmic localization of other viral
proteins, and VP22 may mediate neurovirulence though that function [195]. Second, a VP22
mutant HSV-1 exhibits impaired viral replication (about 1000-fold) and spread in the brains
of infected mice, supporting the importance of VP22 for virus spread in neurons [195].
VP22 may exert its proviral effect in neuronal spread through blocking of AIM2-dependent
inflammasome activation, as explained above. Infection of AIM2-/- mice with a VP22-null
HSV-1 results in 3 logs higher viral yield than infection of AIM2+/+ mice, suggesting that
VP22 promotes neuronal spread by inhibiting an AIM-2-dependent host response against
HSV-1 infection [214].

The role of VP22 in spread is also used for the transport of viral RNAs during infection
to adjacent non-infected cells, but this function can also be utilized for the delivery of
products, such as chimeric polypeptides [216]. For example, a chimera consisting of
VP22 linked to p53 can spread between cells and accumulate in recipient cell nuclei,
while inducing apoptosis in p53-negative osteosarcoma cells [217]. There have been
other chimeras that are described in the literature, but the potential of this strategy is
not definitive. Not all types of cargo can be carried by VP22, and in vitro data may not
translate well in animal models [218–222]. Additionally, VP22 conjugated cargo may be
transported, but it might not be functional [223]. These conflicting results suggest that
VP22 is not ideal for carrying all proteins, either due to inefficient transport of the chimeras
or structural effects of the chimera on VP22. After mapping the functional domains of VP22,
engineered versions of VP22 with higher transport efficiency could be investigated [189].
Nonetheless, VP22 chimeras are a promising tool and could be used in cancer, gene therapy,
and vaccines. Notably, we have not detected VP22 in CD63+ EVs or ESCRT+ EVs derived
from HSV-1 infected cells, suggesting that the intercellular transfer of VP22 does not depend
on light extracellular vesicles (lighter than virions) derived from infected cells [224,225].

A potential avenue for utilizing VP22 transport in cancer therapy involves the intro-
duction into target cells of a nontoxic drug and an enzyme that can convert to it to toxic.
For example, introduction in cancer cells of the thymidine kinase (TK) gene and ganciclovir
(GCV) results in phosphorylation of GCV, turning it into a nucleoside analogue that kills
cells by inhibiting chain extension during deoxyribonucleic acid synthesis. Cytotoxicity
is also observed in adjacent cells of a tumor. However, the levels of prodrug that need to
be administered to kill adjacent cells in a solid tumor end up being toxic for the patient.
These problems of efficient TK and GCV delivery can be resolved through VP22 [226].
VP22 can enhance intercellular trafficking of TK and can amplify the killing effect of the
TK/GCV combination, making the fusion of TK and VP22 an attractive candidate for cancer
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therapy [227]. Another anticancer treatment is the use of the bacterial enzyme cytosine
deaminase (CD) with the prodrug 5-fluorocytosine (5-FC), which is converted by CD to
the highly toxic 5-fluorouracil. The efficacy of this combination can be enhanced through
fusion of CD and VP22. The CD–VP22 fusion has a higher cytotoxicity in mouse models
when compared to administration of CD alone [228,229].

VP22 could also be used in the context of gene therapy as a carrier [230]. For example,
intraocular administration in mice of an adenoviral vector carrying VP22 fused to GFP
showed a dramatic increase in the number of CNS neurons expressing GFP versus when
administering an adenovirus with just GFP [231]. Other potential uses of VP22 to enhance
adenovirus-based gene transfer have been noted in the literature [232]. VP22 can also
enhance DNA vaccine protection against Pseudomonas aeruginosa in mice [233]. It is possible
to fuse VP22 to other antigens of interest inside a DNA vaccine and that can enhance
antigen-specific responses and antitumor effects [234].

2.4. US1 (ICP22)

The US1 immediate-early gene product, ICP22, is a 420-amino-acid protein. Mutant
viruses lacking ICP22 display reduced virus yields in some cell lines, including primary hu-
man and rodent cell lines, but not in others, such as Vero (African green monkey) and HEp-2
cells (human epithelial), implying cell type-dependent effects [19,20,235–242]. Using differ-
ent models of infection in mice and guinea pigs, a virus deleted of ICP22 caused reduced
virulence and displayed reduced replication during an acute ocular infection and reduced
neurovirulence [238,243–246]. Homologs of ICP22 are found in other herpesviruses, though
the importance of ICP22 in infection seems to differ between viruses [247–251] ICP22 is
guanylylated, adenylylated, and is phosphorylated by UL13 and US3 [252–256]. Phos-
phorylation of ICP22 at tyrosine 116 has been found to be important for ocular infection,
affecting virulence, but the kinase responsible has not yet been specified [245].

ICP22 contains two nuclear import signals and has been implicated in viral gene
expression [238,239,257,258]. Particularly, the carboxyl-terminal domain (CTD) of ICP22,
in conjunction with the viral UL13 protein kinase, was found to enhance the synthesis of
a subset of late (γ2) proteins exemplified by the products of the UL38, UL41, and US11
genes (Figure 1C). ICP22 and the UL13 protein kinase mediate the activation of cdc2
and degradation of its partners, cyclins A and B. Cdc2 and its new partner, the viral
DNA polymerase accessory factor (UL42), bind topoisomerase IIα in an ICP22-dependent
manner (Figure 1C) [259–262]. Although topoisomerase II is required for viral DNA
synthesis, ICP22 is not, suggesting that the ICP22/topoisomerase II interplay has another
role during HSV-1 infection. Indeed, topoisomerase II appears to be required for untangling
concatemeric DNA progeny for optimal transcription of late genes.

Regarding the role of UL13 in the abovementioned complex, it was found that ICP22
and UL13 are involved in a common pathway that alters RNAP II phosphorylation, and in
some cell lines, this change promotes viral late transcription, and also involves US1.5, a
shorter gene encoded from the US1 ORF (Figure 1C) [263–266]. This ICP22/UL13-mediated
phosphorylation of RNAP II resulted in an “intermediate” electrophoretic mobility between
that of hyperphosphorylated (RNAP IIo) and hypophosphorylated (RNAP IIa) states [267].
Furthering this work, it was found that UL13 and the C-terminus of ICP22 are both required
for RNAP II phosphorylation [267–269]. In cells infected with mutants from which UL13
had been deleted, ICP22 fails to aggregate in the nuclear structures containing nascent
DNA, ICP4, RNA polymerase II, and other factors, implying a role of this UL13-mediated
phosphorylation in viral late gene expression (Figure 1C) [270–273].

ICP22 was also found to bind the cyclin-dependent kinase 9 (cdk9) but not cdk7, and
this complex in conjunction with viral protein kinases (UL13 and US3) phosphorylates
the carboxyl terminus of RNAP II. The primary function of cdk9 and its partners, the
cyclin T variants, is in the elongation of RNA transcripts, although functions related to
the initiation and processing of transcripts have also been reported. Cdk9 was found to
be important for optimization of the expression of genes regulated by ICP22. Therefore,



Viruses 2021, 13, 17 14 of 75

one function of cdk9 during HSV-1 infection may be to bring ICP22 into the RNAP II
transcription complex [274–277]. In support of these findings, it was reported that ICP22
binds to positive transcription elongation factor b (P-TEFb) and to RNAP II, and along
with cdk9 they could suppress the expression of host genes, offering an advantage to the
virus [278,279]. In fact, ICP22 represses transcription from all classes of viral genes but
selectively upregulates expression of some late (γ2) genes [280,281]. Thus, ICP22 may be
important to either repress or activate viral genes at different stages of the viral life cycle.

Besides its functions in viral gene transcription, a regulatory role has been proposed
for ICP22 that involves the differential expression of two transcripts produced by the US3
open reading frame. The US3 gene was reported to encode two proteins. In wild-type
virus-infected cells, the predominant form is the full-length Us3. However, in ICP22-null
virus-infected cells, a shorter form of US3 is produced that initiates from methionine 77 and
has been named US3.5 [282]. Like US3, the US3.5 mediates the phosphorylation of HDAC1,
HDAC2, the protein kinase A regulatory IIα subunit (PKA RIIα), and the UL31 protein.
Additionally, both kinases cofractionate with mitochondria. However, the US3.5 failed to
block apoptosis (a well-established role of US3) and does not enable efficient release of
virus particles from nuclei. Thus, the two proteins differ in the range of functions they
exhibit [103].

Another role that has been attributed to ICP22 is involved in the host cell chaperone
machinery by facilitating the formation of virus-induced chaperon-enriched (VICE) do-
mains in the nucleus of some infected cells. Recent studies suggested that ICP22 mimics
a cellular type II J protein, which is a co-chaperone in the nucleus [283–285]. The VICE
domains are usually formed adjacent to the viral replication compartments, they contain
several host chaperones (Hsp70, Hsp40, Hsp90), proteasomal components, ubiquitinated
proteins, and at least one viral protein. These domains are hypothesized to play a role in
protein quality control and remodeling, and during infection, they may participate in the
formation of viral replication compartments and transcriptional regulation. VICE domains
may also allow for correct folding of proteins participating in macromolecular assemblies.
VICE domains may have a greater role in certain cell lines, where ICP22 expression is
essential [273,286–290].

ICP22 was also found to form a complex with the HSV-1 proteins UL31, UL34, UL47,
and US3 (Figure 3). These proteins, as discussed elsewhere, are important for viral egress
through the nuclear membrane. ICP22 colocalizes with UL31 and UL34 at the nuclear
membrane in WT virus-infected cells. In UL31-null virus-infected cells, targeting of ICP22
to the nuclear membrane is inhibited. In ICP22-null virus-infected cells, UL31 and UL34
mis-localized in the ER and the nuclear membrane, and significantly reduced the numbers
of primary enveloped virions that were observed in the perinuclear space, although capsids
accumulated in the nuclei. These data suggest that ICP22 plays a role in HSV-1 primary
envelopment by interacting with the nuclear egress complex [291].

More recently, roles for ICP22 in combating the immune system have been proposed.
The T cell co-stimulatory molecule CD80 was found to be downregulated in DCs in a
manner dependent on ICP22 binding to the CD80 promoter, which seems to limit the
pathogenesis of the virus as well as delaying the immune response to infection [292–294].
Recent studies with HSV-2 and transfection assays have found that ICP22 may be impor-
tant in blocking type I IFN responses during infection [295]. Additionally, ICP22 may
regulate host E3 ubiquitin ligases. Cumulatively, the findings regarding ICP22 are that
it is important for the expression of the late (γ2) class of viral genes, formation of viral
replication compartment and VICE domains in the nucleus, binding to host transcripts
thereby altering host responses to the virus, and even by facilitating nuclear egress of viral
capsids.
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3. Host Evasion Factors
3.1. RL1 or γ134.5 (ICP34.5)

The HSV-1 γ134.5 gene product was first described in 1986 [296,297], and HSV-1
and HSV-2 are the only members of the alphaherpesviruses expressing ICP34.5 [298,299].
Deletion of the ICP34.5 gene abolished the capacity of the virus to spread from peripheral
mucosal sites to the central nervous system (CNS) or replicate in the CNS, and diminished
the capacity of the virus to replicate at mucosal sites and, subsequently, establish latency, or
be able to be reactivated ex vivo [300]. In support of this, an ICP34.5-null virus displayed
reduced neurovirulence following intracerebral inoculation into mice [298,299,301–307].
Furthermore, in an ocular model of infection, ICP34.5-null virus did not cause corneal
disease [308]. In mouse embryonic dorsal root ganglia (DRG) three-dimensional cultures
for HSV-1 latency, a virus with a deletion in ICP34.5 rendered the virus incapable of
reactivation, even though the virus was clearly able to replicate and persist in a quiescent
form in the DRG neurons [309].

The requirement of ICP34.5 for viral growth is cell type and status dependent, in-
cluding an inability to replicate in non-dividing cells [303,310–312]. The ICP34.5 protein
contains a domain homologous to GADD34/MyD116, which functions during growth
arrest or DNA damage [313–316]. In cell culture, this domain of ICP34.5 was shown to
be required for preventing the shutoff of host translation through the reversal of phos-
phorylation of eukaryotic translation initiation factor alpha (eIF2α), which occurs in a
PKR-dependent fashion (Figure 2D) [317–322]. It was later found that ICP34.5 associates
with the host protein phosphatase 1α via its C-terminus and redirects it to dephosphorylate
eIF2α (Figure 2D) [317,318,323].

In interferon (IFN)-α/β receptor knockout mice, the ICP34.5-null virus showed a
rescue to near wild-type replication levels in the trigeminal ganglia, and this sensitivity to
IFN-α/β was found to occur in a manner dependent on the RNA sensor protein kinase R
(PKR) [135,324,325]. It was also found that mouse embryonic fibroblasts (MEFs) infected
with an ICP34.5-null virus induced higher expression of innate immunity genes and
phosphorylation of the transcription factor IRF3, which was partially dependent on TANK-
binding kinase 1 (TBK1) binding (Figure 2B) [326]. The binding site of TBK1 to ICP34.5
was found to be dispensable for blocking IRF3 phosphorylation, though ICP34.5 was still
demonstrated to be important for this function [327].

Another major role for the ICP34.5 protein is blocking autophagy through its interac-
tion with Beclin-1, which has been observed largely in mouse embryonic fibroblasts (MEFs)
(Figure 2C) [321,328,329]. Viruses lacking the Beclin-binding domain (BBD) of ICP34.5
were attenuated [328]. Mice infected with the mutant virus missing the BBD of ICP34.5
replicated less in brain and corneal tissue, but the BBD was found to be dispensable for
reactivation [330]. The control of autophagy by ICP34.5 was also implicated in preventing
MHC-class I antigen presentation of gB from HSV-1-infected macrophages to CD8+ T cells
through autophagy [331]. In support of this, the BBD of ICP34.5 was found to be important
to antagonize autophagy and prevent MHC-class II antigen presentation in dendritic cells
(DCs) [332]. Consistently, there seemed to be an increase in CD4+ T cell responses, includ-
ing IFN-γ and IL-2 production in mice infected with HSV-1 lacking the ICP34.5 BBD [330].
However, in MEFs lacking the gene Atg5, which is essential for autophagy, the infection
with ICP34.5 deleted for the BBD was not rescued compared to wild-type MEFs and no
improvement in virus replication was noticed [333,334]. This suggests that the primary
role of ICP34.5 is to counteract PKR activation rather than xenophagy. In support of this,
the growth of ICP34.5-deficient virus was completely rescued in PKR-/- MEF cells. The
discrepancies in the importance of the BBD and the fact that certain dendritic cell lines and
neuroblastoma cells actually exhibiting higher autophagy activation when infected with an
ICP34.5-null virus highlight the cell type-dependent role of ICP34.5 [321,328,333,335–337].
It was recently described that the expression of the ICP0 protein of HSV-1 was not sustained
in the ICP34.5-deleted virus, which complicates our understanding of cellular effects by
this virus [327]. More work is needed to clarify how cell type and cell status influences
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infection with ICP34.5-mutant viruses, and more specifically the ways in which ICP34.5 is
able to modulate autophagy in different cells.

3.2. US12 (ICP47)

Infection of fibroblasts with HSV-1 renders the cells resistant to lysis by CD8+ cytotoxic
T lymphocytes (CTLs), which normally recognize cell surface MHC I proteins presenting
viral antigens. ICP47 can block the transport of MHC I proteins to the surface, and in
this way inhibits lysis of infected cells by CTLs [338]. This explains why using ICP47 in
a vaccine vector cannot confer protective immunity in vivo, since it prevents MHC I CTL
induction [339]. To prevent the presentation of MHC I molecules on the cell surface, ICP47
binds to the transport-associated with antigen processing (TAP) factor. TAP mediates
the transport of peptides destined for presentation by MHC I from the cytosol to the
ER [340]. ICP47 binds with high affinity to the substrate-binding site of TAP, preventing
the binding of other peptides [341,342], and this binding is species specific, since binding to
murine TAP is much weaker [343,344]. This suggests that mice are not the optimal animal
model to study the CD8+ T cell protective effect of ICP47, but pigs, dogs, or monkeys
appear more suitable [345]. Alternatively, recombinant HSV-1 strains that contain murine
MHC I complex-binding proteins can be used, and they effectively restrict MHC I antigen
presentation in murine models. Work on such models has demonstrated that preventing
MHC I antigen presentation increases neurovirulence of HSV-1 since viral entry, replication,
and survival in the CNS is possible [346].

Preventing MHC I presentation can also be used to enhance the potency of oncolytic
mutant strains, such as those based on ICP34.5-null mutants [347,348]. When using on-
colytic viruses for cancer immunotherapy, there are issues with the immunogenicity against
viral vectors that carry antigens and the memory response that arises after repeated in-
jection of the vector during prime-boost regimens. CTL responses against the vectors
prevent build-up of an immune response against the antigen of interest, which in the case
of cancer immunotherapy is a peptide that is expressed in tumors. To solve this issue,
a tumor peptide can be fused with part of the adenovirus 19K-derived leader sequence
(MRYMILGLLALAAVCSA), which is an ER-targeting sequence, so that when expressed in
APCs, the fusion product bypasses TAP and traffics to the ER. In the ER, the tumor antigen
can be trimmed by aminopeptidases [349], loaded on MHC I molecules, and presented on
the cell surface in a TAP-independent manner [350]. In parallel, US12 can be expressed from
the viral vector and its expression restricts TAP and TAP-dependent MHC I presentation.
In the end, viral vector peptides will not be presented through the TAP pathway and the
immunogenicity against the vector will be restricted [351].

This protective role of ICP47 against CD8+ T cells is responsible for enhancing HSV-1
neuropathology in vivo. While an ICP47-null virus and WT replicate similarly in corneal
epithelial tissues, the ICP47-null virus causes little to no neurologic disease and encephali-
tis [352]. Mice depleted of T cells can support WT levels of neurovirulence, but mice
survival is decreased after exogenous delivery of CD8+ T cells [353], suggesting that CTLs
can control HSV-1-associated disease. Presentation of HSV-1 peptides to CTLs through TAP
is inhibited by ICP47, thus absence of ICP47 restricts neurovirulence whereas absence of
TAP does not [354]. Additionally, TAP expression in the brain of infected mice is increased,
suggesting that it has a host defense role. Infection with an ICP47-null HSV-1 virus does
not trigger an increase of TAP, likely because this virus does not invade the brain [354].

4. Nucleic Acid Metabolism and Endonucleases
4.1. UL2, UL12, UL12.5, UL50

HSV-1 has been shown to encode multiple proteins for the metabolism of nucleic acids
in the host cell. One such protein is encoded by UL2, and is the uracil DNA glycosylase,
which is an important enzyme for removing uracil from DNA [355–359]. The uracil DNA
glycosylase activity was described to be important in adult neurons for the replication of
the viral genome [360,361]. In support of this, infection of mice with mutant viruses lacking
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uracil DNA glycosylase activity had significantly reduced viral load in peripheral and
central nervous system tissues, as well as reduced reactivation from latency [361]. Later,
UL2-encoded uracil DNA glycosylase activity was found, with cellular factors and with the
viral DNA polymerase, to participate in base excision repair coupled with DNA replication,
supporting a role for UL2 during genome replication [362–365]. Moreover, UL2 nuclear
localization was found to be important for efficient viral replication [366]. UL2 was found
to be nonessential in cell culture [367]. There is a homolog for this protein in other herpes
viruses [368–371].

HSV-1 also encodes an alkaline nuclease or deoxyribonuclease, which is a phospho-
protein with endo- and exonuclease activity, which localizes to the nucleus of infected
cells [372–375]. The alkaline nuclease is encoded by the UL12 gene of HSV-1 [22,374,376–
379]. The UL12 gene of HSV-1 is highly related in sequence to proteins from other herpes
viruses [380–383]. UL12 is not essential for viral DNA replication [384]. UL12 is important
for viral capsids to egress from the nucleus [385,386]. It was found that cells infected with a
mutant virus lacking UL12 released many particles with genomes incapable of undergoing
new rounds of infection [387]. This increase in defective particles released in the absence of
UL12 during infection was later found to specifically be due to the nuclease activity of the
protein [388].

Mutant viruses lacking alkaline nuclease activity have reduced growth in cell culture,
which may be due to a role for UL12 in processing viral DNA replication intermediates
and packaging the DNA into the capsid [389–391]. More specifically, UL12 has been found
with ICP8, the ssDNA binding protein of the virus, to mediate strand exchange during
DNA replication through increased nuclease function by UL12 [392–394]. UL12 also seems
to be involved in single-strand annealing during homologous DNA repair in infected cells,
which also involves ICP8 as the single-strand annealing protein [395,396]. UL12 was also
found to interact with components of the MRN (homologous recombination repair complex
containing the proteins Mre11, Rad50, and Nbs1) in the nucleus during infection [397].
Together, these reports support a role for UL12 in the processing of viral DNA during
infection.

The UL12.5 protein of HSV-1 has not been fully characterized, but its ORF is known to
overlap that of UL12. UL12.5 lacks the first 126 aa of UL12, it retains the nuclease and the
ICP8 binding activities of UL12, and was initially described as a capsid nuclease [398,399].
However, UL12.5 does not accumulate to high levels in the nucleus and cannot efficiently
substitute for UL12 in promoting viral genome maturation [400]. Interestingly, the only
known function of UL12.5 seems to be related to mitochondria stress, as it has been found
that mitochondrial DNA is eliminated early during HSV-1 infection in a UL12.5-dependent
manner, which also involves mitochondrial nucleases (Figure 2C) [401–403]. This role by
UL12.5 in altering mitochondria stability during infection has not been further described,
but it has been found to be dispensable for viral replication [404]. More work is needed to
understand the role of UL12.5 during HSV-1 infection.

Another important protein involved in viral DNA replication is the protein encoded by
UL50 of HSV-1. UL50 encodes a tegument protein, which is a deoxyuridine 5′-triphosphate
nucleotidohydrolase (dUTPase), which is important for the synthesis of thymidine for DNA
replication [153,405–408]. The dUTPase activity was found to be nonessential in cell culture;
however, replication in the CNS of mice infected with a UL50-deleted virus was reduced,
along with reduced neurovirulence and reactivation [358,409,410]. The dUTPase is phos-
phorylated by the viral kinase US3 (see below), which seems to regulate the activity of this
protein in a cell type-dependent manner, as well as specifically affecting the neurovirulence
and replication competency of HSV-1 in the central nervous system [411–413]. There are
homologs for UL50 in other members of the Herpesviridae family [164,380,381,414–417].
Recent reports studying homologs of the HSV-1 UL50 from EBV or using transfections of
multiple UL50 homologs show the ability of UL50 to affect TLR1/TLR2-mediated immune
responses and upregulate NF-κB activity [418–420]. While it is still not known how this
pro-inflammatory effect by the HSV-1 dUTPase affects viral infection or pathogenesis,
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particularly as it relates to infection of different cell types, it is worth further investigation
to understand the immunomodulatory capacity of HSV-1 and the viral dUTPase.

4.2. UL39 and UL40 (RR1 and RR2)

The holoenzyme of the viral ribonucleotide reductase (RR) is composed of two sub-
units, the large subunit, also known as ICP6, that is encoded by the UL39 gene and the
small subunit encoded by the UL40 gene. HSV-1 RR converts ribonucleotide diphosphates
to corresponding deoxyribonucleotides, allowing for virus replication, particularly in non-
dividing cells [421]. Both subunits of the RR are needed for enzyme activity [422], so
a decrease in either subunit decreases RR activity. Knockdown of UL40 using siRNAs
triggers a mild (50%) decrease in plaque size and numbers [423]. Chemical inhibitors
of the ribonucleotidase activity can lead to poor viral replication, depending on the cell
type [371,424,425]. Dividing cells in S phase contain an elevated dNTPs pool and are capa-
ble of supporting replication of ribonucleotide reductase-deficient virus [421,426]. RR is
required in non-replicating cells, such as neurons that have a reduced dNTPs pool (Figure
4A). This attribute makes an RR-deficient virus an attractive option for use in oncolytic
therapy that targets malignant gliomas, since it generates a non-replicating virus in such
tissues, giving a good safety profile [427].

HSV-2 UL39 has been associated with antiapoptotic functions [428]. HSV-1 UL39
mutants exhibit a 50% reduction in protection from TNFα [429], which suggests that HSV-1
R1 is important for protection of HSV-infected cells from this death ligand, while the 50%
efficiency suggests that other viral proteins contribute to this protection. Nonetheless,
HSV-2 R1 interacts constitutively with caspase-8 and prevents its interaction with FADD,
inhibiting TNFα-mediated apoptosis [430].

The large subunit of the RR has been shown to contribute to ocular virulence in
mice [431], but null mutants can produce lesions in a guinea pig model [432]. This has
also recently been observed with a naturally occurring viral mutant in mice that were
impaired in acute replication in the eyes and the trigeminal ganglia of mice, and also
defective in establishing a latent infection and reactivation [433]. Interestingly, this mutant
cannot inhibit caspase 8-induced apoptosis as wild-type virus [433], further supporting
the relevance of the antiapoptotic effects of the RR for pathogenesis. An RR-deficient virus
that exhibits impaired acute replication in the eyes and the trigeminal ganglia of mice is an
attractive option for a herpes prophylactic vaccine, since it appears to confer protection
against HSV-1 challenge post-immunization with an RR-deficient mutant [434].

4.3. UL41 (vhs)

It was first observed that HSV-1 caused the shutoff of host protein synthesis as early
as 1978 [435–437]. This effect was later ascribed to the UL41 gene product of HSV-1, the
virion host shutoff (vhs) protein, which is found in the viral tegument [438–442]. There are
homologs for vhs in other alphaherpesviruses, such as HSV-2, varicella-zoster virus, equine
herpesvirus, and pseudorabies, which is indicative of a conserved benefit for the virus
to express this protein [443–445]. Although vhs is dispensable in cell culture, its absence
in vivo leads to reduced viral pathogenicity and severe attenuation [135,441,446–450]. Vhs
was first described to be able to block the accumulation of both host transcripts and all three
classes of viral mRNAs [438–441,451–453]. However, it was later suggested that the activity
of vhs is regulated late during infection by the viral proteins UL47, VP16, and VP22 and this
is how it spares beta and gamma viral transcripts, although it downmodulates alpha gene
transcripts [187,454–457]. Vhs blocks the accumulation of mRNAs due to its role as a viral
RNase [452,458–460]. More specifically, vhs has been identified as an endoribonuclease,
with sequence similarities to the FEN-1 family of nucleases, which are found in eukaryotes
and archaebacteria and are involved in DNA replication and repair [460–462]. Vhs displays
substrate specificity similar to that of RNase A and it cleaves at the 3’ end of single-stranded
cytidine or uridine residues [463]. A group of mRNAs targeted by vhs includes those with
adenylate-uridylate (AU)-rich elements at the 3’ end. Several AU-rich mRNAs are stress
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response transcripts that are upregulated during HSV-1 infection, as they encode for hostile
products, including type-I interferon-related products [457,464,465].

These mRNAs appear to be cleaved in ARE and deadenylated in a 3’-5’ decay process
occurring in a vhs-dependent manner, whereas the truncated 5’ domains may persist, and
this is a mechanism by which HSV-1 counteracts antiviral responses (Figure 2D). Stable host
transcripts appear to be targeted by vhs in a different way that includes binding of vhs to
the cap structure via its affinity for the translation initiation factor eIF4H that causes mRNA
decapping and degradation of the uncapped mRNA 5’ to 3’ [465–467]. In addition to eIF4H,
vhs also interacts with other subunits of the cap structure, including the eIF4AII isoform,
the eIF4B, and perhaps other components of the translation apparatus [460,468–472]. These
interactions may allow vhs to access some targeted mRNAs during translation initiation
and regulate their expression. Overall, vhs displays specificity since it preferentially
degrades translating mRNAs and not tRNAs or rRNAs [473].

By degrading host transcripts, particularly those induced by interferons, vhs has a
central role in blocking antiviral responses. It was first described that vhs may be involved
in blocking immune responses when it was observed that growth of a vhs-deficient virus
was rescued in mice deleted of interferon signaling receptors [135]. It was then shown that
there was increased cytokine production in mice infected with a UL41-deficient mutant as
compared to wild-type virus-infected mice. Additionally, UL41 mutant viruses displayed
increased sensitivity to interferon-α and -β compared to wild-type virus [474]. Vhs was
then described to be important for blocking the activation of dendritic cells (DCs), which
was found to occur in a toll-like receptor (TLR)-independent manner [475,476]. It was also
demonstrated in mature DCs that vhs is required for HSV-1 to block phosphorylation of
STAT1 and IFNγ signaling [477]. Infection of immunocompromised mice lacking the STAT1
gene with a vhs-deficient virus did not rescue the growth of this virus and also resulted in
higher induction of cytokines than in wild-type virus-infected mice, indicating that vhs has
a fundamental role in promoting virus replication and that STAT1 was required to mount
an appropriate non-pathological inflammatory response [478].

In addition, by degrading transcripts, vhs was found to decrease the formation of
cytoplasmic stress granules (SGs) in infected cells, thus preventing activation of PKR
through accumulation of dsRNAs at the site of SGs, which would otherwise lead to
innate immunity activation and translation shutoff due to phosphorylation of eIF2α
(Figure 2D) [465,479–483]. Furthermore, vhs has been proposed, with ICP0, to block the
DNA sensor IFN-γ-inducible gene IFI16 through its endoribonuclease activity, thus block-
ing the antiviral activities of IFI16 in multiple cell types [123].

Cumulatively, the expression of vhs has been found to benefit the virus in multiple
ways, both in vitro and in vivo.

5. Viral Kinases
5.1. UL23 (TK)

The HSV-1 thymidine kinase (TK) is a 376-aa protein, encoded by UL23. TK is re-
sponsible for phosphorylating thymidine and deoxycytidine through an ATP-dependent
mechanism, though it has been described to have broad substrate specificity [484–489]. TK
is also known to phosphorylate the nucleoside analogs acyclovir (ACV) and ganciclovir
(GCV), which have an inhibitory effect on the viral DNA polymerase, thus blocking viral
replication [485,490,491]. TK activity is conserved across other herpesviruses [488,492–498].

In vitro studies have demonstrated that TK is dispensable for virus replication in
sensory neurons derived from dorsal root ganglia of rat embryos [499]. However, in vivo
studies found that TK is required for virus replication in trigeminal ganglia and the brain
but not in peripheral tissues of adult mice (Figure 4A) [500–503]. This is most likely because
adult neurons are post-mitotic and they do not express adequate levels of cellular TK to
support the growth of HSV-1 TK-null virus, unlike dividing cells. In support of this, it was
shown that substitution of the viral TK with the host TK gene enabled the recombinant
virus to replicate in TG [504,505]. In addition, the absence of TK activity impairs HSV-1
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reactivation from latency [426,506–509]. Particularly, it was reported that following corneal
inoculation of mice, the HSV-1 TK-null virus was severely impaired for replication in
TG [502,510]. However, LAT was expressed in these ganglia, suggesting that the TK-null
virus can establish latency [511]. Notably, a TK-null mutant virus cannot reactivate even
when latent viral loads were comparable to those that permit efficient reactivation of wild-
type virus, indicating that latency establishment was not an issue [237,500,506,508,512,513].

Prolonged treatment with acyclovir and its analogs can lead to virus-acquired drug
resistance because of mutations accumulating in the TK gene. Such mutant viruses are
causing major problems in immunocompromised individuals in the clinic [514–516]. Con-
sidering also that the properties of HSV-1 TK have been explored in experimental therapies
of intracranial tumors, it is important to clarify if HSV-1 TK-null viruses can establish
lifelong infections in immunocompromised hosts. Using different HSV-1 TK mutants and
different backgrounds of nude mice, it was demonstrated that all HSV-1 TK mutants can
establish persistent infections in the TG and brain stem of nude mice [508]. This is consis-
tent with the detection of ACV-resistant TK mutants in the CNS of immunocompromised
patients with persistent infection [517].

While the role of TK in viral replication and latency in vivo has been the subject of a fair
amount of investigation, a breadth of information has been obtained regarding the potential
of TK expression for therapeutic purposes. More specifically, much work has been done on
using the HSV-TK/GCV suicide gene therapy system for cancer treatment. This system
works such that GCV is monophosphorylated by HSV-TK and further phosphorylated by
host cell kinases. The triphosphate form of GCV is an analog of purine and it incorporates
in the nascent DNA of the cancer cells, which are actively proliferating and synthesizing
DNA. This causes the DNA polymerase to stall with subsequent termination of nuclear
and mitochondrial DNA synthesis. As a consequence, DNA damage and cell cycle arrest is
induced, leading to caspase-dependent cell death in cancer cells [518–524]. It was observed
in breast cancer cells that the HSV-TK/GCV system induced p53-dependent DNA damage
responses and cell cycle arrest, perturbing mitochondrial homeostasis through membrane
potential dysfunction and release of cytochrome c into the cytoplasm in neuroblastoma
cells [519,525,526]. Similar findings were reported in hepatocellular carcinoma cells using
an adenovirus method of delivery for HSV-TK [527]. The HSV-TK/GCV system has also
been seen to be effective in tumor models in mice [528–531]. This system is considered
efficient because the effects of HSV-TK/GCV are also mediated through bystander effects
on surrounding cells and tissues to those that uptake HSV-TK/GCV, which is thought to
occur through the transfer of cytotoxic molecules between cells [532–537]. HSV-TK/GCV
has since been used in several phase I/II clinical trials [538–543]. Other preclinical trials
have also been published using HSV TK in other delivery systems, and frequently in
combination with other antitumor therapy methods [544–550].

5.2. US3 and US3.5

The serine/threonine protein kinase US3 of HSV-1 has multiple significant functions,
though it is non-essential in cell culture [21]. However, US3 has been found to be critical for
infection of both peripheral sites and the central nervous system [237,551,552]. Furthermore,
US3 has been implicated in the promotion of the viral infection in multiple ways, from
blocking host responses to promoting viral replication and nuclear egress.

One function of US3 is to promote the egress of nucleocapsids from the nucleus to the
cytoplasm through primary envelopment (Figure 3) [553,554]. This is supported by the ob-
servation that in US3-null virus-infected cells, aberrant HSV-1 capsids are trapped between
the inner and the outer nuclear membrane [103]. Us3 deficiency also causes accumulation
of viral proteins essential for cytoplasmic envelopment and viral infectivity, such as gK,
with the capsids in the perinuclear space (PNS) [555]. To further promote nucleocapsids
egress, US3 has been implicated in phosphorylation of lamin A/C that causes changes in
its architecture, including changes in its localization and conformation [556–559]. US3 also
assists in the egress of nucleocapsids through interactions with and phosphorylation of



Viruses 2021, 13, 17 21 of 75

UL31 [560] and UL34 [556,561,562]. All three proteins are located within perinuclear virions
and at the inner nuclear membrane (INM), suggesting that they could be incorporated into
the virion during budding at the INM. US3 also phosphorylates UL47 at Ser-77, promoting
its nuclear localization [563]. A proposed role of nuclear UL47 is to interact with the nuclear
egress factors UL31, UL34, and US3 to regulate viral nuclear egress [291].

Figure 4. HSV-1 ocular infection based on data in mouse models. (A) HSV-1 can infect the eye through the cornea, where it
can establish a productive infection in the corneal epithelium. The virus can then spread through the innervating sensory
neurons to the trigeminal ganglia (TG), moving retrograde along axons towards the neuronal bodies. VP26 mediates
migration to the TG. gE/gI and UL24 are important for trafficking of the virion along the axons towards the neuronal bodies.
UL39/UL40 and TK are required for replication in cells that do not actively divide, such as neurons. gE/gI affect both
retrograde and anterograde movement of the virion. (B) HSV-1 infection of the cornea: The virus can infect the upper layer
of polarized epithelial cells, which requires gC and gG. Dissemination of the ocular infection requires the function of gE
and gK, and further spread of the virus towards the underlying stromal layers of the cornea requires the function of VP22.
HSV-1 can infect corneal afferent neurons and then spread towards the TG utilizing gE/gI. (C) HSV-1 can establish an
infection in the retinal neuronal cells and can then move retrograde towards the cornea or anterograde towards the central
nervous system (CNS). This migration requires gE, and presumably gI since they function in a complex. (D) Anterograde
trafficking of virions inside neurons requires gE/gI and US9. Based on data in pseudorabies virus (PRV), US9 interacts with
kinesins that regulate the anterograde movement of virions along microtubules towards axonal termini. It is also possible
that gE/gI and US9 are required for proper cytoplasmic envelopment and sorting to axons.
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Another function of US3 is inhibition of apoptosis [564,565]. It has been demon-
strated that expression of US3 protein outside of the context of the infection mediated post-
translational modification of BAD, a proapoptotic protein, which is no longer proapoptotic
upon post-translational modifications at Ser-112 and Ser-136 by US3 [566]. Consequently,
PARP cleavage, BAD cleavage, and caspase 3 activity were blocked when proteins that
induce apoptosis were expressed concordantly with US3 [470,566,567]. Us3 may block
apoptosis in multiple ways since it blocks cell death induced after infection with various
HSV-1 mutants, such as ∆ICP4, but it can also protect against cell death induced after
thermal or osmotic shock [564,568]. In support of this, the optimal consensus sequence of
US3 peptide substrates was found to resemble the target sequence of the cellular cAMP-
dependent protein kinase PKA [569]. PKA is a key enzyme important in the regulation
of metabolism, survival, and proliferation of eukaryotic cells, and it mediates most of the
biological effects of the second messenger cAMP. The pattern of proteins phosphorylated
by US3 overlaps that of phosphoproteins targeted by PKA. Consistently, PKA could block
apoptosis by stimuli that Us3 could block. Overall, US3 can block DNA fragmentation and
cell death caused by exogenous expression of pro-apoptotic factors or a variety of other
stimuli.

US3 has been implicated in promoting viral gene expression both at the level of
transcription and translation and virus replication (Figure 1). US3 promotes viral gene
transcription by preventing the deacetylation of histones, a function that also involves
ICP0 [103,570]. The US3 kinase from VZV and PRV promotes hyperphosphorylation of
HDAC2 and likely HDAC1 to reduce viral genome silencing and allow efficient viral
replication [570]. US3 has also been proposed to act as the ser/thr kinase Akt, although it
does not look like Akt. This Akt-like kinase function of US3 has a role in stimulating mRNA
translation through activation of mTORC1 by phosphorylating tuberous sclerosis complex
2 (TSC2) on the same sites as Akt [571,572]. Activated mTORC1 negatively regulates the
activity of the translation repressor 4E-BP1, enabling cap-dependent translation. Addition-
ally, US3 phosphorylates the viral dUTPase, encoded by UL50, at Ser-187, and that causes
an increase of its activity over host dUTPases, thereby promoting HSV-1 replication [411].

Finally, US3 is implicated in virus defense against the host. One example is the require-
ment of US3 for inactivation of CD8+ cytotoxic T lymphocytes, thus preventing cytokine
production [573]. US3 also blocks TLR2 signaling early during infection by preventing
TRAF6 polyubiquitination [574]. Additionally, US3 hyper-phosphorylates IRF3 at Ser175,
which inhibits IFN-β production [575]. Furthermore, the Bcl-2-associated transcription
factor 1 (Bclaf1) was recently shown to be degraded in a US3-dependent manner during
HSV-1 infection [576]. This degradation prevented IFN-α-mediated interferon-stimulated
genes expression [576]. US3 also phosphorylates both ULK1 and Beclin-1, thus blocking
autophagy activation during HSV-1 infection in a manner independent of ICP34.5 [577].
In a different approach to promoting the viral infection, US3 has also been found to affect
the subcellular localization of certain viral proteins by affecting their phosphorylation
status. Particularly, US3 causes a decrease in the amount of gB found on the cell surface by
phosphorylating its cytoplasmic tail at Thr-887 and perhaps enhancing its endocytosis [578].
This phosphorylation of gB has been implicated in virus pathogenesis since mutation of
Thr-887 significantly impaired viral replication in the mouse cornea and the development
of herpes stromal keratitis and periocular skin disease [578]. US3 has also been found, with
gB, to be involved in downregulation of the major histocompatibility complex class I-like
antigen-presenting molecule, CD1d, through prevention of recycling of CD1d to the cell
surface [579].

A shorter version of Us3 named Us3.5 was discussed earlier together with ICP22.
Overall, US3 plays many important roles in the viral life cycle and in viral infectivity.

5.3. UL13

In addition to the US3 kinase, HSV-1 encodes a second serine/threonine protein
kinase UL13, which functions in the cell nuclei and is present in the virion as a tegument
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protein associated with the capsid [580–584]. UL13 is conserved across members of alpha-,
beta-, and gamma-herpesviruses [380,585–589]. UL13 is non-essential in cell culture, but
it seems to have a role in counteracting antiviral responses and is important for optimal
viral replication in cell culture [590–592]. In a mouse model, a UL13-deleted virus was
sensitive to type I IFN, suggesting an important role for UL13 in blocking host responses to
infection [593].

UL13 phosphorylates multiple viral proteins, including itself, the immediate-early
viral protein ICP22 and US1.5, ICP0, and numerous tegument and envelope proteins
(Figure 1) [190,242,253,254,592,594,595]. It seems that phosphorylation of ICP0 by UL13
is important for stabilizing ICP0 protein during infection [596]. This is supported by the
fact that ICP0 is degraded both early and late in cells infected with a mutant lacking the
UL13 protein kinase. Furthermore, it was found that ICP0 encoded by wild-type virus or
the UL13-null mutant is stable in cells transfected with a plasmid encoding UL13 before
infection [596]. Phosphorylation of UL46 by UL13 leads to Akt activation to promote
cell survival [597]. UL13 also phosphorylates VP22 at casein kinase II consensus sites,
but it was found that UL13 modulates cellular localization of VP22 in a phosphorylation-
independent manner [590,595,598]. The significance of phosphorylation of VP22 by UL13
has not been investigated. UL13 phosphorylates the viral Fc receptor gE/gI, though it
seems that a host kinase may also phosphorylate gE/gI [599]. Phosphorylation of gE
by UL13 is thought to facilitate packaging of UL13 into the virion [599]. However, this
phosphorylation could also impact gE trafficking or other functions. UL13 expression was
found to be downregulated by the US11 RNA-binding protein. US11 was found to bind to
the RNA sequence, designated as 12/14, which is present in the coterminal HSV-1 mRNAs
UL12, UL13, and UL14. This binding led to reduced UL13 kinase activity due to reduced
mRNA levels [600]. While the exact mechanism of downregulation of UL13 transcripts by
US11 is unknown, it is thought that this occurs through nucleocytoplasmic export of the
transcript [600]. The kinase activity of UL13 and US3 was found to be important for the viral
glycoproteins gC and gD to be modified and expressed late during infection, as loss of both
UL13 and US3 diminished virion release, showing a role for UL13 in assembly and egress
of the virion [601]. Thus, UL13 modifies multiple viral proteins both to promote assembly
and release of the virus, and to affect the stability and localization of viral proteins.

UL13 plays roles in modulating host responses to infection. For example, interferon
stimulation and production of cytokines are modulated by UL13 during infection. UL13
has been found to be important for the induction of a set of suppression of cytokine sig-
naling (SOCS) genes late during infection, which is important for blocking the interferon
response during HSV-1 infection of cells [602–605]. Recently, UL13 was found with the
other viral kinase US3 to be important for regulating phosphorylation of protein kinase R
(a nucleic acid sensor) during infection [606]. UL13 was also found to hyperphosphorylate
an important host factor for the elongation of peptide chains during mRNA translation,
eF-1δ during HSV-1 infection, supporting viral protein synthesis, and also preventing
apoptosis [607–609]. UL13 was found to phosphorylate the cellular casein kinase II β sub-
unit (CKIIβ), though the significance of this phosphorylation has not been explored [610].
However, it was found that UL13 is able to phosphorylate proteins at similar residues
as the cellular cdc2 cyclin kinase [610]. It was also determined that UL13, with ICP22, is
responsible for activating cdc2 during infection, which is required for optimal expression
of viral late genes [259,260]. UL13 was also found with ICP22 to phosphorylate the RNA
polymerase II (RNAP II), supporting virus late gene expression [267]. Overall, phospho-
rylation of host proteins by UL13 supports viral infection by supporting virus late gene
expression, blocking innate immune responses, supporting viral protein synthesis, and
activating cellular proteins for the benefit of the virus.
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6. Virion Morphogenesis, Egress, Cell-to-Cell Spread, and Host Evasion
6.1. UL3 and UL4

The HSV-1 UL3 and UL4 are late proteins that have only minorly been studied, though
they have been determined to be nonessential in cell culture and UL4 was also found
to be nonessential in mouse models of HSV-1 infection for latency, reactivation, and
pathogenesis [421,611,612]. The UL3 phosphoprotein and the UL4 protein have homologs
in other members of the Herpesviridae family [84,153,368–370,613–620]. UL3 appears to
localize perinuclearly early during infection and in nuclear puncta at late times post
infection [613,621,622]. UL3 and UL4 have also been found in the nuclei of infected cells
and found to co-localize with ICP22 in nuclear bodies, which may involve recruitment by
ICP22 [271,623–625].

6.2. UL7 and UL51

HSV-1 pUL7 is a 296-aa tegument protein [626] that lacks a putative transmembrane
sequence or motifs that could facilitate its membrane anchor. Therefore, its association with
membranes is mediated through the interaction with a membrane protein, i.e., UL51. UL7
forms a complex with UL51, and this is required for the recruitment of UL7 to cytoplasmic
membranes and into the virion tegument (Figure 3C) [627]. pUL7 and pUL51 form a stable
and direct protein-to-protein interaction [628], and they function as a complex in infected
cells. Both are important for HSV-1 assembly and plaque formation. Their individual
ablation results in similarly lower yields with a double UL7/UL51 knockdown, suggesting
that UL7 and UL51 work in the same pathway [628], which is likely related to cytoplasmic
envelopment of HSV-1 virions since many unenveloped capsids next to membranes can be
seen in cells infected with UL7/UL51 mutants [628].

UL7 ablation can affect HSV-1 infection at earlier times, too. UL7 absence results in
viruses with lower yields in vitro and lower pathogenic effects in vivo [629]. Mice infected
with a UL7 mutant HSV-1 exhibit longer survival than those infected with WT HSV-1. A
decrease in LAT mRNA expression was observed in the CNS and trigeminal ganglia of
mice infected with a UL7 mutant HSV-1, suggesting decreased viral gene transcription in
the absence of UL7. This is supported by data that show that UL7 may participate in the
complex that is involved in the transcription of ICP4 [629]. It is not clear if UL7 is directly
involved in the interaction between the promoter of ICP4 and the transcriptional complex
or is involved perhaps in the chromatin remodeling process that enables transcription of
ICP4. UL7 can be detected through cell fractionation and fluorescence microscopy in the
nucleus [630], although it is primarily seen in the cytoplasm. It is not clear if its function in
the nucleus is derived from UL7 delivered as part of the incoming virions [627] or from
nascently expressed UL7.

UL7 and UL51 can also affect cell-to-cell spread of HSV-1. pUL51 interacts with pUL7
and gE/gI in infected cells, and deletion of part of UL51 or deletion of UL7 results in failure
of gE to concentrate at junctional surfaces of Vero cells (Figure 3). This suggests a role
for a UL51/UL7 complex in cell-to-cell spread of HSV-1; however, this may depend on
the cell line. A pUL7/pUL51/gE/gI method for cell-to-cell spread can occur in polarized
epithelial cells, such as HaCaT, but different cell-to-cell spread mechanisms may be utilized
in non-polarized cells, such as Vero [631]. Additionally, the UL7/UL51 complex can affect
cell-to-cell spread by localizing to focal adhesions in infected cells. Focal adhesions are
contact sites between the cytoplasm and the extracellular matrix. They are dynamic and
respond to extracellular stimuli and play a role in cell attachment and movement. Ablation
of the UL7/UL51 complex results in destabilization of focal adhesions and diminished
cell integrity [628]. UL7 and UL51 seem to mediate the stability of focal adhesions during
infection, perhaps to maintain the proximity of infected and non-infected cells so that
cell-to-cell spread can be promoted. This still remains to be demonstrated.

An additional function of UL7 may be exhibited on the mitochondria. UL7 has been
identified as a partner of the adenine nucleotide translocase (ANT2) through a mass
spectrometry approach combined with affinity purification. ANT2 localizes in the inner
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mitochondrial membrane and is a member of the permeability transposition pore complex.
In physiological conditions, it exchanges ATP and ADP on the inner mitochondrial mem-
brane and is essential for maintaining the cell metabolism exchange of cytosolic ADP for
mitochondrial ATP. HSV-1 infection can affect mitochondrial function, and UL7 may be
one of the proteins that are important for this function [632].

UL51 is a late gene that is expressed as three phosphoproteins with sizes of 27, 29, and
30 kDa. It can be detected in extracellular HSV-1 virions [633], is phosphorylated on five
sites [634], and phosphorylation on the Ser-184 site has been described as important for HSV-
1 replication in vitro and pathogenicity in vivo after ocular infection of mice [634]. UL51
localizes in the cytoplasm [633], mostly in the perinuclear area, but part of it also localizes
to the Golgi. Golgi localization requires the N-terminus of UL51, which is palmitoylated
to mediate sorting to Golgi membranes. UL51 is packaged in virions, on the inside of
the viral envelope [633]. UL51 internalization into vesicles and virions may occur during
cytoplasmic envelopment in infected cells [633]. Infections with a UL51-null HSV-1 yields
smaller plaques and a growth of 2 logs lower than a WT HSV-1. UL51-null infections
exhibit enveloped virions at the perinuclear space, as opposed to enveloped virions at
membranes at the TGN during WT HSV-1 infections [635]. The membranes that encapsulate
those UL51-null virions resemble nuclear membranes through electron microscopy. Such
membranes are tightly wrapped around nucleocapsids and do not appear as fuzzy as the
membrane of the extracellular virions. Additionally, nucleocapsids are found intranuclearly
adjacent to the inner nuclear membrane (INM) with membranes with the same appearance,
further supporting that these perinuclear enveloped virions are enveloped with membranes
derived from the nuclear cisternae. This suggests that UL51 acts at a post-inner nuclear
membrane envelopment step, possibly during the outer nuclear membrane de-envelopment
process (Figure 3B).

As mentioned above, UL51 has a role in cell-to-cell spread that is dependent on cell
type. UL51 colocalizes with gE in infected cells and it can be immunoprecipitated together
with gE, in addition to affecting gE localization to cell junctions [636]. It is possible that
UL51 functions as a trafficking mediator while is present on the cytoplasmic side of Golgi
membranes.

UL51 recruits UL7 into the nascent virion tegument (Figure 3) [627]. Their colocaliza-
tion is incomplete though, suggesting that they have other independent functions [627].

UL51 also interacts with UL14 in infected cells, as shown by affinity purification [637].
Three amino acids on UL51 are required for this interaction, and their mutation results
in decreased viral replication and accumulation of unenveloped and partially enveloped
capsids in the cytoplasm. The localization of both UL51 and UL14 depends on their
reciprocal interaction. These data suggest the UL51-UL14 complex regulates cytoplasmic
envelopment of HSV-1 [637].

6.3. UL10 and UL49.5 (gM and gN)

Glycoprotein M (gM) is an integral viral envelope membrane protein that spans the
membrane eight times [638]. Its deletion results in only a small decrease in viral yields in
cell culture [611,639], thus it is defined as non-essential. Even though a gM-null virus can
establish a latent infection in mice, it is impaired for growth within the nervous system
versus the wild-type virus [638].

gM localizes within the leaflets of the nuclear membrane, at the Golgi and the TGN,
and the envelopes of cytoplasmic and extracellular virus particles [640]. Infection with a
US3-null HSV-1 results in punctate extensions and invaginations of the nuclear membrane,
on which gM localizes [640]. This suggests that gM becomes incorporated into the virion
envelope upon budding through the nuclear membrane. Transfection of gM leads to its lo-
calization to the TGN and plasma membrane (PM) [641,642]; however, this pattern changes
during infection. When gM is expressed, it is recruited to nuclear membranes and then to
perinuclear virions once they are formed. This occurs before HSV-1 induces reorganization
of the TGN and before gM localization to the TGN. Consistent with these observations,
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confirmed partners of gM, such as gH/gL, gN, VP22, UL31, and UL34 [643–646], do not
colocalize with gM early during infection. Therefore, it has been proposed that the function
of gM early during infection in the nuclear membranes is separate from its function during
viral egress [641]. Characterization of gM domains showed that its trafficking to the TGN
requires its transmembrane domains, while its C-terminal trafficking motifs are dispensable.
The requirement of the transmembrane domains suggests that gM may associate with other
transmembrane proteins for trafficking (Figure 3C) [647], but this remains to be shown.

The role of gM in the TGN is related to the trafficking of host and viral proteins during
infection. For example, co-expression of gB, gD, gH, and gL can trigger fusion of cell
membranes of transfected cells. Such fusion can be inhibited by the additional co-expression
of gM [643]. In this context, gD and gH/gL can be seen to relocalize from the plasma
membrane to the TGN, suggesting that inhibition of fusion is triggered through the removal
of the fusion glycoproteins from the surface [643]. These data suggest that gM is involved
in either retaining viral glycoproteins at the TGN or causing their translocalization from
the plasma membrane to the TGN, supporting virion maturation at the TGN [648]. Further
supporting data show that an absence of gM results in reduced gH/gL internalization from
the PM of infected cells, and reduced incorporation in produced virions [649].

gM can interact with gN, resulting in altered intracellular targeting of both proteins.
Co-immunoprecipitations in transfected or infected cells indicate that gM and gN form
a complex [642], and gN overexpression seems to mediate the formation of syncytia in
infected cells, which are inhibited normally by gM [642,643,650]. Syncytia occurs when
cell membranes fuse, forming large multinucleated cells. This suggests a strict regulation
of fusion that can be deregulated by altered gN expression possibly through altering the
localization of gD and gH/gL from the plasma membrane to the TGN that is triggered by
gM [643]. gN is an ER-resident protein that in the presence of gM is translocated to the
TGN. gM and gN are covalently linked between two cysteines, and exit of gN from the ER
requires the N-terminus of gM but not the C-terminus. gN is non-essential and its deletion
does not seem to affect viral growth [644].

While gM can inhibit syncytium formation in transfected cells [643] and reduces the
surface expression of proteins involved in fusion, only gN and UL46 have been identified
as partners of HSV-1 gM. Proteomics studies with an emphasis on host proteins identified
the host extended synaptotagmin 1 (E-Syt1) as a gM partner [651]. E-Syt proteins promote
the close apposition of the ER and the plasma membrane (PM), and the transfer of lipids
between the ER and the PM. Functions of several synaptotagmins remain to be determined,
but they seem to engage and regulate SNARE proteins (the core cellular fusion machinery)
and act as Ca2+ sensors.

It was found that during HSV-1 infection, knocking down E-Syt1 triggered the release
of the virus into the extracellular space, at the expense of cell-associated infectious particles.
Conversely, overexpressing E-Syt1 led to reduced levels of mature virions in the medium,
hinting at a negative regulation. E-Syt1 did not act alone but in combination with the
related E-Syt3, which exhibited a similar phenotype. Most interestingly, these E-Syt proteins
impacted viral entry, as well as cell–cell fusion (syncytia) and viral plaque size (cell-to-
cell spread), suggesting they acted on the viral fusion machinery [651]. One possible
mechanism of action might involve deregulation of Ca2+ signaling that occurs during
HSV-1 infection [652,653], and which could affect E-Syt Ca2+-dependent function [651].

A BioID proteomics approach identified multiple gM partners, with 35% of those
being involved in protein transport. XPO6, an exportin, is required for gM to be released
from the nucleus to the TGN [654].

Another interesting way that gM is involved in affecting host trafficking is through
modulation of tetherin (Figure 3). Tetherin is an effective cellular factor against a variety of
enveloped viruses. Its antiviral activity stems from its ability to form a tether between a host
membrane and a budding viral envelope, inhibiting the release of budding virions [655].
Tetherin can also target HSV-1, as the overexpression of tetherin led to accumulation of
HSV-1 particles to the cell surface, suggesting inhibition of HSV-1 release [656]. HSV-1
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counteracts tetherin function through gM, which interacts with tetherin and removes it
from the plasma membrane, thus preventing virion tethering to the plasma membrane.
This antagonistic effect might be due to gM preventing tetherin reaching the cell surface or
relocalizing tetherin away from the plasma membrane [656], perhaps in a similar manner
with gD and gH/Gl [643].

6.4. UL11

UL11 is an early expressed 96-aa myristylated and palmitoylated tegument pro-
tein [657–659] that is not required for HSV-1 replication in cell culture. A UL11-null
virus exhibits smaller plaques and displays about one log decrease in progeny virus pro-
duction [660]. Additionally, the palmitoylation and myristylation of UL11 is not required
for viral growth, since a non-myristylated UL11 mutant HSV-1 can rescue the growth of a
UL11-null HSV-1 [661]. The palmitoylation of UL11 is required though for association of
UL11 with the cytoplasmic faces of Golgi membranes of infected cells [658,660].

UL11 can interact with several viral proteins, including UL16, as observed through
immunoprecipitation, mass spectrometry, and yeast-two-hybrid assays [155,662]. There
are dileucine and acidic cluster motifs on UL11 that are required for the UL11–UL16 interac-
tion [659], as well as the free cysteines of UL16 [663].

It is not clear what the mechanism of the packaging of UL11 in the tegument of nascent
virions is [659]. Tandem affinity purification (TAP) supports that UL11 interacts specifically
with the cytoplasmic domain of gD and gE [664]. In the absence of the cytoplasmic tail of
gE, virion packaging of UL11 was reduced by 80% [665]. Similarly, gE packaging is reduced
85% in the absence of UL11, as gE packaging requires the UL11 acidic cluster [665]. These
data highlight the importance of UL11 in recruiting glycoprotein-enriched membranes for
cytoplasmic envelopment of the virus and could have implications for gE/gI-mediated
cell-to-cell spread of HSV-1 (Figure 3C,D) [665]. Interestingly, deletion of the gD cytoplas-
mic domain still allows partial binding of UL11 to the ectodomain of gD, suggesting that
UL11 can be highly adherent (“sticky”) [664]. This would support that adherent tegument
proteins can support extensive protein–protein interactions, which would mediate the
bridging of the viral capsid to the envelope. UL11-null virus infections result in accumu-
lation of unenveloped capsids in the cytoplasm surrounded by electron-dense material
(most likely other tegument proteins) [666].

The “stickiness” of UL11 can be explained by its description as an intrinsically dis-
ordered protein (IDP). IDPs contain amino acids and elements that cause them to exhibit
hallmarks of a disordered structure, such as slower electrophoretic mobility than expected
based on length, reduced size exclusion chromatography mobility due to reduced protein
compaction, and low proportion of hydrophobic amino acids with a high proportion of
charged and hydrophilic amino acids. The result is a protein that cannot fold spontaneously
into a stable conformation and fluctuates rapidly through a range of conformations. Such
proteins frequently interact and function within protein–protein interaction networks [667].
As a result, UL11 can undergo phase separation in vitro and form biomolecular membrane-
less condensates. Such condensates can contain one or many different kinds of proteins.
Specific conditions may mediate the formation of condensates by UL11 in cells, such as
binding to gE, UL16, or clustering within lipid rafts. Other HSV-1 tegument proteins also
have IDP regions, indicating that phase separation may be used for tegument packaging
during HSV-1 cytoplasmic envelopment [668].

If one deletes the dileucine and acidic cluster (AC) motifs of UL11, then UL11 increases
its association with detergent-resistant membranes (DRMs), which are enriched in choles-
terol and sphingolipids. One possibility is that the deletion of dileucine motifs and ACs
results in palmitoylation and myristylation to recruit UL11 to DRMs [669].

6.5. UL16

UL16 is an unusual gene because it is contained within the intron of the UL15 gene
and is transcribed antisense to the UL15 gene [611]. UL16 has a bewildering number of



Viruses 2021, 13, 17 28 of 75

interactions with gE, UL11, UL21, VP22 (Figure 3) [203], gD, and mitochondria [670]. These
interactions are probably regulated temporally but also structurally by different domains
of UL16.

UL16 resides on cytoplasmic capsids [671] and participates in a bridging interaction
with membrane-bound UL11 [203,662]. This suggests a role for UL16 in HSV-1 cytoplasmic
envelopment, which became clear in electron microscopy studies of cells infected with
UL16-null HSV-1 [203]. No defects in the transport of capsids to cytoplasmic membranes
were observed, but the wrapping of capsids with membranes was delayed. Moreover,
clusters of cytoplasmic capsids were observed but only near membranes where they were
wrapped, resulting in multiple capsids within a single envelope. Post-envelopment egress
does not require UL16, and viruses released in the supernatant were not affected by UL16
ablation [203]. Additionally, less gE and less gD were packaged in UL16-null viruses,
which is expected since UL16 interacts with both [672]. These data support a role for
UL16 in cytoplasmic envelopment. Cell-to-cell spread is also blocked during UL16-null
virus infection, which may be due to mislocalization of gE, since gE and UL16 form a
complex [672].

The structural modulation of UL16 interactions became clear in the studies of the
UL16/UL11/UL21/gE complex. UL16 directly interacts with UL11, which resides on the
cytoplasmic side of the TGN. This interaction requires most of the UL16 sequence except
the first 40 aa, and does so in a manner that requires free cysteines on UL16 [663]. Covalent
modification of the UL16 free cysteines with N-ethylmaleimide blocks binding to UL11
but not to UL21 [673], suggesting a binding site on UL16 for UL11 and another for UL21
(Figure 3C).

Interestingly, UL16 is released from capsids upon binding of HSV-1 virions to cells,
but it is not clear if it maintains its interaction with UL11 [674]. For UL16 to receive a
signal from outside the virion, it must interface in some manner with glycoproteins on
the surface of the virion. One possibility is through gE, with which UL16 interacts, as
discussed above. The N-terminus of UL16 can bind gE but the full length cannot, indicating
a possible regulatory effect of the UL16 C-terminus on the UL16–gE interaction [675].
This interaction may have multiple effects, including effects on cytoplasmic envelopment
described above. Additionally, since gE is involved in cell-to-cell spread, it may be involved
in rearrangements that occur upon binding of virions to cell entry receptors, which results
in release of UL16 from the viral capsid [663].

The inconsistency between the N-terminus and the full-length binding of UL16 with
gE became clearer when it was shown that UL21 binding to UL16 reveals the UL11-binding
free cysteine-requiring site of UL16. Then, UL11 binds to UL16 and this event activates
the UL16–gE interaction. Importantly, the function of gE is dependent on UL11, UL16,
and UL21, as evidenced by infections with HSV-1 gBsyn mutants that lack UL11, UL16,
or UL21. The syncytial phenotype of gBsyn HSV-1 infections requires functional gE, and
syncytia cannot form in the absence of UL11, UL16, and UL21. Cell-to-cell spread involves
the localization of gE to junctions at the cell surface, and in the absence of UL11, UL16, or
UL21, gE cannot localize there. Collectively, these data suggest that these proteins work as
a complex during HSV-1 infection [676].

One interesting aspect is the species-specific requirement for the UL16 protein when
comparing HSV-1 and HSV-2 [677]. Depletion of UL16 in HSV-2 results in 50- to 100-fold
lower viral yields, with defects in both nuclear egress and cytoplasmic envelopment. In
contrast, depletion of UL16 in HSV-1 results in a 10-fold replication deficiency and defects
in cytoplasmic envelopment of viral capsids. HSV-1 UL16 can promote the nuclear egress
of HSV-2 UL16-null mutants, suggesting that HSV-2 lacks an activity that can promote
nuclear egress in the absence of UL16, as opposed to HSV-1 [677].

A UL16-null virus is greatly diminished in its ability to package gD. UL16 binds directly
to the cytoplasmic tail of gD. If the cytoplasmic tail of gD is removed, UL16 is still packaged
into virions [678]. This non-reciprocal interaction suggests that packaging of UL16 on
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capsids is independent of gD, but recruitment of gD during cytoplasmic envelopment may
require UL16.

6.6. UL53 (gK) and UL20

Glycoprotein K (gK) is a highly hydrophobic 338-amino-acid protein that is encoded
by the UL53 gene [679]. gK is highly embedded on the membrane [680], which makes
its study difficult. Its structure is composed of three or four transmembrane domains, as
shown by tag insertions in multiple domains of gK [680].

Deletion of HSV-1 gK results in a small plaque phenotype, lower viral yields, and
accumulation of non-enveloped virion particles in the perinuclear space [681,682]. These
data suggest that gK has a role in the egress of virus from infected cells (Figure 3). Further
work demonstrated that deletion of gK triggers a collapse of the Golgi to the ER, in a
manner similar to brefeldin A [680]. Virion entrapment in this perinuclear space may occur
due to this Golgi collapse, and it has been suggested that this collapse may be partially due
to an antifusogenic role of gK during egress.

The antifusogenic role of gK has been studied extensively. Cell-to-cell transmission
of HSV-1 occurs by either release of virions to the extracellular space or virus-induced
cell-to-cell fusion. Certain spontaneous mutants of HSV-1 have been found to induce the
formation of large multinucleated cells or syncytia. Such mutations have been identified
in gK and in other viral glycoproteins, such as gB, but those in gK are more frequently
observed [683]. The syncytial gK mutants of HSV-1 have been used in multiple studies to
investigate the function of gK during infection.

When gK is expressed outside the context of the infection, it localizes in the ER and
the perinuclear space. However, infection of syncytial gK-transfected cells with a gK-null
virus triggered expression of gK on the cell surface and cell fusion [680]. Wild-type gK can
also inhibit fusion that is triggered by other HSV-1 glycoproteins outside the context of
the infection. Co-transfection of the four viral glycoproteins gD, gB, gH, and gL triggers
cell-to-cell fusion and leads to syncytia. However, co-expression of wild-type gK with
these glycoproteins reduces dramatically the formation of syncytia [684]. Therefore, it
was suggested that gK is part of the mechanism through which HSV-1 regulates its own
fusogenic activity. The anti-fusogenic activity of gK might prevent fusion of the viral
envelope with the membrane of exocytic vesicles as the virus leaves the cell. In a similar
manner, it could prevent the collapse of Golgi to the ER that was described above. BFA
works by blocking vesicle and protein transport from the ER to the Golgi, and gB could
affect Golgi integrity by blocking vesicles feeding into the Golgi from the ER [680].

The antifusogenic role of gK can also be seen during the absence of UL20 in UL20-null
virus-infected cells. This virus produced smaller plaques, and electron microscopy of
infected cells showed accumulated capsids in the cytoplasm with few enveloped virions
inside cytoplasmic vesicles [685]. A gK syncytial mutant in a UL20-null genetic background
did not allow cell fusion as seen previously. Additionally, multiple virion capsids within a
single envelope were seen in the cytoplasm, further supporting the anti-fusogenic role of gK
during viral egress and also indicating an indirect role for UL20 in membrane fusion [685].

The UL20 gene encodes a 222-amino-acid non-glycosylated transmembrane protein
that is conserved in all herpesviruses. It was thought that UL20 was essential for virus
replication since deleting UL20 prevented replication. However, experiments utilizing
143TK- cell lines indicated cell type-dependent replication of UL20-null HSV-1 (F). Electron
microscopy images of this virus in non-permissive Vero cells revealed a profound entrap-
ment of viral particles in the perinuclear space. UL20 is required for intracellular transport
and cell surface expression of gK in transient expression experiments, indicating a role in
virus-specified glycoprotein trafficking. During infection, UL20 protein is required for gK
transport to the surface, which is necessary for virus-induced cell fusion that is caused by
syncytial mutations in either gB or gK (i.e., mutations in the gB and gK genes that allow for
formation of syncytia) [685].
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Additionally, gK is a virion component that is important for virus entry into cells [686].
The role of gK during entry might stem from its interaction with the viral glycoproteins that
mediate virus entry. gK forms a functional protein complex with UL20, which is required
for gK and UL20-associated functions in the life cycle of HSV-1 [686,687]. Coimmunoprecip-
itation experiments showed that UL20 forms a complex with gB and gH in infected cells but
not with gD [688]. Additionally, gK has a functional amino-terminal domain [689] that can
interact with the extracellular portions of gB and gH [688]. These results suggest that the
gK/UL20 complex may modulate the fusogenic properties of gB and gH via direct physical
interactions. Treatment of virions with a protease that cleaves the gB-binding domain of
gK results in reduced infectivity of the treated virions [690], which further supports the
presence of gK on the surface of the virion and its role in mediating virus entry. Other data
further support that gK is required for proper localization of gD and gH/gL on HSV-1
assembly compartments [691]. Additionally, gK is required for gB binding to Akt during
entry into neuroblastoma cells, release of calcium, and fusion of the viral envelope with
host membranes. In the absence of the N-terminal functional domain of gK, entry into cells
occurs through endocytosis [692]. Virus entry is therefore modulated by gK at multiple
levels.

An interesting sequence of clinically relevant papers show the importance of gK in
ocular infection with HSV-1 (Figure 4B). While deletion of the N-terminal domain of gK
does not affect growth in Vero cells, it reduced cell-to-cell spread. Ocular infection of mice
with a mutant HSV-1 that lacks the N-terminus of gK produced no significant ocular disease
symptoms, versus infection with a wild-type strain. Additionally, the viral genome could
not be amplified from ganglionic neurons that were infected with the mutant versus the
wild-type HSV-1 [693]. Therefore, the N-terminus of gK is essential for neuroinvasiveness
and herpes keratitis in the mouse ocular model. Work expanding on this paper showed
that a virus lacking the N-terminal domain of gK can attach to cell surfaces of Vero cells
and ganglionic axons as efficiently as wild-type HSV-1; however, the mutant virus cannot
enter into the cytoplasm of ganglionic neurons [692]. These data are in agreement with data
showing decreased corneal scarring in ocularly infected mice with a gK mutant virus [694].

6.7. UL21

UL21 is an accessory gene that encodes a 535-aa protein of the tegument. It was
reported by Baines et al. to be dispensable for viral replication in cell culture. UL21
promotes the growth of long cellular protrusions when over-expressed in non-neuronal
cells and is associated with microtubules [695]. Additionally, UL21 forms a complex
with UL11, UL16, UL21, and gE in transfected cells, and is necessary for the UL11–UL16
interaction [676].

UL21 is non-essential, but viral growth kinetics with a UL21-null virus showed that
the overall viral yield is lower [696]. Most UL21-interacting proteins were found to be
cytoskeletal proteins expressed in the central nervous system, such as the glial fibrillary
acidic protein (GFAP). The distribution of GFAP is also altered in UL21-null virus-infected
glial cells, when compared to WT-virus-infected cells. These results suggest that UL21 is
involved in capsid transport through interacting with cytoskeletal proteins. The altered
distribution of GFAP has only been reported in glial cells, so it is not clear if UL21 can affect
trafficking in neurons and no follow-up studies are available [696].

Infection with a UL21-null HSV-1 resulted in a delay in the onset of immediate early
gene expression. Additionally, a reduced number of capsids were found in the cytoplasm
after UL21-null virus infection although DNA-containing capsids were formed in the
nucleus [697]. These data suggest that UL21 has an early function that facilitates viral gene
expression, as well as a late function that promotes the exit of capsids from the nucleus to
the cytoplasm. The early function is supported by the crystal structure of the C-terminal
domain of UL21 [698]. Based on these studies, it is shown that UL21 can bind E. coli RNA,
which suggests a role for UL21 in transcription or translation, but further work is needed.
Regarding the late function of UL21, multiple empty capsids have been observed in the
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cytoplasm of UL21-null-infected cells [699]. Therefore, it was suggested that UL21 either
retains capsids in the nucleus until they receive DNA, and disruption of UL21 allows empty
capsids to be transported to the cytoplasm, or that UL21 protects DNA-filled capsids and
its absence results in empty capsids in the cytoplasm [699].

6.8. UL24

UL24 is a late viral gene that is expressed as a predominantly nucleus-associated
30 kDa protein [700] but localizes to the cytoplasm as well [701]. It is encoded by mRNAs
with two different 5’ ends. The majority of UL24 is encoded by the mRNA that contains the
first initiation codon of the ORF [702]. It is unclear why UL24 is transcribed from different
sets composing six transcripts [702]. The third initiation codon in the UL24 ORF leads to
the expression of a protein termed UL24.5 with a size of 18 kDa [703]. A UL24.5-null HSV-1
exhibits viral growth similar to a WT virus but does not trigger dispersal of nucleolar
proteins as WT [703].

A UL24-null virus yields mildly lower titers in cells and slightly smaller plaque sizes.
Corneal infection in mice with a UL24-null virus results in 1 log lower viral load versus
WT, but there is a 4 logs lower viral growth in the trigeminal ganglia. These data suggest
that UL24 is important for the dissemination of HSV-1 from the cornea to the trigeminal
ganglia in mice (Figure 4A) [700,704]. UL24 may be important for virulence in murine and
guinea pig models of intravaginal infection with HSV-2; however, the similarities between
HSV-1 and HSV-2 UL24 are difficult to assess [705].

UL24 is one of four genes that when mutated can confer a syncytial (syn) pheno-
type [701]. It is not known how mutations in the UL24 gene confer syncytia. Mechanis-
tically, lack of UL24 during late infection results in mislocalization of gB and gD with
respect to actin [701], which are proteins involved in fusion. UL24 mutations that confer
syncytia may work through the effect of UL24 on the localization of these fusogenic viral
glycoproteins.

UL24 was found through bioinformatics to contain PD-(D/E)XK endonuclease sig-
nature sequences [706]. These sequences are required for the dispersal of nucleolin that
occurs during infection, since their deletion or mutagenesis prevents nucleolin dispersal
that occurs normally during infection. This suggests that UL24 is involved in nucleolin
dispersal through its endonuclease motif [707,708]. Mutating the endonuclease motif
also causes one log lower viral growth in the eye and the trigeminal ganglia of an ocu-
lar mouse model, indicating that the effect of UL24 endonuclease function is involved
in dissemination of HSV-1 from the eye to the ganglia in vivo [709]. Another nucleolar
component that is dispersed due to the endonuclease function of UL24 is the B23 nucleolar
protein [710], which is a multifunctional protein that participates in ribosome biogenesis,
mRNA processing, chromatin remodeling, and maintains genome stability [711]. UL24 also
mediates nuclear egress of HSV-1 nucleocapsids and this effect most likely occurs through
the abovementioned effect of UL24 on dispersion of nucleolar proteins [712].

UL24 may also play a role in immune evasion, through a function unrelated to its
endonuclease motif [713]. Exogenous UL24 can bind with the p65 and p50 components of
NF-κB and prevent their translocation to the nucleus. Therefore, it impairs the production
of IFN-β and pro-inflammatory chemokines and may mediate immune evasion during
HSV-1 infection [713].

6.9. UL31 and UL34

pUL34 is a type 2 integral membrane protein with a 247-aa nucleoplasmic domain
that binds pUL31 and holds it in close approximation to the inner nuclear membrane
(INM) [714,715]. UL34 is anchored to the INM by a C-terminal transmembrane helix, with
several residues extending into the perinuclear space [714]. UL34 retention at the INM
requires the presence of UL31 [716], and both UL34 and UL31 localization is dependent on
their co-expression and interaction [562]. UL31 and UL34 form a complex, which has been
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termed the nuclear egress complex (NEC), and it is required for efficient exit of nascent
HSV-1 capsids from the nucleus (Figure 3A).

Deletion of UL31 results in 3–4 logs lower viral yields compared to WT HSV-1, slightly
decreased levels of total viral DNA, and a 3–5-fold reduction in the ratio of monomeric
to concatemeric DNA, suggesting minor roles in both DNA replication and processing or
packaging of viral DNA [717].

Deletion of UL34 results in 2–5 logs lower yields of HSV-1 in cell culture. While a
UL34-null virus can assemble DNA-containing capsids, they accumulate in the nucleus
and are unable to bud through the inner nuclear membrane [718].

The role of UL31 and UL34 initiates with the disruption of nuclear lamina during HSV-
1 replication. Formation of HSV-1 replication compartments (RCs) and annexation of space
in the nucleus results in cellular chromatin marginalization and compression [719]. The
phase of chromatin marginalization occurs during the initial phase of RC formation, and
this does not require UL31 and UL34. However, later during infection, RCs penetrate the
host chromatin and the nuclear lamina, and reach a region of the nucleus close to the INM.
In co-transfection experiments of UL31 and UL34, marginalization of host chromatin was
not observed; however, during infection, both UL31 and UL34 are required for alteration
of the distribution of lamina components [720], which suggests that other viral proteins
cooperate with NEC for lamina disruption. Nonetheless, UL34 can interact directly with
lamin A/C in vitro [721]. This disruption of lamina is a regulated process during infection
since the viral protein US3 is involved [557,721,722]. The kinase activity of US3 was not
necessary for the redistribution and disruption of lamin A/C or lamin B [559], indicating
that US3 spatial interaction with NEC may be the regulatory mechanism. However, US3
phosphorylates lamin A/C during HSV-1 infection [558].

The N-terminus of pUL31 also harbors multiple phosphorylation sites of the viral
US3 kinase. Preventing the phosphorylation of pUL31 mimics the growth defect of a
US3-null virus, with 1-2 logs lower viral yields. The importance of the N-terminus and
its phosphorylation is highlighted by the following observations: First, pUL31 that lacks
the N-terminus is retained in the cytoplasm if co-expressed with UL34, suggesting that
they prematurely interact before they enter the nucleus. This is probably why UL31 and
UL34 utilize different transport routes to the nucleus, averting their premature interaction.
Second, the phosphorylation of the N-terminus of pUL31 is necessary for the proper
localization of the pUL31/pUL34 complex in the nuclear rim and the optimal egress of
virions from the perinuclear space [560]. UL31 and UL34 distribution is even across the
nuclear rim, but this requires US3 expression [562]. In the absence of US3, UL31 and UL34
localize in small punctate areas at the nuclear rim. This supports that UL31 and UL34
form a complex that accumulates at the nuclear membrane and plays an important role
in HSV-1 nucleocapsid envelopment at the inner nuclear membrane. Absence of US3
causes accumulation of capsids in nuclear membrane invaginations, delayed onset of virus
production, and reduced virus titers [556]. UL31 and UL34 associate with perinuclear
virions but not with extracellular virions, supporting the de-envelopment/re-envelopment
model of viral egress [556].

NEC by itself is sufficient to drive the vesiculation of the nuclear envelope in trans-
fected cells in the absence of any other viral proteins [723–725]. Using purified HSV-1 NEC
components and synthetic liposomes, it was shown that NEC has an intrinsic ability to
vesiculate membranes in vitro [726]. NEC formed a coat-like hexagonal lattice on the inner
surface of the budded vesicles, which suggested that it vesiculated membranes without
the help of other proteins by creating a hexagonal scaffold inside the bud [727]. Further
structural characterization showed that HSV-1 UL31 and UL34 form the NEC heterodimer
through extensive interactions that involve residues distributed throughout UL31 and
UL34. The heterodimers are further organized to form oligomeric structures. Mutagenesis
of their oligomeric interfaces reduced NEC-mediated budding in vitro, supporting that
NEC oligomerization drives capsid budding during nuclear egress of herpesviruses [726].
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However, other cellular and viral factors may still participate in NEC oligomerization and
nuclear budding in cells, such as US3 mentioned above.

Besides NEC oligomerization on the INM, a host factor mediating primary envelop-
ment of HSV-1 is the endosomal sorting complex required for transport-III (ESCRT-III).
ESCRT-III promotes primary envelopment by mediating scission during HSV-1 budding
through the INM [728]. UL34 interacts with ALIX but not other ESCRT-III proteins, sug-
gesting that ALIX acts as an adaptor for the recruitment of ESCRT-III proteins by UL34,
resulting in scission of the budding vesicles formed by the NEC. The mechanism of fusion
of the primary envelope with the outer nuclear membrane is still not clear.

UL31 also functions in another interesting manner in order to conserve viral resources.
Three major types of HSV-1 capsids have been described, the empty capsids (A capsids),
capsids that lack viral DNA (B capsids), and viral DNA-containing capsids (C capsids) [729].
Type C capsids are preferentially selected compared to A and B to undergo primary
envelopment at the INM, and the mechanism of their selective involvement involves UL31,
UL17, and UL25. UL17 and UL25 interact and form a stable complex. The different types
of capsids contain different copies of this complex. C capsids contain 75 copies, while B
capsids contain 25 copies [730]. Because of its enrichment in C capsids, the UL25/UL17
complex is termed C capsid-specific complex (CCSC). While it is possible that the CCSC
binds more efficiently to C capsids, an interaction has been identified between UL31 and
CCSC in infected cells [731]. This supports a model of egress in which the CCSC is added
to capsids after DNA is inserted and engages UL31 either in the nucleus, or within the NEC
at the INM. The end result is an elegant way to conserve cellular resources by selecting only
capsids that have the potential to produce infectious virions for primary envelopment [731].

6.10. UL35 (VP26)

The HSV-1 UL35 gene encodes for a 12-kDa capsid protein designated VP26, which is
located on the outer surface of the viral capsid, on the tips of the hexons that constitute
the capsid shell [732]. The HSV-1 capsid has an icosahedral structure, and the major
capsid protein is VP5. VP5 forms both the pentons and the hexons of the capsid, which are
composed of five or six VP5 monomers [733]. Pentons are located at the icosahedral vertices,
while hexons form the faces and the edges of the capsid structure. VP26 is attached to
VP5 molecules that make up the hexons. The C-terminus of VP26 interacts with the upper
domain (UD) of VP5 [734], and their interaction has been well characterized [734,735]. VP5
and VP26 interaction is required for localization of VP26 to the sites of capsid assembly in
the nucleus [736]. However, in vitro reconstitution of HSV-1 capsids showed that VP26 is
not required for proper capsid assembly [732,737].

These data agree with reports that show that VP26 is non-essential for viral growth
in vitro [738] but influences the production of infectious virus in vivo. In a mouse ocular
infection, a UL35-null virus yields 2-fold less virus in the eye but 30–100-fold less virus
in the trigeminal ganglia (Figure 4A). VP26 does not seem to affect the transport of the
virus from the eye to the ganglia but is important for the replication of the virus in the
ganglia [738]. Similar results have shown in vitro that a UL35-null virus exhibits reduced
viral yields when cultured in neuroblastoma cell lines. A potential reason is mislocalization
of the main capsid protein VP5, which exhibits a punctate distribution during UL35-null
virus infection as opposed to a diffuse distribution during a WT infection [739].

Another way that VP26 can affect replication is by mediating incorporation of UL25
into nucleocapsids and by extension affecting DNA packaging. This is because UL25 is
part of the 3-component viral terminase complex, which transports the HSV-1 genome into
the viral capsid [740]. This is supported by yeast-two-hybrid data that show interaction of
VP26 and UL25 [735].

VP26 may also affect capsid delivery to the nucleus following entry of the virus
into the cells by interacting with the dynein light-chain subunits DYLNT1 and DYLNT3.
Cytoplasmic dynein is a molecular motor that is associated with microtubules, and each
dynein complex contains two copies of either DYLNT1 or DYLNT3. VP26, DYLNT1 and
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DYLNT3 colocalize with microtubules, and VP26 is required for migration of HSV-1 capsids
towards the nucleus [741]. These data suggest that VP26 is important for the retrograde
transport of HSV-1 capsids from the plasma membrane towards the nuclear membrane
after viral entry into cells. Further work described the N-terminus of VP26 as a binding
region for the dynein light-chain subunits DYNLT1 and DYNLT3 [742].

6.11. UL43

UL43 has a size of about 32 kDa and based on its sequence, it may contain seven
transmembrane domains composed almost entirely of alpha helixes [743]. UL43 is not
present in mature extracellular virions [744]. Other functions remain unknown.

6.12. UL44 (gC)

gC is a 511-aa type I integral membrane glycoprotein that mediates HSV-1 attachment
to host cell surface glycosaminoglycans. Absence of gC results in reduced binding of virus
to cells, although the virus that binds can enter cells and initiate infection [745]. gC can
bind to both heparin and heparan sulfate. The binding that occurs in the absence of gC
is dependent on cell surface heparan sulfate [745,746]. It was shown that two areas of gC
participate in heparan sulfate binding (R143, R145, R147, T150, G247). Synthetic peptides
that corresponded to these two areas prevented virus binding and entry in cells, and they
also agglutinated red blood cells [747]. These data suggest that these gC areas mediate the
binding of virus on cell surface heparan sulfate.

Additionally, gC can regulate cell entry and infection by a low-pH pathway [748]. The
presence of gC confers a higher pH threshold for acid-induced changes in gB, affecting
fusion. Using a gC-null virus, it was found that there was a delay in entry relative to
WT HSV-1 [745]. A research group tested infection with HSV-1 and gC-null HSV-1 on
different cell lines. They observed that a gC-null virus displayed different infectivity,
depending on whether these cell lines support low-pH or pH-neutral entry. Treatment
with ammonium chloride did not affect gC-null HSV-1 entry into cells that support the pH-
neutral pathway, suggesting that gC is dispensable for that pathway. When they assessed
for infectious virus after infection in a low-pH environment, gC-null HSV-1 was lagging in
intracellular transport or release from intracellular vesicles formed after endocytic entry.
After treating HSV-1 ∆gC versus WT HSV-1 virions with different pH solutions, it was
shown that the presence of gC increases the pH at which fusogenic conformational change
of gB occurs [748].

6.13. UL45

UL45 is a late gene [749] that encodes an 18-kDa protein that is present in virions and is
enriched in the envelope–tegument interface, thus associated with the viral envelope [749].
While it is non-essential for viral growth in vitro [750], it is required for efficient growth in
the central nervous system (CNS) of mice when inoculating with a low viral dose [751].

UL45 is required for syncytia formation during infection with a gB mutant HSV-1 that
causes syncytia (gBsyn) [752]. A UL45 C-terminus truncation prevents the formation of
syncytia with gBsyn [753], suggesting that UL45 affects entry that requires gB function.
However, UL45 plays a dispensable role in virus entry to cells either through pH-dependent
endocytosis or pH-independent mechanisms [754].

6.14. UL55 and UL56

The UL56 gene product is a C-terminal-anchored type II membrane protein conserved
among HSV-1, HSV-2, and herpes B virus. Even though UL56 is dispensable for viral
growth in cultured cells, it plays an important role in the pathogenicity of HSV-1.

HSV-1 mutants lacking UL56 are substantially less pathogenic in mice but have similar
growth in cell culture [755]. The role of UL56 in the severity of HSV-1 ocular disease can
be seen in work based on a quantitative trait locus (QTL)-based assay, which involved
infecting mice with 40 recombinant strains derived from mice infected simultaneously
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with two avirulent strains. Phenotypically meaningful variations could be seen in multiple
genes, including UL56, whose features were associated with an increase in ocular virulence
in mice [756]. However, UL55 and UL56 do not appear to have a role in the latent stage
of the virus since mice that were infected with HSV-1 lacking UL55 and UL56 could still
develop a latent infection [757]. Furthermore, HSV-1 mutants lacking the entire UL56 gene
have been found in human samples [758] and are considered to be less pathogenic or to
lack neurovirulence [755,758]. Therefore, UL56 is non-essential in cell culture, and is not
implicated in latency but is important for pathogenicity in vivo.

UL56 contains a hydrophobic domain in its carboxyl-terminal tail (aa 217–234) which
is embedded in the membrane, and its deletion results in reduced pathogenicity as it
generates an avirulent HSV-1 strain [759]. Characterization of UL56 through immunoflu-
orescence studies showed that UL56 localized to the Golgi and cytoplasmic vesicles in
UL56-transfected or HSV-2-infected cells. The C-terminal domain is important for associ-
ation with cytoplasmic membranes and the N-terminal is important for its translocation
to the Golgi and the cytoplasmic vesicles. Protease digestion assays combined with frac-
tionation through sucrose gradients suggested that UL56 is a type II membrane protein
associated with lipid rafts. These data suggest that UL56 may be involved in vesicular traf-
ficking in HSV-2-infected cells. Expanding on that work, an interaction between UL11 and
UL56 was identified [760], suggesting a complex that may be involved in the cytoplasmic
envelopment of HSV.

Ushijima et al. in a series of papers investigated the role of UL56 during HSV-2
infection. They first demonstrated that UL56 interacts through its PY motifs with Nedd4,
an E3 ubiquitin ligase. UL56 triggered increased NEDD4 ubiquitination and its subsequent
degradation during infection [761]. Additionally, they investigated potential co-localization
of UL56 with Nedd4 and they found that UL56 localizes to the TGN and early endosomes
but not with CD63 in late endosomes. Co-localization of UL56 with Nedd4 was observed at
the TGN, but a lack of co-localization with CD63 suggested that HSV-2 is not using MVBs
for cytoplasmic envelopment. Nonetheless, deletion of UL56 restricted infectious HSV-2
release. Therefore, Ushijima suggested that UL56 functions in coordination with other host
or viral factors in trafficking and membrane sorting. Nedd4 may be among these factors,
and this function of UL56 may be redundant with other viral proteins that have sorting
functions and may also depend on the cell type [762].

Ushijima et al. in 2010 showed how UL56 interacts with Itch, which is another Nedd4-
family ligase, triggering its degradation through lysosomes. Interestingly, HSV-1 does not
degrade Nedd4, but it does degrade Itch [763].

6.15. US2

The US2 gene of HSV is predicted to encode a 291-aa protein of 33 kDa. It is predicted
to have a hydrophobic N-terminus [764]; it is non-essential in cell culture and not involved
in the pathogenesis in the CNS of mice [765]. HSV-1 Us2 is not associated with any specific
phenotype [766]; however, most research so far has been done on HSV-2 Us2. Initially,
US2 was observed as discrete granules late during infection within and at the periphery of
the nucleus [767]. However, further analysis of US2 by immunofluorescence microscopy
of infected Vero and A431 cells detected a filamentous-like cytoplasmic pattern [768].
Additional data suggested interaction of US2 with cytokeratin 18 through yeast-two-hybrid
assays, and confirmed the interaction by co-immunoprecipitation, which seems to involve
the N-terminus of US2 [768]. Other HSV gene products can also interact with proteins of
the cytoskeleton [769–771]. US2 and cytokeratin 18 interaction suggests participation of
US2 in trafficking during infection, but more work is needed to characterize this function.

It was later shown that HSV-2 US2 is a membrane-associated ubiquitin-interacting
protein [772]. HSV-2 US2 lacks specific membrane sorting signals, and can be found at
the plasma membrane, in cytoplasmic vesicles, and diffusely throughout the cytoplasm.
Through a discontinuous gradient, US2 can be detected in detergent-resistant membranes,
and cofractionates with caveolin-1 and ganglioside GM1. Treatment of infected cells with
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BFA (brefeldin A) did not affect the localization of US2, suggesting that it is not part of the
ER-Golgi secretory pathway [772]. Co-localization experiments showed that US2 localizes
predominantly to recycling endosomes and the plasma membrane, but the resistance to BFA
treatment suggests that this localization of US2 is regulated post-translationally. Through
mass spectrometry, most US2-interacting proteins were shown to be ubiquitinated. US2
could be pulled down by mono-ubiquitin conjugated agarose but not by protein G agarose,
suggesting that US2 interacts specifically with ubiquitin and not with ubiquitin-conjugated
proteins [772].

Lu et al. in 2017 showed that HSV-2 US2 could activate NF-κB signaling. Deficiencies in
US2 decreased HSV-2 WT-mediated NF-κB activation and cytokine and chemokine produc-
tion, while overexpression of US2 produced the opposite effects. Co-immunoprecipitations
suggested that US2 interacts with TGF-β-activated kinase 1 (TAK1). US2 induced the phos-
phorylation of TAK1, resulting in the activation of TAK1-mediated downstream signaling.
This role of US2 in NF-κB activation was confirmed in mice. Interestingly, HSV-1 US2 did
not activate NF-κB like HSV-2 US2 [773].

6.16. US4 (gG)

Glycoprotein G (gG) is one of the least well-characterized glycoproteins of HSV-1.
Infections with gG-null HSV-1 exhibit similar growth to WT virus and little attenuation
in vivo [774]. When focusing on polarized epithelial cells though, gG seems to be required
for infection through the apical surface. However, a gG-null virus can still infect these cells
through the basal membranes and replicate normally. In vivo infection of apical surfaces of
mouse corneas with a gG-null HSV-1 results in delayed scarification, but once scarification
occurs, a gG-null virus has yields similar to wild-type virus [775].

An interesting observation is that inoculation of mice with a baculovirus recombi-
nant vector carrying the gG ORF results in partial protection from lethal challenge with
intraperitoneally injected HSV-1 [776,777]. This protection was not observed when using
vaccinia virus as a vector [778]. This might be a result of higher expression of gG in the
baculovirus system, or more intriguingly, gG in insect cells of the baculovirus system may
be glycosylated in a different pattern that increases gG immunogenicity. However, this
protection does not apply to corneal infection with HSV-1 after vaccination with the same
gG-containing baculovirus vector [779].

The most interesting role of gG regards its interplay with chemokines. Chemokines
are chemotactic cytokines that coordinate the recruitment of immune cells to infection sites,
thus are important for the outcome of a viral infection [780]. Mice that are depleted of
chemokine ligands or receptors are highly susceptible to genital herpes infection and neu-
roinvasion of the CNS due to defective leukocyte mobilization to the infected mucosa [781].

HSV-1 gG localizes on the plasma membrane [782], and it can bind chemokines with
high affinity [783,784]. Binding of HSV-1 gG to chemokines while being on the plasma
membrane of infected cells occurs through the glycosaminoglycan (GAG)-binding domain
of the chemokine, which is required for binding to gG. Interestingly, binding of gG to
chemokines does not inhibit chemokine function, rather increases it both in vitro and
in vivo. Experiments show that higher migration of leukocytes occurs in the presence of
gG on HSV-1-infected cells, due to increased chemokine binding to its specific receptor and
downstream MAPK signaling mediated by the surface gG. It is possible that gG acts as a
GAG and mediates a local increase of chemokine concentration in parts of the membrane.
This will increase chemokine signaling, which will be beneficial for the virus in a number of
ways [783]. First, it is possible that chemokine deregulation due to binding to gG promotes
viral dissemination through MAPK signaling and NF-κB activation, which enhances viral
replication [785]. An alternative hypothesis is that the increased infiltration of leukocytes
to sites of infection increases the number of available cells that can then be infected by
HSV-1, thus helping the virus spread in vivo [783]. The increased leukocyte migration
hypothesis may still occur even through chemokines binding to HSV-1 particles, since gG
is also present on the viral envelope [782,786].
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6.17. US5 (gJ)

US5 is a late gene that encodes the glycoprotein J (gJ) of HSV-1. gJ localizes to multiple
membrane compartments and has been little characterized [787]. gJ is another glycoprotein
that mediates protection from CTL killing of infected cells. CTLs kill targets in part by
inducing apoptosis either though activation of the Fas pathway and downstream activation
of caspases or by releasing lytic granules that contain granzyme B, which can induce
apoptosis by cleaving caspases in target cells. gJ can inhibit both pathways; however,
other viral genes can compensate for deletion of gJ [788]. gJ can also bind the F0F1ATPase
synthase in the mitochondrial membrane that is required for induction of ROS, which
suggests that gJ may inhibit F0F1ATPase function [788].

6.18. gE/gI (US8/US7), US9

Glycoprotein E (gE) was first described as a receptor for the Fc portion of immunoglob-
ulin G and for its role in virus spread from cell to cell [789]. Glycoprotein I (gI) is the other
polypeptide of the gE/gI complex [789], and like gE, it contains a 400-aa extracellular (ET)
domain and a 100-aa cytoplasmic (CT) domain. Since the majority of gE is bound to gI,
these proteins are often studied in tandem.

gI can increase the affinity of gE to IgG. gE and gI mutants exhibit a small plaque
phenotype in vitro compared to WT HSV-1 [774]. The number of plaques detected is not
affected, suggesting that gE and gI regulate cell-to-cell spread in vitro [790]. Expression
of gE/gI in human epithelial cells resulted in the localization of gE/gI at lateral surfaces
of cells and colocalization with the adherens junction marker β-catenin. At subconfluent
monolayers during infection, gE/gI localize at the parts of the plasma membrane that are
in contact with another cell [791]. Therefore gE/gI seems to mediate cell-to-cell spread of
HSV-1 across cell junctions by interacting with cell junction components (Figure 3D).

Normally, HSV-1 particles are sorted to cell junctions, whereas few virions reach the
apical surfaces of polarized epithelial cells [792]. Deleting gE results in HSV-1 virions that
cannot translocate to cell junctions and they leave the cell through the apical surface [792].
Work that has characterized a panel of gE mutant viruses with small insertions in the ET
domain underlined the importance of this domain of gE for cell-to-cell spread. Several of
these gE ET mutant proteins were able to complex with gI and be incorporated into virions,
but the formed virions behaved similarly to gE-null mutants. This suggests that gE/gI
promotes HSV-1 cell-to-cell spread by binding either extracellular ligands through the gE
ET or components of cell junctions (Figure 3D).

Antibodies specific for HSV-1 antigens can simultaneously bind at the surface of
infected cells to gE/gI via their Fc region and to a cell surface HSV-1 antigen by their
antigen-binding fragments (Fabs) [793–795]. This process is known as antibody bipolar
bridging (ABB), and may be a strategy to prevent the host from utilizing anti-HSV-1
antibody responses.

HSV-1 gE mutants show decreased neurovirulence [796], and the Fc binding portion of
gE was shown to be important in vivo [797]. Introducing insertions in HSV-1 either inside
or outside the Fc binding portion of gE resulted in lower yields only for the Fc domain
mutant, when testing the two mutants in mice. Additionally, the Fc-binding gE mutant
virus was impaired in its ability to reach the ganglia (Figure 4A) [797]. HSV-1 gE/gI-null
mutants also show significantly reduced spread in the corneal epithelium of infected mice,
due to the reduced ability of these mutants to undergo anterograde transport from sensory
ganglia back to the cornea [798].

A major factor for the decreased neurovirulence and cornea infection of gE mutants is
the less efficient anterograde transport (Figure 4A). Anterograde transport in infected neu-
rons (e.g., after reactivation of virus from latency) involves the transport of viral particles
from the neuronal-cell body along axons to axonal termini, and transfer across junctions
formed between neurons and epithelial cells. gE and gI mutants displayed markedly
reduced anterograde spread between neurons within the retina and from the retina to
retinorecipient regions of the brain [799]. HSV-1 gE/gI and US9 possess overlapping or
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additive effects in anterograde axonal transport. Mutants lacking gE, gI, or US9 displayed
significantly reduced transport of capsids and glycoproteins towards axonal termini, while
concomitant deletion of gE and US9 produced nearly zero levels of capsids and glycopro-
teins even in proximal axons [800,801]. Investigation of HSV-1 infection using a mouse
retina model concluded that HSV-1 US9 is required for the transport of capsids, but not viral
glycoproteins, from the retina into the optic nerve (Figure 4D) [802]. US9 is a viral tegument
protein [803] that has been found associated with the ER and the Golgi [802], and with
unenveloped capsids. It is tail anchored, has no ectodomain, and contains a cytoplasmic
domain with TGN localization signals, which are important for its function [804,805].

The fact that gE and US9 HSV-1 mutant viruses accumulate in the cytoplasm and do not
enter the axons suggests either a trafficking issue or defective virion envelopment. Further
characterization of the assembly of those mutants showed accumulation of unenveloped
capsids in the cytoplasm of the infected cells and few enveloped virions. Both cannot enter
axons in neuronal cells. Additionally, most capsids produced from gE and Us9 mutant
viruses remained adhered to, or nested up against, membranes in the cytoplasm [806].
Considering that gE/gI and US9 accumulate in the TGN (a site of virus assembly), and
that the gE/gI complex sorts virus particles to epithelial cell junctions [792], the loss of
gE/gI and US9 might lead to misrouting of HSV-1 capsids and virions so that they do
not enter axons. Alternatively, the defective cytoplasmic envelopment might also inhibit
anterograde transport. These defects may depend both on gE and US9 since US9 has been
shown to colocalize with capsids and not glycoproteins, whereas gE/gI colocalized with
glycoproteins and not capsids [800].

It was also reported that gI can induce the formation of rod-shaped structures [807].
About 40% of gI-transfected cells expressed rod-shaped structures in the cytoplasm, besides
the typical gI localization patterns (nuclear rim and cytoplasmic speckles, and junctions).
The rods themselves vary in width and length. By doing immunofluorescence analysis
using antibodies against different domains of gI, it was shown that the aa 110–202 of
gI in the rod-shaped structures are not exposed. Since gE interacts with the aa 128–145
of gI, it will not interact with the gI of the rod-shaped structures, suggesting that gE is
important for the proper function of gI. Two proline residues have been implicated in the
induction of the gI rods, but they are not required for viral replication. However, these
residues are important for mediating syncytia formation during infection with a UL24
mutant virus [807]. Thus, the coordination between gI and UL24 may be important for
viral cell-to-cell spread and pathogenesis.

6.19. US8.5

The US8.5 gene overlaps with parts of the US8 and the US9 gene [808]. Its transcription
is initiated within the coding sequence of US8 and it is transcribed earlier than US8, while
the US8.5 transcript is co-terminal with the transcripts of US8 and US9 [809]. The US8.5
protein localizes in the nucleoli, but its function remains unknown.

6.20. US10

The US10 gene encodes a polypeptide of 313 aa [764] that was identified as a capsid/
tegument-associated protein localizing to nuclei as foci late during infection [810]. Deletion
of US9, 10, 11, or 12 has no effect on the neurovirulence and latency/reactivation poten-
tial of HSV-1, but it affects its neuroinvasiveness from peripheral sites to the CNS [810].
Fractionation studies show US10 tightly associating with the nuclear matrix. Analysis of
isolated intracellular capsids showed that both phosphorylated and unphosphorylated
forms of US10 were associated with the capsid/tegument. The nature of this association
remains to be determined.

6.21. US11

US11 was identified as a late gene since it was shown that its expression required DNA
replication [811]. Early work described the RNA-binding activity of US11 to an in vitro RNA
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transcript of HSV-1 [812], which was later shown to be the UL34 transcript. US11 binding
to UL34 mRNA prevented its accumulation [813]. Expression of US11 in baby hamster
kidney cells prevented HSV-1 infection through a gD-mediated step, but this effect was not
clarified [814]. Simonin et al. in 1995 [815] showed US11 is phosphorylated independently
of viral genome expression, by host kinases. The first work that connected US11 and PKR
showed that US11 can bind protein kinase R in vitro and preclude the phosphorylation of
eIF-2α [319]. Work by the same group showed that US11 and PKR interact in the context of
viral infection and this interaction is RNA dependent (Figure 2D) [816].

Us11 is an abundant tegument protein of the virus that is released in the cells during
virus entry. It can later be found in ribonucleoprotein fibrils, clusters of interchromatin
granules, and in nucleoli [817]. Importantly, US11 distribution in the nucleus follows that of
nucleolin. Additionally, nuclear egress of HSV-1 capsids requires nucleolin, and US11 and
nucleolin associate during infection. The polyproline type II helix-containing domain of
US11 is required for this interaction, and this domain is also responsible for US11 nucleolar
accumulation. Nucleolin is involved in nucleocytoplasmic shuttling and US11 accumulates
in the nucleolus in its absence [817]. These data suggest that nucleolin could regulate the
nucleocytoplasmic shuttling of US11 during infection.

Interesting work showed that US11 protein can bind HTLV-1 and HIV-1 responsive
elements and can transactivate envelope retroviral glycoprotein expression by binding to
the Rex-responsive element (RexRE), which is located in the 3’ untranslated region (UTR) of
the HTLV-1 env mRNA [818]. Such data raise the possibility of in vivo interactions between
herpes virus and human retroviruses, possibly affecting the expression of each virus at
the post-transcriptional level. Further work showed how US11 binds to HSV-1 mRNAs,
such as the HSV-1 UL34 mRNA (its natural target), which results in its accumulation and
might affect its trafficking. Two different US11 domains were described, a C-terminal
RNA-binding domain and an N-terminal effector domain, the deletion of which created a
trans-dominant negative mutant [819].

More work on the binding partners of US11 identified binding between the RNA-
binding domain of US11 and a 600-bp RNA sequence that is present in the co-terminal
HSV-1 mRNAs UL12, UL13, and UL14 [600]. US11 downregulates expression of the UL13
protein kinase at early times during infection [600]. UL13 is expressed with late gene
kinetics but is also a component of the tegument. In the absence of UL13, there is a decrease
in the accumulation of a subset of late mRNAs. US11 might downregulate UL13 during
early infection to stall the accumulation of the late mRNAs. These data further support the
post-transcriptional control that US11 applies to viral transcripts.

The subject of multiple studies has been the interaction of US11 with PKR. The PKR
kinase is an RNA sensor that upon sensing viral RNAs, phosphorylates the alpha sub-
unit of the translation initiation factor eukaryotic initiation factor 2 (eIF2α) and thereby
inhibits protein synthesis. The viral proteins γ134.5 and US11 prevent the accumulation of
phosphorylated eIF2α and consequently the translational shutoff. Particularly, the γ134.5
protein directs protein phosphatase 1α to dephosphorylate eIF2α, reversing the effects of
PKR activation (Figure 3D). Us11 when expressed under an immediate early promoter can
rescue the growth of a γ134.5-null virus. This requires a 68-amino-acid fragment of US11,
which contains the RNA binding domain and was found to be sufficient for preventing
PKR activation, thereby allowing protein synthesis and rescuing the growth of γ134.5
mutant viruses [820]. This 68-aa domain of US11 can also inhibit activation of PKR in a
cell-free system, supporting the RNA binding function that has been ascribed to US11.
Through its interaction with PKR, US11 can also inhibit autophagy activation by dsRNAs
in a Beclin-1-independent manner [821].

The protein activator of PKR (PACT) is another restriction factor for HSV-1 as HSV-
1-induced interferon production in murine cells was inhibited in the absence of PACT.
Binding of PACT to PKR is a dsRNA-independent mechanism of activation of PKR. PACT-
mediated PKR activation occurs only under cellular stress, such as withdrawal of growth
factors or treatment with a low dose of actinomycin D [822]. US11 can prevent PACT-
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mediated PKR activation by binding to the dimerization domain (DD) of PKR. This allows
binding of PACT to PKR but prevents the conformational change of PKR that is normally
induced by PACT and activates PKR [823]. US11 was found to bind both to PKR and to
PACT, but only its binding to PKR was essential for preventing PACT from activating PKR,
although binding of PACT to PKR was not prevented [824]. Further work on the binding
of US11 to PACT suggested that it might also prevent PACT-mediated activation of RIG-I
(Figure 2D) [824].

US11 also has a proviral role through inhibiting the synthesis of 2’-5’ oligoadenylate
by the oligoadenylate synthase (2’-5’-OAS) (Figure 2D). 2’-5’-OAS is another dsRNA sensor
that acts to block protein synthesis and decreases RNA stability in virus-infected cells.
Following RNA binding, 2’-5’-OAS can synthesize 2’-5’ oligoadenylates (OA) from ATP
that activate RNase L. Subsequently, RNase L cleaves mRNAs and rRNAs, inhibiting virus
infection. HSV-1 can inhibit OA synthesis in IFN-stimulated primary human cells through
the action of US11. This inhibition requires the RNA-binding motif of US11, which suggests
that the mechanism involves partitioning of RNAs during infection [825].

US11 can also counteract type I IFN activation by binding to Hsp90 and preventing
TBK1 binding (Figure 2B). Consequently, downstream IRF3 phosphorylation and IFN
induction are inhibited [826]. Further work from the same research group showed that US11
also binds to the tripartite motif protein 23 (TRIM23), which is a key regulator of autophagy-
mediated antiviral defense mediated by TBK1. The formation of autophagosomes mediated
by TRIM23 or TBK1 is reduced by US11 in infected cells, through the exclusion of TBK1 from
the TRIM23 complex in infected cells, in mouse embryonic fibroblasts (Figure 2C) [826]. It
should be noted, however, that the exclusion of TBK1 might depend on cell type, especially
since TBK1 is implicated in human fibroblasts in the modulation of autophagy [827].

US11 is also involved in anterograde transport of HSV-1 in dorsal root ganglia (DRG).
Kinesin is a microtubule-dependent molecular motor in cells that is used for transport of
unenveloped HSV-1 nucleocapsids. US11 was identified as a kinesin-binding protein, and
an interaction between US11 and the heavy chain of kinesin (uKHC) was described [828].
The 20 to 24 RXP repeats in the carboxy half of US11 that bind RNA are also where uKHC
can bind. This polyproline domain may acquire a type II helix conformation with arginine
residues on one side that interact with the negatively charged RNA. The other side contains
hydrophobic, uncharged, or acidic chains that may provide specificity to the RNA binding
and contain the uKHC binding site [829]. Another US11 binding protein is the cellular
PAT1 polypeptide, which binds microtubules, is involved in the intracellular trafficking
of amyloid precursor protein (APP), and contains a region homologous to kinesin light
chain (KLC). The US11–PAT1 interaction also requires the carboxy-terminal RNA-binding
domain of US11 [830]. This association of US11 with another molecular motor-associated
protein further suggests a role for US11 in trafficking of unenveloped capsids.

The effect of US11 on neurovirulence has been further investigated in vitro and
in vivo [831]. Intracranial infection of mice with a US11-null virus is pathologically like a
wild-type infection. In contrast, corneal infection with a US11-null virus requires a longer
time for onset of morbidity, indicating a role for US11 in neuroinvasion. Replication in
trigeminal ganglia and periocular tissue was mediated by US11. However, US11 deletion
does not affect latency and the frequency of reactivation from trigeminal ganglia, even
though the US11-null virus reemerges with slightly slower kinetics [831].

A possible role of US11 in viral dissemination may stem from its packing in extracel-
lular vesicles (EVs). We have detected US11 in ESCRT+ EVs that have been isolated from
cells infected with HSV-1 [225]. EVs that contain US11 may reach neighboring uninfected
cells and alter their status in order to regulate viral dissemination.

7. Conclusions

HSV-1 encodes a large set of genes that regulate different facets of the virus life
cycle, such as virus entry, viral gene transcription and expression, DNA replication, virion
formation and release, host evasion, and pathogenesis. Some of the non-essential proteins
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of HSV-1 have been studied more extensively than others, while the functions of some genes
still remain unknown. Considering that the approximately 100 gene products encoded by
the virus support both viral functions and host evasion simultaneously, it is mandatory
that each gene product has multiple roles throughout the virus life cycle. This results in
functional redundancy that contributes to the versatility of the virus. In this review, we
summarized research that has been carried out on more than 50 non-essential proteins that
function in different facets of the HSV-1 life cycle.

Non-essential genes are dispensable in vitro when ablated individually, and a lot of
work to delineate their functions is based on deleting or mutating them and investigating
their effects on viral processes and antiviral responses. However, many non-essential pro-
teins work as components of functional networks in complex circuits, such as UL11/gE/gD,
UL16/gE/UL11/UL21/VP22, UL31/UL34/US3, or ICP0/UL46/UL47/ICP22/US3/UL13/
VP22 (described above). Therefore, it is likely that the field of HSV-1 research would benefit
from investigating non-essential proteins not individually, but in tandem. An example is
the work that has been done on HSV-1 mutants that trigger the formation of syncytia, in
which regulatory interactions among HSV-1 proteins were described based on the effect of
a non-essential protein deletion in the context of a syncytial HSV-1 mutation [672,709,832].
A potential problem that may arise by mutating non-essential genes in tandem is that the
resulting virus may not be viable.

Another consideration for further research is the relevance of the model systems being
used. Various non-essential proteins should be properly investigated in a relevant physio-
logical context, depending on their function. For example, the role of non-essential proteins
in cell-to-cell spread may give different insights when investigated in polarized epithelial
cells, versus human fibroblasts, or the functions in trafficking will be different in neurons
with long axons versus epithelial cells. Systems like organotypic brain slice cultures [833]
can be used that recapitulate more closely the variable environment of a natural infection,
considering that organotypic epithelial culture systems have been successfully utilized for
the study of HSV-1 ribonucleotide reductase [834]. Such considerations extend to animal
models as well, since the host immune regulation may be better investigated in a model
other than mice. Spontaneous reactivation of latent HSV-1 occurs in humans and rabbits
but not mice [835]. The human Stimulator of Interferon Genes (STING) is regulated in a
different manner than the murine STING, complicating the study of non-essential protein
functions on innate immunity [836,837]. It has also been described that ICP47 binding
to the murine TAP is far weaker than the human one; therefore, the prevention of MHC
I antigen presentation cannot be properly evaluated in mice, and this has implications
for studies of neurovirulence and survival in the CNS [341,345,346]. Transgenic animal
models, or alternative models, such as pigs, dogs, or monkeys [345], may have to be chosen
carefully for research questions regarding the function of such non-essential proteins.

Another possibility for recapitulating a natural infection of the human CNS is the re-
cently established brain organoids [838]. Recent advances in stem cell differentiation permit
the use of human-induced pluripotent stem cells (hiPSCs) to generate three-dimensional
(3D) neuron cultures, which are referred to as brain organoids. They exhibit neuronal
heterogeneity and lamina-like structure [839]. Brain organoids can be infected with HSV-1
and exhibit inflammation, HSV-1 can establish hallmarks of latency in such cultures in the
presence of antivirals like interferon (IFN), and HSV-1 can infect the outer laminar structure
of these organoids moving further inside after infection [840,841]. All these elements make
the use of brain organoids in HSV-1 research attractive. Investigation of latency can be
complemented with the use of Lund human mesencephalic (LUHMES) cells [842]. These
are human embryonic neuronal precursor cells that can be differentiated to postmitotic
neurons and they can be used as a supplemental model to study latency and interactions of
host and viral non-essential proteins. After infection of HSV-1, there is a loss of lytic gene
transcription and an increase in the number of neurons that express latency-associated
transcripts (LATs) [842]. The advantage of the latter system is that it does not require the
presence of an antiviral factor like IFNβ to maintain latency.
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The non-essential genes of HSV-1 offer unique properties that can be utilized for the
development of recombinant HSV-1 viruses suitable for oncolytic therapy [843]. The first
oncolytic virus to receive regulatory approval in the United States was an attenuated HSV-1
(named T-VEC) that has been engineered to lack ICP34.5, a major HSV-1 neurovirulence
factor, ICP47, which normally prevents MHC I antigen presentation, and to express the
human GM-CSF gene, which promotes dendritic cell accumulation at sites of inflammation
and enhances APC function [844]. T-VEC was approved for the treatment of patients
with local unresectable malignant melanoma. T-VEC is currently being investigated for
further potential uses against Merkel cell carcinoma, and other malignancies [845,846]. The
multiple roles of HSV-1 non-essential proteins in vivo make the study of manipulating
their function worthwhile for therapeutic purposes [847]. For example, engineered HSV-1
lacking the UL39 gene, which is required for replication in non-dividing cells (i.e., neurons),
makes it an attractive candidate for targeting gliomas [848]. For similar reasons, HSV-1
mutants lacking the function of the uracil glycosylase UL2 [849] or UL56 are less neuroviru-
lent and good candidates for further investigation. Besides oncolytic therapy, non-essential
proteins can be utilized for vaccine research. An HSV-1 strain carrying a deletion in gK
cannot infect neuronal axons and establish latency. This strain has been explored as a
vaccine to confer protection against lethal intravaginal HSV-1 and HSV-2 challenge in mice
and rhesus macaques [850,851]. ICP0-null or vhs-null viruses combined perhaps with other
mutations could be explored for vaccine strategies due to their attenuated phenotype as
well.

Significant research has been carried out on the roles of non-essential proteins of
HSV-1 for many decades. While many aspects of the virus have been unveiled regarding
the networks of interactions and the role of individual proteins in the virus life cycle, a lot
remains to be clarified regarding the role of non-essential proteins in vivo. Further investi-
gation of the non-essential HSV-1 proteins will allow us to better understand mechanisms
of HSV-1 pathogenesis and disease, and will also enable effective harnessing of HSV-1
properties for cancer, gene therapy, and vaccine strategies.
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