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Abstract

Identifying the exact regulatory circuits that can stably maintain tissue homeostasis is critical for our basic understanding of
multicellular organisms, and equally critical for identifying how tumors circumvent this regulation, thus providing targets for
treatment. Despite great strides in the understanding of the molecular components of stem-cell regulation, the overall
mechanisms orchestrating tissue homeostasis are still far from being understood. Typically, tissue contains the stem cells,
transit amplifying cells, and terminally differentiated cells. Each of these cell types can potentially secrete regulatory factors
and/or respond to factors secreted by other types. The feedback can be positive or negative in nature. This gives rise to a
bewildering array of possible mechanisms that drive tissue regulation. In this paper, we propose a novel method of studying
stem cell lineage regulation, and identify possible numbers, types, and directions of control loops that are compatible with
stability, keep the variance low, and possess a certain degree of robustness. For example, there are exactly two minimal
(two-loop) control networks that can regulate two-compartment (stem and differentiated cell) tissues, and 20 such
networks in three-compartment tissues. If division and differentiation decisions are coupled, then there must be a negative
control loop regulating divisions of stem cells (e.g. by means of contact inhibition). While this mechanism is associated with
the highest robustness, there could be systems that maintain stability by means of positive divisions control, coupled with
specific types of differentiation control. Some of the control mechanisms that we find have been proposed before, but most
of them are new, and we describe evidence for their existence in data that have been previously published. By specifying
the types of feedback interactions that can maintain homeostasis, our mathematical analysis can be used as a guide to
experimentally zero in on the exact molecular mechanisms in specific tissues.
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Introduction

Tissue homeostasis is key to the functioning of multi-cellular

organisms, and an understanding of the mechanisms involved in

tissue regulation is not only crucial from a basic biological

perspective, but also from a human health perspective. The

emergence of cancer requires escape of cells from homeostatic

control, resulting in the selfish and unrestrained growth of cells.

Feedback loops are thought to play a central role for achieving

homeostatic control. This notion is supported by a variety of

experimental findings. Negative feedback regulation affecting the

processes of cell division and differentiation has been documented

in the mouse olfactory epithelium, involving the regulatory

proteins GDF11 and activin [1,2]. Similarly, evidence for feedback

regulation has been found in other tissues such as skeletal muscle,

bone, keratinocytes, and the hematopoietic system, identifying

specific regulatory proteins that mediate the feedback in each case

[3–7]. Further evidence comes from the study of human cancers

where feedback regulatory mechanisms are disrupted. The

transforming growth factor beta (TGF-beta) is an important

regulator in many tissues. A range of cancers circumvent TGF-

beta growth inhibition by inactivating the genes for the TGF-beta

receptors or through downstream alterations that disable the

tumor-suppressive arm of the pathway [8–10]. Colorectal cancer

involves the loss of the APC gene and the consequent activation of

the Wnt cascade, followed by the activation of the K-Ras

oncogene [11], changes that again disable feedback regulatory

processes. Another example is bone morphogenic protein 4

pathway (BMP4), which can regulate the patterns of division

and differentiation in human glia cells and which is silenced in

glioblastomas [12].

These data make it evident that feedback regulatory processes

play a major role in tissue homeostasis and that they need to be

overcome in proliferative diseases such as cancer. Despite this

wealth of data, there is less understanding of the exact mechanisms

that underlie feedback regulation. It is often unclear which cells in

the lineage secrete regulatory factors and which cells respond.

Typically, tissue contains the stem cells, transit amplifying cells and

terminally differentiated cells. Each of these cell types can

potentially secrete regulatory factors and/or respond to them.

The feedback can be positive or negative in nature, i.e. having a

weaker or a stronger signal can increase or decrease the overall

probability of a cellular fate decision in a given compartment. This

gives rise to a bewildering array of possible mechanisms that drive

tissue regulation. Identifying the exact regulatory circuits that can

stably and robustly maintain tissue homeostasis is critical for our

basic understanding of multicellular organisms and is equally

critical for identifying how tumors circumvent this regulation, thus

providing targets for treatment. While molecular approaches are

undoubtedly making great strides in this respect, the vast array of

possible mechanisms renders this task very difficult. Here we use

mathematical models to narrow down the possibilities in this

search. Not all feedback interactions that are potentially possible in

PLOS ONE | www.plosone.org 1 September 2013 | Volume 8 | Issue 9 | e72847



cell lineages are capable of maintaining tissue homeostasis. In fact,

many fail to do so. Moreover, different feedback circuits are

characterized by different degrees of robustness and stability. The

mathematical analysis can specify the types of feedback interac-

tions that can indeed maintain homeostasis, and this can be used

as a guide to experimentally zero in on the exact molecular

mechanisms in specific tissues. For example, the mathematical

analysis can identify the minimal number of control loops required

for homeostasis, which cells in the lineage need to produce

regulatory factors and which have to respond, whether specific

types of loops need to involve positive or negative feedback, and

how the types of required regulatory mechanisms depend on the

number of cell compartments in the lineage.

Stem cell regulation is often described in the context of the so-

called stem cell niche, an anatomic location that regulates how

stem cells participate in tissue generation, maintenance and repair

[13]. The niche includes both cellular and non-cellular compo-

nents that interact in order to control the adult stem cell [14].

Within a niche, the stem cell fate - that is, its division and

differentiation decisions - are under the regulation of many

different factors, including structural and physical forces, paracrine

and endocrine signaling from neighboring and distant cells,

metabolic factors and neural signaling, see also [15]. The number

of stem cells is maintained under signaling from the stem cell

population to itself, from surrounding and distant daughter cells,

and from various components of the stem cell niche, including the

endothelium, pericites, and surrounding extracellular matrix.

Many different regulatory mechanisms have been discussed,

including growth factors, cell-cell contacts, and cell-matrix

adhesions [16], regulation by microRNAs [17,18], signaling from

mesenchymal cells, as well as differentiated cells [19]. In [14], both

physical contact with the niche, and diffusible factors that regulate

stem cell behavior, have been cataloged for neural, epidermal,

haematopoietic, and intestinal stem cells. Many more mechanisms

exist that are responsible for controlling cell decisions of both stem

cells and other cell types, see e.g. [20–36], and a more detailed

review later in this paper. Is each regulation mechanism unique, or

can we find patterns and common motives of regulation across

different tissues?

Several insightful theoretical studies have been published on

control dynamics of biological networks [37–40] and stem cell

regulation [41–45], e.g. in relation to carcinogenesis [46–51], and

in haematopoietic system [52–54]. Important steps in our

understanding of the underlying general principles and logic of

cell lineage control have been made recently [1,55–57]. In these

papers, a novel way of reasoning about stem/daughter cell

regulation has been proposed, which looks to re-evaluate the

biological data on signaling pathways and understand the design

principles of renewing tissues from an engineering prospective.

While many specific factors and gene products are being identified

to play a role in cell fate decisions, it is important to look at the self-

renewing system as a whole, and study the topology of the

regulatory networks orchestrating tissue renewal. Specifically, it is

important whether the regulatory factors are produced by the

same cell type they act upon, or by a different compartment,

whether it is the more differentiated cells downstream, or the less

differentiated cells upstream. What are the possible geometries of

inter- and intra-compartment control loops that can ensure stable

homeostasis? How many loops are needed for successful mainte-

nance of a steady population? Should they be positive or negative?

What are the minimal controls still compatible with stability?

In this paper we pursue these questions and uncover the

number and types of different regulation mechanisms that are

compatible with (1) steady state maintenance, (2) fluctuation

control, and (3) system robustness. Our study differs from the

previous literature because we do not make any a priory

assumptions on the type and direction of signaling loops. Instead,

we investigate the populations dynamics of cell lineages in the most

general setting and single out the numbers and the types of control

loops that are capable of robustly maintaining stability. All the

building blocks of the control mechanisms that we uncover are

consistent with observations in various systems. Some of the

control mechanisms have been investigated/hypothesized previ-

ously. Many are proposed for the first time.

Results

The Framework
Our model keeps track of the total populations of cells in

different compartments: stem cells, intermediate cells such as

transit amplifying cells, and terminally differentiated cells. There

can be n compartments in the lineage. All cell types, except for the

terminally differentiated cells, are capable of dividing at a rate L(i)

(per population), where index i marks the cell type. Terminally

differentiated cells die at a rate D. Divisions are symmetric, and

two possibilities exist. With probability P(i) two daughter cells are

produced, which belong to the next differentiation stage; this

represents the process of differentiation. With probability 1{P(i),

two cells are produced which are identical to the dividing cell,

which represents the process of cell proliferation. This general

model is conceptually close to the models proposed in [1].

Which cell divides when and what division type it undergoes

must be subject to feedback loops, to assure that the populations

sizes do not deviate dangerously from the physiologically desired

levels, as a result of random fluctuations [58]. The framework

adopted here is depicted schematically in figure 1. It shows the

example of a simplified system where only two cell types are

present: stem cells and differentiated cells. Each stem cell faces two

types of decisions: division/senescence decisions, where it divides

with rate L, and (upon division) proliferation/differentiation

decisions, where it differentiated with probability P. Daughter

cells die with rate D. All the decisions can be controlled by factors

produced by the stem cell population and/or differentiated cell

population, which is shown schematically by thick arrows.

Mathematically this is reflected in the fact that quantities L, D,

and P are not constant parameters, but can be functions of the

population sizes of different compartments.

In the literature, several different functional forms have been

implemented [1,46–51,58,59], and the results of these assumptions

investigated. In the present paper we do not attempt to assume a

specific functional form of these control mechanisms. The

functional forms are not known at the present stage. Instead, we

take a different approach. It turns out that a lot of insights can be

obtained by simply examining (i) the topology of control (that is,

which populations control which of the processes), and (ii) the sign

of the control (that is, whether it is a positive or negative loop).

The first example comes from a two-compartment system

consisting of stem cells (x) and differentiated cells (y). Empirical

deterministic equations describing the population maintenance are

given by

_xx~L(1{P(x,y)){L(x,y)P~L(x,y)(1{2P(x,y)), ð1Þ

_yy~2L(x,y)P(x,y){D(x,y), ð2Þ

where superscripts (1) have been dropped; please see Materials

Principles of Regulation of Stem Cell Lineages
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and Methods for a fully stochastic description. The steady state is

characterized by populations of size (x�,y�) with

P(x�,y�)~1=2, L(x�,y�)~D(x�,y�):L�: ð3Þ

Equation (3) states that at equilibrium, the probability to

proliferate equals to the probability to differentiate, and the rate

of divisions equals the rate of death.

Let us denote by qx and qy the partial derivatives of the net

growth rate, L{D, with respect to x and y (divided by L�).
Further we denote by px and py the partial derivatives of the

differentiation probability, P, with respect to x and y. To clarify

the biological meaning of these parameters, consider the quantity

py. If it is nonzero, it means that the probability of stem cell

differentiation is controlled by the differentiated cell population.

Moreover, if pyv0, this means that the control is negative (the

more differentiated cells in the system, the less likely the stem cells

are to differentiate); pyw0 means the existence of a positive

control loops. The other three quantities can be interpreted in a

similar manner.

It turns out that much of the system’s behavior is independent of

the particular functional forms of L(x,y), P(x,y) and D(x,y), and

only the four numbers matter: qx, qy, px, and py. In particular,

stability conditions of the system are given by two inequalities:

B:2(px{py){qyw0, ð4Þ

D:pyqx{pxqyw0: ð5Þ

Further, the amounts of fluctuations in the two populations are

given by

Var½x�~ Kx

4BD
, Var½y�~ Ky

4BD
,

where constants Kx and Ky can be found in the Materials and

Methods. Finally, the magnitude of the quantity D in equation (4)

defines the system robustness with respect to parameter changes

(the larger D, the higher system robustness).

It is clear that the key features of the stem cell system are

contained in the numbers qx, qy, px, and py, which we can simply

call ‘‘controls’’. In particular, the topology of the network is

defined by which of these numbers are nonzero, and the signs of

controls correspond to the signs of these four factors. Next, we

examine biological literature to find what is known about these

control factors.

Different Types of Control
Cell numbers negatively control differentiation. pxv0,

pyv0. Crowding and factors like contact inhibition play an

important role in determining the fate of stem cells. Cell shape

(rounded or flat), as well as mechanical stress received from

surrounding cells, control proliferation and differentiation deci-

sions [30]. In particular, it is well known that more rounded cells

tend to differentiate, while flattened cells retain stem-cell

properties in vitro. Mechanic strain has been shown to inhibit

differentiation [23,28]. This suggests that crowding inhibits

differentiation, that is, the number of cells negatively affects the

differentiation probability.

Cell numbers positively control differentiation. pxw0,

pyw0. Extracellular signals and the micro-environment constitute

a niche, in which stem cells compete for limiting concentrations of

growth factors, thereby maintaining a balance between self-

renewal and differentiation. Wnt protein has been shown to

promote stem cell self-renewal [60]. If such self-renewal-promot-

ing factor is secreted by the cells of the stem cell niche, then the

stem cells in the proximity of the source of the signal will tend to

self-renew, while stem cells further away will tend to differentiate.

This corresponds to a positive control of differentiation by the

stem cells (pxw0): the more stem cells there are, the more likely it

is that a given stem cell will find itself relatively far from the niche,

and thus its probability to differentiate will increase.

Furthermore, in some systems, mechanical strain has been

shown to increase cell differentiation [21,29,30], leading to the

same trend: pxw0, pyw0.

Finally, it has been suggested that stem cells have to be spatially

localized to their niches, which keeps them protected from the

differentiating influences of the surrounding microenvironment

[25]. Therefore, as the number of stem cells increases, the

probability to be exposed to the differentiation signals from the

outside increases, resulting in a positive control loop.

Control of differentiation from downstream. pyv0. In

the context of the adult neurogenesis, it has been proposed that

once generated, neural stem cell descendants can trigger some type

of feedback mechanism to stop stem cell differentiation [20].

Notch signaling has been considered a candidate to regulate such a

feedback mechanism during adult neurogenesis [22]. Another

similar mechanism is provided by Prox1 expression [31], which

Figure 1. The schematic of cellular decisions and regulation by cell populations. The circles marked with ‘‘S’’ and ‘‘D’’ denote stem and
differentiated cells respectively. On the left, a stem cell decision tree is shown, which includes division/senescence decisions as well as proliferation/
differentiation decisions. On top right, a differentiated cell decision tree is shown. All the decisions can be controlled by factors produced by the stem
cell population and/or differentiated cell population. The control can be negative or positive in each case.
doi:10.1371/journal.pone.0072847.g001
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links adult neural stem cell self-maintenance with the generation of

the proper number of descendants. In both cases there seems to be

a negative regulation of differentiation from downstream, pyv0.

In the colon, signals acting on intestinal stem cells (ISC) are

derived from mesenchymal cells, as well as differentiated intestinal

epithelial cells [19]. Members of the Wnt/Wingless family appear

to reside at the center of the signaling network that promotes ISC

renewal. As in neurogenesis, Notch signaling also plays an

important role in intestinal stem cell regulation, controlling the

balance between self renewing stem cells and their differentiating

progeny [19].

In [32] it is reported that haematopoietic stem cells are

regulated by their mature progeny. A feedback loop is described in

which platelet numbers, through regulation of available thrombo-

poietin levels, regulates the entry of haematopoietic stem cells into

cycle.

In [1] it is reported that in the olfactory epithelium,

differentiated cells (olfactory receptor neurons) produce a factor,

GDF11, which specifically affects the differentiation/proliferation

decisions of the intermediate compartment cells, immediate

neuronal precursor, by decreasing their probability to proliferate.

Negative regulation of divisions. qxv0, qyv0. It has been

observed that the rate of cell divisions, like the division type, is also

under regulation of several types of control loops. For example, in

[35] it is stated that in adult neurogenesis, neural stem cell

divisions are orchestrated by the mature nervous system environ-

ment, and adult-generated neurons and glia appear to be

produced on demand, rather than on a fixed schedule. In colon,

there is a complex cross-talk of signaling pathways that helps

maintain homeostasis. In particular, a negative feedback loop via

Lrig1 helps to fine-tune population size and proliferative activity of

intestinal progenitor cells [36]. In [26], a ‘‘crowd-control’’ model is

described in the context of a local feedback mechanism in the early

ventricular zone. Increased densities of neuronal precursors are

‘‘sensed’’ by an increase in the proportion of the cell surface that is

occupied by adherens junctions, which leads to a downregulation

of hedgehog signaling and results in decreased proliferation [24].

In [33], the quiescence/activation status of stem cells is studied,

and it is proposed that both quiescent and active stem cells coexist

in stem cell niches, adjacent to each other. The paper studies three

different systems, hair, intestine and bone marrow. It is suggested

that a negative control loop exists between the active stem cells

and quiescent stem cells, which controls divisions of stem cells. It is

also hypothesized that a negative regulation is imposed on the

quiescent stem cells from the more mature offspring cells. These

loops correspond to negative control of stem cell divisions from the

stem cell compartment or the differentiated cell compartment

respectively.

Positive regulation of divisions. qxw0. This mechanism

can be hypothesized to be present in any system where a negative

control loop (of the type described above) is relatively week. In this

case, increasing the number of stem cells will simply lead to an

increased net rate of divisions, much like is assumed in e.g.

[1,55,59] and other models.

Division and differentiation decisions may not be

independent. pxqxv0, pyqyv0. So far we considered the

control of senescence/division and proliferation/differentiation

decisions as independent. There is however evidence in the

literature that they can be intimately connected. In [34], the

authors state that there are two fundamental parameters

influencing the cellular output of stem cells: (i) their rate of

division and (ii) their type of division (differentiation vs prolifer-

ation). Recent data suggest that cell cycle length of neural

precursors determines not only the first parameter, but also the

second one. In [26,34] it is argued that regulation of the stem cell

cycle is related to the regulation of differentiation/proliferation

decisions. Studies of the cell cycle of embryonic stem cells have

provided evidence that the regulation of G1 is related to the

balance between differentiation and self-renewal. The length of

the G1 phase corresponds to a window of increased sensitivity to

differentiation signals [26,27], suggesting that a decrease in the

division rate is coupled with an increase in differentiation:

pxqxv0, pyqyv0. Both Notch and Wnt signaling are important

in the regulation of cell divisions, and both have been reported to

also play a role in cell fate decisions [34].

Possible Topologies of Two-compartment Control
Networks

As reviewed above, many different combinations of control

loops of different signs have been described. Therefore, many

different mechanisms can be compatible with stability, as

suggested by conditions (4–5). These are some patterns that follow

from conditions (4–5):

N There must be at least two control loops in the system.

N These two loops must be associated with two different cell

populations. In other words, some sort of control must come

both from stem cells and from the differentiated daughter cell

population.

N If division and differentiation decisions are coupled as

described above (pxqxv0, pyqyv0), then to ensure the

robustness of the regulation, the division rate of the stem cells

must be controlled by a negative feedback loop from the stem

cell population (e.g. by means of contact inhibition mecha-

nism).

N Negative control of divisions is associated with the largest

parameter regions of stability (and thus with highest system

robustness). In this case, it is most likely that differentiation is

under positive control from the stem cells, and under negative

control from the differentiated cell population.

Minimal controls. In accordance with the first two obser-

vations listed above, we can identify the most minimalistic control

mechanisms compatible with stability. They only include two

controls, and are depicted in figure 2(a). There, we present the self-

renewing cell lineage as a sequence of two decisions: a division

decision of a stem cell, followed by a differentiation decision

(which, if positive, results in the production of two differentiated

cells). The positive and negative bow-shaped arrows represent

control loops. They originate in the respective populations

exerting the control. The first minimal control pattern (considered

in [58,61]) contains a negative control of stem cell divisions, e.g. as

a result of contact inhibition, and a negative control of

differentiation decisions from downstream (the more differentiated

cells there are in the system, the less likely the stem cells will be to

differentiate). The second minimal control contains a negative

regulation of divisions by differentiated cells (which could also be a

type of ‘‘crowd-control’’), and a positive regulation of differenti-

ation by the stem cells. The latter control loop could be a result of

a self-renewal-promoting factor being secreted by a stem cell

niche, in which case the more stem cells there are, the less likely

each of them will self-renew, resulting in a higher differentiating

probability.

These two patterns discovered for the two-compartment system

play an important role in more general systems, as shown below.

Both control mechanisms in figure 2(a) tolerate a limited amount

of other dependencies (say, there could be a positive or a negative

control loop in the first minimal pattern from the differentiated cell

Principles of Regulation of Stem Cell Lineages
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population influencing the divisions decisions, which is still

compatible with stability and limited variability). The two control

loops depicted however are necessary and cannot be removed.

We can also identify all the control patterns that include exactly

three controls, see figure 2(b). The first control pattern in figure 2(b)

resembles the one considered in [1,59]. The other two patterns, to

our knowledge, have not been considered theoretically.

Analysis of robustness. To explain the last observation

listed at the beginning of this section, we note that the two stability

conditions (4–5) are imposed in a four-dimensional parameter

space (qx,qy,px,py) which characterizes the local control of

differentiation, death, and proliferation in the vicinity of the fixed

point. Let us fix a pair of division controls. For example, let us

assume that qx~{2 and qy~{1 (see figure 3(a)). This means

that both the stem cell and daughter cell populations negatively

control divisions. Then inequalities (4–5) define a region in the

(px,py) space for which a stable solution is observed (this region is

shaded in figure 3(a)). We can see for example that any pair of

differentiation controls with px§0, pyƒ0 will result in stability.

Also, there are relatively large regions with two negative controls

(px,pyv0) and two positive controls (px,pyw0). No control with

pxv0 and pyw0 is compatible with stability. Only one negative

controls (a downregulation of differentiation by stem or daughter

cells) is sufficient for stability in this case (these situations

correspond to the px~0, pyv0 and pxv0,py~0 cases).

Figure 3(b) examines a different pair of division controls, qx~2
and qy~1. In this case, in order to have a stable solution,

parameters px and py have to belong to a narrow wedge in the first

quadrant of the parameter space (this is a consequence of the fact

that in this case, qxwqy). In the opposite scenario, qxvqy, the

wedge of stability moves to the third quadrant). It appears that for

positive values of qx and qy, most controls of differentiation are

unsuccessful in maintaining stability. In contrast to that, for

negative values of qx and qy stability can be achieved by a large

subset of possible differentiation controls.

To quantify these ideas, we can find the area of the shaded

regions in figures 3(a–b), and divide this by the total area of the

parameter region considered. Obviously, the area fraction of

figure 3(b) is significantly smaller than that of figure 3(a). We can

say that the parameter combination of 3(a) is more robust than

that of figure 3(b).

To investigate robustness in a more systematic fashion, we

created figure 4. In the contour-plot of figure 4(a), for each pair

(qx,qy), we calculated the fraction of all possible parameters

(px,py) that correspond to a stable solution (this was done by

integration over the regions of stability, as explained above). The

lighter colors in the contour-plot correspond to larger fractions,

and thus to a higher degree of system robustness (in the sense of

the word used here). The highest robustness (the area fraction of

0:5) is observed for negative division controls. The lowest

robustness (approaching zero) corresponds to positive division

controls. Figure 4(b) performs the same analysis under the

connectivity conditions pxqxƒ0, pyqyƒ0.

Multi-step Systems
Our methods generalize to systems with many intermediate cell

types. For example, here we present results for a three-

compartment system, consisting of stem cells, transit amplifying

cells, and terminally differentiated cells. The following patterns are

observed:

N All three populations (stem cells, transit amplifying cells, and

terminally differentiated cells) must control at least one process

each.

N There must be at least three control loops in the system, which

must be associated with three different cell populations.

N The differentiation decision for stem cells, P(1), must be under

control from another population. It must be controlled by

either a negative loop from downstream, or a positive loop

from upstream.

N There are exactly 20 different minimal control types (that is,

controls containing exactly three loops), see figure 5. 16 of

them have different topology, and 4 more have repeated

topology but a different sign arrangement, see the 4 control

patterns on the right of figure 5(b). These 20 patterns are the

three-compartment equivalent of the two minimal patterns

found for the two-compartment model.

N For the minimal control networks, the control of stem cell

divisions (from the stem cells, or any of their descendants) must

be negative (or zero). This is not the case for the divisions of

transit amplifying cells.

N The death rate control of terminally-differentiated cells must

be positive (or zero). Each network with a positive control of

the death rate can be replaced by an identical network with a

negative control of stem cell divisions (thus networks with

death-rate control are not included in the 20 minimal networks

of figure 4).

N 14 of 20 minimal networks (figure 5(a)) contain elements of the

two minimal networks uncovered for the two-compartment

system.

N Only 4 minimal networks (depicted on the right of figure 5(b))

contain positive control of differentiation decisions from

upstream (the type considered in [1]).

In general, cell lineages may have a large number of

intermediate types. For example, [35] studies neurogenesis and

identifies the following 5 types of cells (in the order of progressive

differentiation) in the subgranular zone of the hippocampal

dentate gyrus: radial and horizontal type 1 neural stem cells,

early stage type 2a transit-amplifying progenitors, late stage type 3

transit-amplifying progenitors, immature granule neurons, and

mature granule neurons. Although the paper discusses a large

number of factors involved in the regulation of divisions and

differentiation, the exact topology of regulatory loops has not been

fully understood. It follows from our analysis that in principle, for

such multi-compartment systems, the number of theoretically

possible controls grows exponentially. The common patterns listed

above, however, can help us single out some of the more likely

regulatory mechanisms that may be involved. For example, the

first three principles listed above for a three-compartment system,

Figure 2. Minimal regulatory networks for a two-compartment
system. (a) Networks with two control loops. (b) Networks with three
control loops. The circles marked with ‘‘S’’ and ‘‘D’’ denote stem and
differentiated cells respectively. The two cell fate decisions are marked
as ‘‘div’’ for divisions and ‘‘diff’’ for differentiation. Positive and negative
bow-shaped arrows denote control loops.
doi:10.1371/journal.pone.0072847.g002
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are valid for an n-compartment system (with ‘‘three’’ replaced by

‘‘n’’). Other conditions that can be obtained for the general

systems are more technical and can be found in the Materials and

Methods section.

Discussion

In this paper we considered possible mechanisms of control of

two- and multi-compartment lineages, and identified general

stability conditions for self-renewing tissues. It turns out that even

without the exact knowledge of the functional forms, it is possible

to gain a lot of information simply based on the (i) topology and (ii)

signs of the control loops. We identified several very general

conditions on control networks necessary for a stable maintenance

of homeostasis, and further we were able to calculate the variance

experienced by cell populations.

Our approach differs from many papers published in the past in

two ways. Firstly, unlike most of the theoretical papers, we do not

Figure 3. A graphical representation of stability conditions(4–5). For fixed values of controls qx and qy, we identify the region of the (px,py)

space corresponding to stability of the stem cell system. The borders of this region are given by lines py~px
qy

qx
and py~px{

qy

2L�
. (a) Negative division

controls: qx~{2, qy~{1. (b) Positive division controls: qx~2, qy~1. The parameter L�~1.
doi:10.1371/journal.pone.0072847.g003

Figure 4. Stability and robustness of two-compartment control systems. (a) For a wide range of positive and negative controls of the
division, qx and qy , we show how robust the stability of the system is with respect to the choice of the controls of differentiation. The maximum
robustness is 0:5 (meaning that if we choose controls of differentiation px and py randomly, with probability 50% we will get a stable solution). This
corresponds to the lightest region in the south-west part of the diagram. The minimum robustness is zero, such that no choice of controls of
differentiation will yield a stable solution. This corresponds to the darkest region in north-east part of the diagram. (b) Under the assumption of the
connection between division and differentiation decisions, the same contour-plot is shown with the restriction pxqxƒ0, pyqyƒ0. The parameter
L�~1.
doi:10.1371/journal.pone.0072847.g004
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consider any specific functional dependencies, but instead employ

the method of axiomatic modeling. On the one hand, as

demonstrated in the review of experimental literature presented

here, only some of the dependencies are starting to be discovered

in a qualitative way (and not in a way that can be translated into a

specific function). On the other hand, as seen from the literature,

many different types of control loops are in principle possible.

Therefore, we examine the whole wealth of possibilities, and single

out what components are necessary, and which ones are likely in a

biological system.

Secondly, our conceptual approach is also different from the

one taken by most experimental groups. Instead of concentrating

on ‘‘within-cell’’ regulatory networks, we focus on the ‘‘population

biology’’ of stem cell lineages. That is, we are interested in the

behavior of different compartments as they respond to the changes

in other compartments. This approach is of course not sufficient

on its own, but only in addition to the traditional approaches. In

order to utilize our methods, we have to use the knowledge

accumulated by the studies of individual cellular responses to

various factors. We claim however that our approach can be very

useful in combination with the traditional methodologies, as it

helps to build the ‘‘big picture’’ of the whole lineage behavior, as it

is generated by all its different parts.

As a consequence, we hope that this paper helps initiate a line of

experimental research with a slightly shifted emphasis. As of now,

it is relatively clear what role different factors play in cell fate

regulation, and how they shape cell fate decisions. It is often

unclear however, where these factors come from. In other words,

they are usually investigated by either adding them to the system

exogenously, or blocking their action by mutations. It is often

unknown which cell populations are mostly responsible for

generating these factors. With this information available, one will

be able to reconstruct not just within-cell regulatory loops, but also

the inter- and intra-compartment control loops studied here,

which enables us to understand the lineage as a whole, as a self-

regulating mechanism which robustly maintains the system near its

equilibrium.

Finally, we list modeling assumptions which necessarily restrict

the applicability of the current work, and also provide avenues for

further developments. Our model is fully-stochastic, but it does not

take explicit account of spatial effects. Implicitly, some of the

negative control loops studied here can be interpreted as having

spatial origins. A more systematic study of spatial constraints

however remains a challenge. Furthermore, the theory developed

in this paper is only valid near the equilibrium state of a self-

renewing system. In other words, our models cannot be extended

to the situations where the tissue is recovering from a severe injury,

or is developing from a small number of stem cells. Our analysis is

based on the ‘‘local’’ behavior of controls (that is, their derivative

at equilibrium). For such large deviations from the equilibrium,

more information is needed about the control functions and their

behavior far from the equilibrium. Finally, the current model does

not include phenomena such as de-differentiation and asymmetric

divisions, which have been reported to occur in various healthy

and cancerous tissues.

Materials and Methods

Stochastic Two-step Model
Model formulation. Suppose the population consists of i

stem cells and j daughter cells. The stem cells divide at a rate Li,j .

Upon division, with probability 0ƒPi,jƒ1 two daughter cells are

produced; this represents the process of differentiation. With

probability 1{Pi,j two stem cells are produced, representing the

process of stem cell proliferation. Finally, the daughter cells die at a

rate Di,j . Let us denote by Qi,j(t) the probability to have i stem cells

and j daughter cells in the population at time t. The Kolmogorov

forward equation is then given by the following:

_QQi,j~Qi,jz1Di,jz1zQi{1,jLi{1,j(1{Pi{1,j)

zQiz1,j{2Liz1,j{2Piz1,j{2{Qi,j(Li,jzDi,j):
ð6Þ

Here, the first term on the right hand side is the death of

daughter cells, then proliferation of stem cells, differentiation, and

finally, the possibility of no change.

Figure 5. Minimal regulatory networks for a three-compartment system with three control loops. (a) Left: the 7 networks containing
(modifications of) the first pattern of figure 2(a). Right: the 7 networks containing (modifications of) the second pattern of figure 2(a). (b) The
remaining 6 networks. Notations are similar to those of figure 2, with ‘‘I’’ denoting the intermediate cell type.
doi:10.1371/journal.pone.0072847.g005

Principles of Regulation of Stem Cell Lineages

PLOS ONE | www.plosone.org 7 September 2013 | Volume 8 | Issue 9 | e72847



Let us introduce the operators Ek
i and Ek

j , such that

Ek
i ½fi,j �~fizk,j , Ek

j ½fi,j �~fi,jzk:

Then equation (6) can be rewritten more conveniently,

_QQi,j~(Ez1
j {1)½Qi,jDi,j �z(E{1

i {1)½Qi,jLi,j(1{Pi,j)�

z(Ez1
i E{2

j {1)½Qi,jLi,jPi,j �:
ð7Þ

The linear noise approximation. Equation (7) is nonlinear,

and a general solution cannot be found. Therefore, we will use

approximate methods to solve it. Let us assume that the functions

Li,j , Pi,j , and Di,j depend weakly on their arguments:

Li,j~L(Ei,Ej), Pi,j~P(Ei,Ej), Di,j~D(Ei,Ej),

where E%1. We will use this parameter to perform the Van

Kampen master equation expansion, in order to formulate the

linear noise approximation [62]. We expect that in the long run,

the probability distribution, Qi,j , will have a peak somewhere

around the (large) values

i�~
wI

E
, j�~

wJ

E
,

with wI*E0, wJ*E0. Let us suppose that the width of those peaks

scales with 1=E1=2. This is expressed in the following change of

variables,

i~
wI (t)

E
z

j(t)

E1=2
, j~

wJ (t)

E
z

g(t)

E1=2
: ð8Þ

This change of variables will be used in the master equation (7).

First of all, the probability function Qi,j(t) is now a function of j

and g:

Qi,j(t)~P(j,g; t):

Its time-derivative can be written as follows,

dQij(t)

dt
~

LP
Lt

z
LP
Lj

_jjz
LP
Lg

_gg:

Because the left hand sides of expressions (8) are time-

independent, we have _jj~{ _wwI=E
1=2, _gg~{ _wwJ=E

1=2. Also, we will

introduce a slow time-scale,

t~Et

(the necessity for this rescaling will become apparent once all the

terms at different orders of E are collected in the master equation).

Therefore, we have for the time-derivative of Qi,j :

_QQi,j~E
LP
LT {E1=2 LP

Lj

LwI

LT z
LP
Lg

LwJ

LT

� �
: ð9Þ

Next, we evaluate the shift operators. A jump of size k in the value

of i is reflected by the jump of size k1=2 in the value of j:

izk~
wI (t)

E
z

j(t)

E1=2
zk~

1

E
wIzE1=2(jzkE1=2)
� �

:

Similar arguments hold for the values of j. This allows us to

express the shift operators Ek
i and Ek

j in terms of a (Taylor) series

of differential operators,

Ek
i ~1zkE1=2 L

Lj
z

k2E
2

L2

Lj2
z . . . , ð10Þ

and similarly for the shift in the j-direction.

Finally, we use ansatz (8) to expand the functions Li,j , Pi,j , and

Di,j . We have

L(Ei,Ej)~L(wIzE1=2j,wJzE1=2g):

It is convenient to denote x~iE, y~jE, such that Li,j~L(x,y),

and denote by the subscripts the derivatives of this function with

respect to its argument: lx~LL=Lx, ly~LL=Ly, etc. We have

L(wIzE1=2j,wJzE1=2g)~L(wI ,wJ )

zE1=2jlxzE1=2glyz
E
2

j2lxxz
E
2

g2lyyzEjglxyz . . . :

Similarly, we expand the functions P and D. These expressions,

together with the operator expansions (10) and the time-derivative

(9), are substituted into the master equation (7). Then the terms in

different orders of E are equated. At order E1=2 we have

LP
Lj

dwI

dT z
LP
Lg

dwJ

dT ~
LP
Lj
L(wI ,wJ )(1{2P(wI ,wJ ))

z
LP
Lg

(2L(wI ,wJ )P(wI ,wJ ){D(wI ,wJ )):

This equation gives rise to two ‘‘macroscopic laws’’,

dwI

dT ~L(wI ,wJ )(1{2P(wI ,wJ )),

dwJ

dT ~2L(wI ,wJ )P(wI ,wJ ){D(wI ,wJ ):

ð11Þ

or in steady state simply

P(wI ,wJ )~1=2, D(wI ,wJ )~L(wI ,wJ ):L�, ð12Þ

see equations (3) with x�~wI , y�~wy. Let us introduce the

notations
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qx~
lx{dx

L�
, qy~

ly{dy

L�
:

Linear stability of solution (12) can be investigated by standard

methods and gives rise to conditions (4–5).

Next, at order E of the master equation expansion, after

rescaling time once more by

T~L�T~L�Et,

we obtain the following linear Fokker-Planck equation:

LP
LT

~{(qyz2py)(gP)g{(qxz2px)(jP)g

z2px(jP)jz2py(gP)jz
1

2
(3Pjj{2PjgzPjj): ð13Þ

This is the linear noise approximation of Van Kampen [62].

The validity of this approximation has been studied extensively,

see e.g. [63,64]. Here we mention that the relative size of typical

fluctuations scales with E1=2, and thus for sufficiently small values of

E, the system will remain near the equilibrium and stochastic

extinction is an unlikely event, at least for a time-duration which

grows with 1=E. For a rigorous study of extinction times of birth-

death processes see e.g. [65,66].

From equation (13) we can obtain the equations for the first and

second moments in a standard way:

dSjT
dT

~{2(pxSjTzpySgT), ð14Þ

dSgT
dT

~(qyz2py)SgTz(qxz2px)SjT, ð15Þ

dSj2T
dT

~{4(pxSj2TzpySjgT)z1, ð16Þ

dSg2T
dT

~2(qyz2py)Sg2Tz2(qxz2px)SjgTz3, ð17Þ

dSjgT
dT

~(qyz2py)SjgT

z(qxz2px)Sj2T{2(pxSjgTzpySg2T){1:

ð18Þ

The solution of this system yields

E½i�~O(E0), E½j�~O(E0),

Var½i�~ Ki

4BD
zO(E0), Var½j�~ Kj

4BD
zO(E0),

where

Ki~q2
yz8p2

yz2D, Kj~q2
xz8p2

xz6D,

such that the variance expressions have contributions in the order

O(E{1), consistently with our original assumption (8). We notice

that if the fixed point is stable, then Ki,jw0, and conditions (4–5)

become conditions of the positivity and finiteness of the variance of

the two cell populations. In particular, for tighter control of the

variance, one should make the quantities B and D as large as

possible.

Deterministic Description
Stability. A deterministic description of this problem is given

by equations (1–2) (or (11). The Jacobian corresponding to solution

(3) is given by constant L� multiplied by the matrix

J~
{2px {2py

2pxzqx 2pyzqy

� �
:

The negativity of the eigenvalues requires exactly the condition

(4–5) to be satisfied. Of course, this analysis does not inform us

about the populations fluctuations, therefore we performed the

stochastic analysis to gain insights into the regulation of the

variance.

It is instructive to put our analysis in the context of the previous

studies of similar systems. In [43,45], both local and a global

stability analysis was performed. Under specific assumptions on

the global behavior of the regulation functions, the complete phase

portrait of the behavior was obtained. Analysis of the structure of

stationary solutions in the n-compartment version of the model

was presented in [44].

In this paper, we only present local, linear stability analysis of

the equilibrium number of cells. The corresponding results of

[43,45] can be viewed as a special case of the general conditions

(4–5). On the other hand, papers [43,45] go a lot further in their

analysis because they study global stability of the underlying

systems. This of course requires the knowledge of the global

behavior of the regulatory functions. In this paper we concern with

the local analysis only (and thus all the results only depend on the

behavior of the controls at the equilibrium point). A global stability

analysis would require an imposition of further conditions of the

control functions and lies beyond the scope of the current study.

Robustness. The equilibrium values of x and y are defined

by equations (3). We would like to determine how these values

depend on the model parameters (the functions L, P, and D).

Consider a point (x1,y1) in the vicinity of (x�,y�). At this point,

equations (3) can be rewritten by expanding the functions in the

Taylor series around the equilibrium point:

px py

qx qy

� �
X

Y

� �
~

0

0

� �
, ð19Þ

where we denoted X~x1{x�, Y~y1{y�. Let us denote by D
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the determinant of the matrix on the left hand side of this

equation, which is consistent with definition in (5). As long as

D=0, equation (19) admits only the trivial solution, which again

reiterates the fact that the point (x�,y�) is the equilibrium. Now, let

us suppose that the controls changed such that the rate of divisions

is now ~LL(x,y) and the probability of differentiation is ~PP(x,y); their

Taylor expansion coefficients are also denoted by tildes. Now we

have the equation

~ppx ~ppy

~qqx ~qqy

 !
X

Y

� �
~

1

2
{~PP�

{Q�

0
@

1
A,

where ~PP�~~PP(x�,y�) and ~QQ�~~LL(x�,y�){~DD(x�,y�). The solution

(X ,Y ) is the change in the equilibrium point as the result of the

change in the functions L and P. It is clear that the values of X

and Y are inversely proportional to the matrix determinant, ~DD.

Therefore, to ensure the robust behavior of the system, we need to

increase the absolute value of the determinant. The closer it is to

zero, the less robust the system is with respect to parameter

changes.

Multiple Intermediate Compartments
Suppose we have a cascade of differentiating cells, x1, . . . ,xn,

where x1 corresponds to stem cells, each subsequent class is

characterized by a smaller degree of ‘‘stemness’’ and a higher

degree of differentiation, and xn corresponds to terminally

differentiated cells. Each class xi with 1ƒiƒn{1 has the rate

of divisions given by L(i), and the probability of differentiation P(i).

The class xn has the death rate D. The quantities L(i), P(i), and D

are in general functions of all the variables, x1, . . . ,xn. We can

write down the deterministic system describing the dynamics of

these cell classes:

_xx1~L(1)(1{2P(1)), ð20Þ

_xxi~2L(i{1)P(i{1)zL(i)(1{2P(i)), 1vivn, ð21Þ

_xxn~2L(n{1)P(n{1){D: ð22Þ

Let us consider the steady state, (x�1, . . . ,x�n), and denote the

values of all the rates at the steady state as L(i)
� , P(i)

� and D�. At

steady state, we have the following equations:

P(i)
� ~

1

2L
(i)
�

Xi

k~1

L(k)
� , 1ƒiƒn{1, L(0)

� :0, ð23Þ

D�~
Xn{1

k~1

L(k)
� : ð24Þ

In particular, at steady state we have P(1)
� ~1=2. Let us

introduce the following rescaled quantities:

p(i)~2L(i)
� P(i), 1ƒiƒn{1, ð25Þ

a(i)
� ~

L(i{1)
�

L
(i)
�

, 1ƒiƒn{1, L(0)
� :0: ð26Þ

Here, quantities p(i) are functions of all the variables, x1, . . . ,xn,

and a(i)
� are constants. With these new notations, the Jacobian of

system (20–22) is given by J~

{p(1)
x1

. . . {p(1)
xn

. . . . . . . . .

L(i{1)
x1

(1zk(i{1)){L(i)
x1

k(i)zp(i{1)
x1

{p(i)
x1

. . . L(i{1)
xn

(1zk(i{1)){L(i)
xn

k(i)zp(i{1)
xn

{p(i)
xn

. . . . . . . . .

L(n{1)
x1

(1zk(n{1))zp(n{1)
x1

{Dx1
. . . L(n{1)

xn
(1zk(n{1)

� )zp(n{1)
xn

{Dxn

0
BBBBBB@

1
CCCCCCA

ð27Þ

where the coefficients are defined as

k(i)~
Xi

k~1

P
k

j~1
a(j)
� , 1ƒiƒn{1, k(0)~0,

and the subscripts xi denote partial differentiation with respect to

xi.

A necessary condition for the negativity of all the eigenvalues of

J is that ({1)nDetJw0. The nonzero value of DetJ is also the

condition for the robustness with respect to parameter changes,

which follows from a direct generalization of the argument given

for a two-compartment system.

From condition ({1)nDetJw0 it follows that at least one of the

derivatives of p(1) must be nonzero. In other words, there must be

control of the stem cell differentiation rate.

Next, since all the terms are derivatives, we need to require that

there is at least one nonzero derivative in each column. This

means that each of the populations, x1, . . . ,xn must influence at

least one of the processes (division, differentiation, or death). In

other words, there cannot be a population that does not influence

at least one of the rates.

Let us suppose that we have exactly one nonzero derivative with

respect to each of xi. Then we claim that the functions exhibiting

dependence on all these variables must all be different functions.

In other words, there cannot be for example L(j)
x1
=0 and L(j)

x2
=0.

Finally, it follows that there cannot be two consecutive

populations with no control on any of their functions. It is possible

to have a population whose rates are not controlled, but there

must be some control on the processes of the populations

immediately upstream and downstream from it.

Minimal Controls
We ask the question: can we identify, biologically and

mathematically, qualitatively different types of control? We

approach this question by finding minimal sets of requirements

for stability. For the two-compartment model, we note that at least

two of the four quantities, (qx,qy,px,py), must be nonzero to satisfy

condition (5). In fact, there are exactly two cases where only two of

the four derivatives are nonzero, see figure 2:

[1] pyv0 and qxv0.

ð27Þ
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[2] pxw0 and qyv0.

For these two cases, the two remaining derivatives can be zero,

or they can have a (possibly limited) magnitude of either sign, such

that the system is still compatible with conditions (4–5). No other

logical possibility of controlling the system with only two nonzero

variables exists.

At the next level of complexity, we consider the possibility of

having three nonzero controls. There are 3 such cases, see

figure 2(b):

[3] qxw0, qyv0, and 0vpyv{qy=2.

[4] qyw0, pxv0, and pyvpx{qy=2v0.

[5] qxw0, pxwpyw0.

Cases [3–5] are defined according to the following rules: (i) they

have three nonzero controls, and (ii) they cannot be reduced to

cases [1–2] by simply setting one of the controls to zero. For

example, it is possible to set a stable system of controls by

arranging pyv0, qxv0, qyv{2py, but in this case setting qy~0

reduces this to case [1]. Each of the cases [3–5] constitutes a totally

different type of control, where having all three components of

control with the given signs and restrictions is necessary. Adding

the fourth nonzero derivative of a limited magnitude of either sign

will still be compatible with conditions (4–5).

In the case of a three-compartment model, stability conditions

have a more complicated form. They correspond to the negativity

of the real part of the eigenvalues of Jacobian (27), which has

dimensions 3|3. The conditions can be obtained by using the

Routh-Hurwitz stability criterion. The results pertaining to the

signs of controls are shown in figure 5.
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