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Abstract: The human gut microbiome has been shown to be associated with a variety of human diseases,
including cancer, metabolic conditions and inflammatory bowel disease. Current approaches for detecting
microbiome associations are limited by relying on specific measures of ecological distance, or only allowing
for the detection of associations with individual bacterial species, rather than the whole microbiome. In
this work, we develop a novel hierarchical Bayesian model for detecting global microbiome associations.
Our method is not dependent on a choice of distance measure, and is able to incorporate phylogenetic
information about microbial species. We perform extensive simulation studies and show that our method
allows for consistent estimation of global microbiome effects. Additionally, we investigate the performance
of the model on two real-world microbiome studies: a study of microbiome-metabolome associations in
inflammatory bowel disease, and a study of associations between diet and the gut microbiome in mice. We
show that we can use the method to reliably detect associations in real-world datasets with varying numbers
of samples and covariates.

Keywords: Bayesian modeling; global effects; microbiome.

1 Introduction
Recent years have seen an explosion in the amount of genomic sequencing data collected for a variety of
organisms. One area of particular interest is the nascent field of metagenomics. Metagenomics is concerned
with the study of genetic material that can be found in samples from diverse environments ranging from
soil and water to body cavities (Wooley et al. 2010). The collection of bacterial genetic material identified
in a sample is called the microbiome. For human health, the human gut microbiome has been shown to be
associated with a variety of conditions, including colorectal cancer (Ahn et al. 2013), metabolic diseases (Le
Chatelier et al. 2013) and inflammatory bowel disease (Halfvarson et al. 2017).

The recent glut of microbiome studies has led to increased interest in developing robust and efficient
methods for analysing this type of data. A typical microbiome study will first sequence the bacterial genetic
material contained in a sample, and will then use the genetic information to identify and quantify the
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organisms that the material originated from. In the case of the microbiome, the latter is most commonly done
by using the 16S ribosomal RNA genes, which allow for the identification of bacterial species that colonize
the human gut. Each fragment of 16S genetic material in the sample can then be classified by comparing it to
known reference genomes, and species can be differentiated from each other by looking at genetic similarity.
The result will be a count matrix quantifying the number of times genetic material from each species was
detected.

Previous approaches to analysing microbiome data can be classified in two main categories: distance-
based methods and regression-based methods. In distance-based methods we define a distance metric
between observed microbiome samples. Common measures include Jaccard (dis)similarity, Bray–Curtis dis-
similarity and theUniFrac distance (Lozupone andKnight 2005). The latter has the advantage that it takes into
account the phylogeny, or genetic relatedness, of the species in the samples when calculating the distance;
loosely speaking, samples with related species will be closer than samples with unrelated species. One can
then use a statistical test such as the PERMANOVA to test whether the centroids and dispersion of samples
within two or more groups are identical (see e.g. Chen et al. 2012).

Regression-based methods tend to treat the count data as following either a negative binomial (Zhang
et al. 2017) or Dirichlet-multinomial distribution (Chen and Li 2013). In the former, the effects of observed
covariates on species are usually treated as independent, although variance parametersmay be shared across
species. In the latter, the covariance across species is defined by the Dirichlet-multinomial distribution, but
the regression will still define individual parameters representing the association between each species and
the observed covariate. Unlike distance-based methods, regression methods do not try to infer a global effect
of a covariate on the microbiome. However, they are better able to deal with multiple continuous covariates,
and are not sensitive to a choice of distance measure.

In our work, we combine the advantages of the regression and distance-based approaches.We developed
a Bayesian hierarchical log-ratio regression model, where we model multiple species as multiple outcomes.
Unlike most standard regression approaches for microbiome data, we do not model the species counts
directly, but rather treat the data as proportional and apply the log-ratio transform (Aitchison 1982) to
obtain multivariate-Gaussian distributed pseudo-observations. This allows us to bring in the phylogenetic
information via the covariance matrix. Global associations between the microbiome and the covariates
are estimated using a shared hyper-prior on the species-specific effect estimates. Efficient gradient-based
estimation of the discrete parameters in the model is achieved via the Gumbel-Softmax (Jang et al. 2016;
Maddison et al. 2016). We demonstrate the robustness and efficiency of our method using an extensive
simulation study, and apply it to case studies in inflammatory bowel disease and mouse gut microbiome
analysis.

2 Methods

2.1 Log ratio model

Let us assume that we are collecting microbiome data from N subjects, and in each sample we are counting the occurrence of S
species or taxons.We treat themicrobiome data as compositional, i.e., even thoughwe are observing count data, we only consider
the proportion of each species. If we observe an S-dimensional count vector zi for sample i, then the proportion of species s can
be estimated as 𝜌i,s =

zi,s∑S
s′ zi,s′

. We can now transform the species proportions for species s ∈ {1,… , S− 1} by using the log-ratio

transform (Aitchison 1982):

yi,s = log
(
𝜌i,s

𝜌i,S

)
(1)

We assume that the yi are approximately multivariate Gaussian distributed, and model them as:

yi ∼ MVN(𝝁i, cΣ) (2)

In our application, 𝚺 is informed by the phylogenetic tree inferred from the sequencing data. Briefly, under the assumption
of a Brownian motion evolutionary model, the covariance of two species is equivalent to the branch length from the root to the
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most recent common ancestor in the phylogenetic tree. If no phylogenetic tree is available, then we set𝚺 = I, the (S− 1) × (S− 1)
identity matrix. The hyperparameter c, c > 0 is a scaling parameter controlling the desired fit to the data. For the data in this study
we found that c = 1 led to satisfactory models that showed no evidence of over- or under-fitting.

2.2 Hierarchical regression model

Having established the log ratio model, we now want to formulate 𝝁i as a linear expression with information sharing across the
species (or response variables). Let:

𝝁i = (Γ⊙ B)xTi (3)

where xi is a vector of p observed covariates for subject i, B is an (S− 1) × p matrix of positive linear coefficients and 𝚪 is
an (S− 1) × p matrix with entries in {−1, 1}. Estimation of global effects is achieved via a prior on the elements of 𝜷 j, the
S− 1-dimensional vectors corresponding to the columns in B:

𝛽s, j ∼  +(a j, 𝜎
2) ∀ s ∈ {1,… , S− 1} (4)

where aj denotes the global effect of covariate j on all species. A graphical representation of the resulting hierarchical model can
be seen in Figure 1. In Eq. (4),  + denotes the positive part of the Gaussian distribution truncated at zero. Note that the global
effect only defines the prior for the strictly positive magnitude 𝛽s, j of the species-specific effects. Placing a prior on the signed
effect size would not have the desired effect; since the size of each biological sample is fixed, an increase in some species must
lead to a decrease in other species, and so the global effect size under such an alternative model would not be reflective of the
total change across species.

We also need to define a distribution for the elements 𝛾 s, j of 𝚪. The natural approach would be to treat them as binary vari-
ables following a Bernoulli distribution. However, this requires us to perform inference over discrete variables, which can be
onerous, anddoesnot lend itselfwell to gradient-based inference techniques. Instead,weopt for aGumbel-Softmaxapproximation
to the Bernoulli distribution (Jang et al. 2016; Maddison et al. 2016). The Gumbel-Softmax is a continuous relaxation of the
categorical distribution. In general, for a categorical random variable h with class probabilities 𝜋1, 𝜋2, . . . , 𝜋K , we can represent
h as:

h = one_hot(argmaxk[gk + log 𝜋k]) (5)

where one_hot denotes the one-hot encoding of a categorical variable as a K-dimensional vector (hence the change from h to h).
The gk are sampled fromaGumbel(0,1) distribution.Note that this representation is exactly equivalent to a categorical distribution;
to obtain the continuous relaxation we need to replace the argmax by a softmax function, which gives:

𝛿k =
exp((log(𝜋k)+ gk)∕𝜏)

K∑
k′=1

exp((log(𝜋k′ )+ gk′ )∕𝜏)
(6)

for k ∈ {1,… ,K}, where 𝜹 ∈ ΔK−1, the (K − 1)-dimensional simplex. Here 𝜏 is a tuning parameter that controls the smoothness,
with 𝜏 = 0 reverting to the discrete case. In our case, K = 2, which means that Eq. (6) simplifies to:

𝛿s, j =
exp((log(𝜋1)+ g1)∕𝜏)

exp((log(𝜋1)+ g1)∕𝜏)+ exp((log(𝜋−1)+ g−1)∕𝜏)
(7)

where 𝜋−1 = 1− 𝜋1. We drop the subscript k as one value of 𝛿 fully defines the two-dimensional vector on the simplex, but
introduce the subscript (s, j) to denote the value of 𝛿 for species s and covariate j. We use the subscripts 1 and−1 to denote Gumbel
draws for 𝛾 s, j = 1 and 𝛾 s, j = −1 respectively. Since 𝛿s, j is either 0 or 1, we set:

𝛾s, j = 2𝛿s, j − 1 (8)

Figure 1: Graphical representation of the hierarchical regression model for
detecting microbiome associations. Shaded nodes are observed values,
unshaded nodes are parameters. Here, yi denotes the log-ratio transformed
species abundances in sample i, 𝚺 is the covariance matrix informed by
the phylogenetic relationships, xi denotes the observed covariates, and aj
denotes the global effect of covariate j on yi. Please see the text for the
remaining parameters, as well as the detailed description of the model.
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This has the desired property that if 𝛿s, j ≈ 1, 𝛾 s, j ≈ 1 and if 𝛿s, j ≈ 0, 𝛾 s, j ≈ −1.
We specify truncated Gaussian +(0, 1) priors for the global effects aj, which also serves to regularize the model when the

sample size is smaller than the number of parameters, which is the case for almost all the models studied here. We further place
a Beta prior on the parameter 𝜋1, where the hyperparameters can be used to encode any prior beliefs about the prevalence of
positive or negative associations; for our study we set both equal to 1.

2.3 Inference

We are interested in performing fully Bayesian posterior inference over the parameters of this model. A convenient framework
is Hamiltonian Monte Carlo (HMC), which allows us to take advantage of the differentiability of the Gumbel-Softmax to estimate
gradients and speed up the Bayesian inference. We employ the Stan sampler to perform HMC sampling; for more details on the
Stan sampler and modelling language see Carpenter et al. (2017).

In microbiome research, it is common to encounter datasets consisting of large numbers of operational taxonomic units
(OTUs). Despite the efficiency of HMC sampling, sampling hundreds or thousands of parameters 𝛽s, j and 𝛾 s, j is not currently
feasible on a personal computer. We therefore propose an approximate estimation, as an alternative to the full log-ratio model,
where we only estimate 𝛽s, j as part of the sampling, and the 𝛾 s, j parameters are estimated in a separate inference step. The
approximate inference procedure is as follows:
1. Fit independent linear models yi,s = xTi 𝜷

∗
s + 𝜖i,s, 𝜖i,s ∼  (0, 𝜎2

s ) to the log-transformed microbiome counts for all species s.
Note that 𝜷∗

s is distinct from the rows of B in the full model.
2. Set 𝛾s, j = sign(𝛽∗

s, j) where the sign() operation returns −1 if 𝛽
∗
s, j is negative and 1 otherwise.

We refer to the model with 𝚪 inferred from the data as the full log-ratio model, and to the model with 𝚪 fixed according to
the two-step procedure above as the conditional model, since inference is conditional on the estimate of 𝚪. We can think of
the conditional model as an approximation to the full joint model P(𝚪,B,𝜽|Y,X) = P(B,𝜽|𝚪,Y,X)P(𝚪|Y,X), where 𝜽 collects
all parameters not in B or 𝚪, and X and Y represent the log-ratio response and the design matrix with the observed covariates,
respectively. Instead of estimating P(𝚪|Y,X), which would require marginalising over all other parameters, we use Γ̂ = sign(𝜷∗)
where 𝜷∗ = (𝜷∗

1 ,… ,𝜷∗
S ) is the maximum likelihood estimate of the effect sizes in independent linear models of P(ys|xs,𝜷∗

s ) for
each s. Inference is performed on the conditional model P(B,𝜽|Γ̂,Y,X), which is less computationally expensive.

3 Simulation study

3.1 Setup
We perform a simulation study under different scenarios to test the performance of the full and conditional
log-ratio models. In particular, we study howwell the full model can predict the global effect (aj) and species-
specific effect (𝛽s,j) parameters under scenarios with different sample size n, variance parameter 𝜎2, and
number of species (or taxonomic units) S and compare the performance to that of the conditional model. In
each experiment the variables that are not changing are set to n = 100, 𝜎2 = 0.1 and S = 10. The global effect
sizes in the simulation model are set fixed with aj ∈ {0,0.5, 1}.

For each unique setting of the simulation parameters, we generate 20 random datasets according to the
following procedure. First, a random phylogenetic tree is generated using the ape R package (Paradis and
Schliep 2018). Based on this tree, the covariance matrix 𝚺 under the Brownian motion evolutionary model
is calculated. Next, we generate an N × pmatrix of covariates X with xi, j ∼  (0, 1). For each covariate j and
species s, 𝛾s,j are generated from a binomial distribution with p = 0.5. Species-specific coefficients 𝛽s,j are
generated according to Eq. (4). Thenwe simply calculate𝝁i according to Eq. (3), and sample yi according to Eq.
(2). The 𝜌i,s must sum to 1, and, for s ∈ {1,… , S− 1}, must be equal to 𝜌i,S exp(yi,s) by Eq. (1). To achieve this
we set 𝜌i,S = 1∕∑S−1

s exp(yi,s). We can then calculate the 𝜌i,s and simulate count data zi from a multinomial
distribution with parameters 𝝆i, and number of trials equal to 100∗S.

The bench-marking platform used for this study ran R-3.6.1 to generate datasets and invoke rstan.
Models were fitted using the Stan software (Carpenter et al. 2017) version 2.19.1. A comparison between
popular methods such as the PERMANOVA (generalized uniFrac method using the GUniFrac R package,
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Chen and Chen 2018), ANOSIM (non-parametric multivariate analysis using the vegan R package, Clarke
1993) and MiRKAT (microbiome regression-based kernel association test using the MiRKAT R package, Zhao
et al. 2015) has been done. The sampling was executed in parallel using 4 different chains each with 8000
iteration with a stopping criteria at convergence on 4 Intel Ivy Bridge cores each running at 1.15 GHz speed
and 12 GB of RAMmemory in total.

3.2 Results
In this section we investigate and compare the performance of:
– the full log-ratio model,
– the conditional log-ratio model which uses a linear marginal model for each species to determine the

species-specific effect signs 𝛾s,j and then infers the size of the species-specific effects 𝛽s,j and the global
effect aj conditional on the 𝛾s,j,

– the ”oracle conditional model”, where the 𝛾s,j parameters are set to the true values used for simulating
the data.

Figure 2 shows the performance of the models for estimating the global effect size in three different exper-
iments: changing the sample size, noise variance on the 𝛽s,j parameters, and number of species. Dashed
lines represent the true values of the global effect (aj) in the simulation model. It can be seen that increasing
the number of samples n improves the accuracy of prediction and reduces the variance. On the other hand,
increasing the variance parameter for the effect values and increasing the number of species (or taxonomic
units) both make estimation of the global effect parameters harder. We see that there is not much difference
between the performance of the full model and that of the oracle conditionalmodel, but as could be expected,
the full log-ratio model produces less biased estimates compared to the conditional log-ratio model, with the
oracle log-ratio model outperforming both. The bias in the conditional log-ratio model effect size estimates
can be explained by the inherent model misspecification due to the estimation of 𝛾s,j via independent linear
regressions.

Figure 2 also reveals that even for large sample sizes, a small bias remains when estimating the global
effect size for covariate 1,whose simulatedvaluewas set to zero.Weobserve that the simulated species-specific
effect sizes tend to be small but non-zero. In the absence of a strong regularizing prior on the global effect,
this leads to a small non-zero global effect. We chose not to impose such a prior to avoid over-regularising.

Figure 2b shows a comparison between the performance of the threemodels when predicting the species-
specific effect size 𝛽s,j. We note that species-specific effects for covariate 1 and the intercept are predicted well
across all three models. For covariate 2, we again see a significant bias in the estimation for the conditional
log-ratio model. Looking at both Figure 2a and b we can see that in most cases the full log-ratio model
outperforms the conditional model.

We have also checked the sensitivity of our model to differences in the variance parameters for the
species-specific effect sizes 𝛽s,j (see Appendix A), and note that despite the assumption of a common variance
parameter, ourmodel is robust to varying noise levels across species. Furthermore, in Figure 6c (see Appendix
A), we can see the distribution of the estimated species-specific effects when changing the number of species.
It can be seen that both models converge to a small non-zero value, however, in the full model sampler
converged in a few iterations but the conditional model took longer to explore.

Figure 3b shows the p-values obtained using the PERMANOVA (generalized UniFrac), ANOSIM and
MiRKAT methods applied to simulated data with n = 100 samples, 𝜎2 = 0.1 and S = 10. The number of
covariates increases from p = 10 to p = 60. We note that empirically, for a large number of covariates (in this
case, when the number of covariates exceeds 30), the statistical power becomes insufficient to reject the null
hypothesis of no global effect.

The PERMANOVA, ANOSIM and MiRKAT models quantify the effect of a covariate via the variability in
microbial compositions, and do not try to estimate a global effect size. Hence we cannot directly compare
with our log-ratio models. Figure 3c shows the performance of the full and conditional log-ratio models
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when increasing the number of covariates. We see that increasing the number of covariates results in a slight
negative bias in the estimated effect size. However, even for themaximum of p = 60 covariates, the estimated
global effect size remains far from zero under our models, indicating a lower false negative rate compared to
the methods in Figure 3b.

We also investigate the computational efficacy of the full and conditional log-ratio models. Figure 3a
shows the run time to convergence under each of the models. We see that the sampler for the conditional
model takes longer for large S; this is a consequence of setting the 𝛾s,j parameters fixed which results in less
efficient exploration of the sample space and longer convergence times. The sudden drop in time for S ≥ 100
is explained by the fast convergence of the chains in the HMC sampler to a small non-zero value (when the
true global effect value is set to zero). A comparison is shown in Figure 7, where we can see the estimated
species-specific effects when changing the number of species, across all different HMC chains. It can be seen
that when S ≥ 100 the sampler in the full model converged in a few iterations but the conditional model took
longer to explore.

Taken together, Figures 2a, b and 3a indicate that for small sample sizes (n < 100) one could use either
the full or conditional log-ratio models, as long as the number of covariates is not too large. For large sample
sizes the conditional model could be deployed to improve computational efficiency, but there is a trade-off
in terms of estimation accuracy. For large number of species S (S > 50), the full log-ratio model seems more
efficient than the conditional model, perhaps because it can take advantage of Hamiltonian paths in the
posterior landscape that are closed off when conditioning on 𝚪. In general, we would recommend to use
the full log-ratio model where possible, and only resort to the conditional log-ratio model when resource
constraints and large sample sizes make use of the full model impractical.

4 Real-world applications

4.1 Detecting associations
Using metabolomics as a measure of health, or to predict response to pharmacologics is a very attrac-
tive prospect, as measuring metabolites in urine, for example, may provide a non-invasive and potentially
inexpensive screening method that has potential for application to a plethora of pathologies.

We apply the full log-ratio model to a dataset collected as part of a pilot study into inflammatory bowel
disease (IBD) (Beamish 2017). IBD is an umbrella term used to describe two conditions (Crohn’s disease
and ulcerative colitis) that are characterized by chronic inflammation of the gastrointestinal tract. 42 gut
bacteria samples were obtained from patients undergoing colonoscopy at Lancashire Teaching Hospitals
Trust (LTHTR) and University Hospitals of Morecambe Bay Trust (UHMBT), and metagenomic profiling was
performed to obtain the bacterial species counts. The patients were additionally asked to provide a urine
sample, andmetabolite concentrations found in those samples were recorded. One objective of the study was
to investigate associations between the gut microbiome and the urinary metabolite profiles.

After quality control, our cohort consists of n = 40 people (IBD cases and controls), for which we have
measured a set of 3 clinical covariates: age, sex, and the hospital where the samplewas collected. Note thatwe
do not investigate any associations with IBD status, as number of cases was too small to make any reasonable
inferences. Instead, we focus on detecting associations between the microbiome and individual metabolites.
We consider the set of the S = 21 most abundant operational taxonomic units (OTUs or species) at the phylum
level. As a result, our design matrix X is a 40 × 5 matrix consisting of the intercept, the metabolite level, age,
sex and sample collection location. As the data is limited, we do not try to infer the variance parameter 𝜎2,
but keep it constant and equal to 0.1. Finally, we have a total of 261 metabolites.

Figure 4a shows the posterior distribution of estimated global effect size aj for the metabolites with
the largest posterior mean effect estimate. We see that out of these 21 metabolites, saccharopine, allantoin,
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vanillate and ornithine have the strongest association with the microbiome. Some metabolites show inter-
esting bimodal patterns in their posterior effect distribution; this is particularly obvious for glycine. Such
patterns could potentially be indicative of more than onemechanism that links the microbiome to metabolite
levels.

Figure 4b shows the posterior mean estimate of the species-specific effect sizes 𝛽s,j, specifically the
association of each phylum with each metabolite. We note that for the metabolites with the largest poste-
rior effects, the majority of species-specific effects are strongly negative, indicating that these metabolites
are associated with a decrease in most phylum counts, compensated by an increase in just a couple of
phyla.

We note that our analysis identified several phyla-associated metabolites that have previously been
shown to be linked to markers of intestinal health or nutrition, demonstrating potential impacts on health
that are reflective of microbiota changes. First, our study suggests that adipate is strongly associated with
changes in themicrobiome. Adipate, the salts and esters of adipic acid, are increased in the urine of breast-fed
versus formula-fed neonates (Dessì et al. 2016), a now well-known essential factor in the establishment of
a diverse, healthy microbiome. We observe effect sizes that are indicative of an association between adipate
and an increase in Firmicutes, Proteobacteria and Bacteroidetes, the major components of a healthy adult
intestinal flora. Therefore, clinical measurement of adipate may have potential as biomarkers for intestinal
health.

Epicatechin is a polyphenolic flavonoid abundantly present in plants, cocoa and that offers protection
against diabetes by its ability to mimic the effects of insulin and has strong antioxidant properties (Kane-
hisa and Goto 2000; Samarghandian et al. 2017). The association we observed between epicatechin and
proteobacteria abundance may prove useful in the prediction of pathologies associated with proteobacteria
expansion, such as IBD or nonalcoholic fatty liver disease (Rizzatti et al. 2017). Of course, any potential mech-
anisms that underpin these associations will require further investigation but collectively this demonstrates
the broad and significant potential for clinical application of our model. Several metabolites, including
isoleucine, thymidine, ornithine and vanillate, were associated with an increase in cyanobacteria (Figure
4b). Cyanobacteria are unusual intestinal microflora (Ley et al. 2005), in that they perform oxygenetic pho-
tosynthesis and cyanobacteria-based supplements, such as Spirulina, regarded as functional foods, have
been shown to support immunological function (Finamore et al. 2017). These associations may allow us
to get a clearer picture of the functionality of the gut microbiome, by assessing the functions of these
metabolites.

4.2 Estimating the global effect of diet on the gut microbiome
It is well-known that diet has a profound effect on the composition of the gut microbiome (David et al.
2014; Singh et al. 2017). However it is difficult to quantify this effect using traditional microbiome analysis
methods, as we either need to look at individual species, or rely on a pre-specified distance metric. In
Turnbaugh et al. (2009), the authors took the latter approach to characterise the differences in microbiota
in mice whose gut tracts were colonised by donor bacteria of human or mouse origin, and who received
either a Western or low-fat plant-based (LF/PP) diet. The dataset is described in Table 1. Donor bacteria
either originated from human microbiome samples (fresh or frozen), or from mice who had previously been
implanted with (fresh) human samples (HMouse) and had received either the LF/PP or Western diet. The
dataset consists of n = 444 fecal samples, obtained at various time points from 15 mice, and we use the
bacterial abundance data for S = 160 taxonomic units at the genus level. Note that we did not have access to
the information on sample times or sample source, and so were unable to take this aspect into account in our
model.

Using the UniFrac distance measure, Turnbaugh et al. (2009) found that recipient mice consuming a
Western diet showed a similar microbiome composition that was distinct from mice on the LF/PP diet,
regardless of donor. We applied the full log-ratio model to the dataset to determine whether this was reflected
in the global microbiome effect of diet on themicrobiome, and to study the individual (genus-specific) effects.
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Figure 4: Application of the log-ratio model to a microbiome-metabolome association study (Beamish 2017). (a) Density plots
showing the posterior distribution of the global effect size associating each metabolite to changes in the microbiome. (b)
Posterior mean estimates of the phylum-specific effect size for each metabolite across the different bacterial phyla.
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Table 1: Dataset description for the gut microbiome study in
Turnbaugh et al. (2009).

Number of observations Variable

394 Sex – male
50 Sex – female
137 Donor – fresh
92 Donor – frozen
175 Donor – HMouse (LF/PP diet)
40 Donor – HMouse (Western diet)
300 Diet – LF/PP
144 Diet – western

We include sex, donor type and diet as covariates. The reference taxonomic unit for the log-ratio transform
was the Dorea genus, although investigation of alternative reference taxonomic units showed little change in
the results Appendix.

The results of our study are shown in Figure 5. We observe that overall there is a significant (non-
zero) effect of diet, and a strong effect of using the frozen samples. This is concordant with the findings in
Turnbaugh et al. (2009). We also note that receiving a bacterial implant from a donor mouse on the LF/PP
diet seems to have a stronger effect than receiving an implant from a donor mouse on the Western diet,
compared to having a human donor. Ruminococcaceae Incerta Sedis is strongly associated with the change
in diet, a finding which is backed up by the literature (Clarke et al. 2013). Similarly, Eubacteria colonization
of the gut has been shown to be affected by diet (Simmering et al. 2002). Finally, we see that Enterobacteria
is associated with the change in diet; previous studies in rats have shown that a high-fat diet results in
considerably more propionate and acetate producing species, including Enterobacteria (Singh et al. 2017).
Interestingly, this bacterial genus also shows a strong associationwith implantation by frozen donor bacterial
samples.
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5 Conclusions

We have developed a hierarchical Bayesian regression model for detecting global microbiome associations,
and have shown that the model produces consistent estimates in a simulation study. We then applied the
model to investigate microbiome–metabolome associations in a pilot study of inflammatory bowel disease
patients and global associations with diet in a study of mouse gut microbiomes. The model is superior to
existing approaches in that it allows for integrating phylogenetic information, it estimates global as well as
species-specific effects, and it does not rely on a specific choice of ecological distance measure.

There are some limitations to our study. The IBDdataset used in this paper only consists of a small number
of samples,which reduced our ability to extend the inference to a larger number of species. For a larger sample
size, the full log-ratio model could also be applied to taxonomic units at the ‘order’ or ‘genus’ level, as our
simulation study showed that inference for up to 150 species is feasiblewithoutmajormodifications.However,
we have seen that for large number of samples (n ≥ 500), the conditional log-ratio model can be deployed as
it showed comparable prediction accuracy to the full model at greater computational efficiency.

In our model, information about the phylogenetic relationships between species is incorporated via a
simple Brownian motion model of evolution (Felsenstein 1973). This model was originally developed for the
evolution of traits, and assumes a priori that closely related species have traits that are positively correlated,
which is a reasonable assumption. Here we are using it to model species abundances, where this assumption
is likely an oversimplification, as it does not incorporate negative correlation due to inter-species competition.
Further modelling work is needed to derive more realistic models of the impact of phylogenetic relatedness
on abundance.

We note that ourmethod does not currently explicitlymodel the common problem of zero-inflation. Zeros
in the count data are dealt with by adding a small constant before applying the log-ratio transform. Despite
the simplicity of this approach, we have not observed significantly biased estimates as a result in any of our
simulations.

In this paper, we focused on comparisons with methods for detecting global effects on the microbial
community. Numerous other methods exist that are limited to detecting species-specific effects. Methods
such as FZINBMM (Zhang and Yi 2020) and ALDEx2 (Gloor 2015), as well as more general count models like
edgeR (Robinson et al. 2010) and DESeq2 (Anders and Huber 2010) do not allow for the estimation of global
effects. Additionally, the latter two do not properly model the compositional nature of metagenomic data. As
a consequence, comparisons with these methods would have been of limited value. We did investigate the
potential of these methods for initialising the 𝛾s,j parameters in the conditional log-ratio model, but found
the performance not significantly better than the method described in our paper.

An interesting avenue for future research is whether our model can scale to larger numbers of species
S and sample sizes n. We note that time to convergence seems to increase polynomially with n; we would
therefore not expect to be able to scale to tens of thousands of samples, and a different inference method
would need to be employed. One option is variational inference, which has been successfully used as an
alternative to full Bayesian inference in other settings (Hensman et al. 2013).

More crucially, we would like the method to scale to larger numbers of species. Currently, our results
indicate that HMC inference in the full model converges faster as S increases. Our hypothesis is that for
small S, the gradient estimate for aj is unreliable as it depends on the estimates of 𝛽s,j. For large S, we have
more information to estimate the gradients, and thus experience fewer rejections during HMC sampling.
However, estimation of the parameters will be poor unless n also increases. In future work, wewill investigate
regularization approaches to estimate sparse 𝛽s,j parameters in situations with small sample sizes.
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Appendix A. Sensitivity analysis
Wehave performed a sensitivity analysis using simulated data to test the impact of ourmodelling assumption
that the microbial species share a common noise parameter. The simulation model is the same as described
in Section 3 in the main manuscript, but instead of drawing the 𝛽s,j from a truncated Gaussian with common
parameter 𝜎2, we instead sample 𝜎2

j from a truncated Gaussian with standard deviation 0.1. The results are
shown in Figure 6. We can compare this to Figure 2 to see that the estimated species-specific effects and the
global effects stay consistent when using different values 𝜎2

j for each species j at the simulation stage.

Figure 6: Model performance when simulating data under species-specific variance in the effect sizes. (a) Comparison of the
performance of the full, conditional and oracle conditional log-ratio models on simulated data when varying the sample size
(top row), noise variance of the species-specific effects (middle row) and number of species or taxonomic units (bottom row).
Notice that x axis is now the mean value of p randomly drawn values centered on the relevant noise and with standard deviation
0.1. This is to have different noise parameters for different species when simulating the data. The linear simulation model
consists of the intercept term and two covariates with global effect sizes 1, 0.5 and 0 respectively. The dashed horizontal lines
show the size of the true effect, and the boxplots represent the posterior mean estimates obtained from 20 independent
simulated datasets. (b) Comparison of the performance of the full, conditional and oracle conditional log-ratio models on
simulated data when estimating the species-specific effect size (𝛽s, j). Each point corresponds to the estimated effect size for
one species in one model. The linear simulation model consists of the intercept term and two covariates with global effect sizes
1, 0.5 and 0 respectively. The solid lines represent y = x (note that the x-axes are on different scales). (c) Comparison of the
distribution of the estimated species-specific effect size resulted from the full and conditional models for a relatively large
number of species S = 100. The dashed vertical line shows the true global effect.
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Appendix B. Hamiltonian Monte Carlo traces
Figure 3a indicates that for larger number of species S, the convergence time of the Hamiltonian Monte
Carlo algorithm decreases. In Figure 7, we show additional example trace plots for the species-specific effect
parameters 𝛽s,j under the default simulation setup described in the main paper. We observe that for S ≥ 100,
convergence under the full log-ratio model is reached earlier, but the posterior distribution is wider than for
S < 100. The conditional log-ratio model reaches a similar equilibrium state, but the width of the distribution
of samplesparameters reducesmoregradually, possibly as a result of the restrictions imposedby the two-stage
approach. It is reasonable to assume that increasing S also increases the information available to estimate the
gradients of the log likelihood function with respect to the global effect size parameters, and thus the chains
experience fewer rejections during HMC sampling. However, as the number of samples does not increase, and
the number of species-specific parameters increases, the estimate overall becomes more uncertain, resulting
in a wider posterior distribution. This can also be observed in Figure 2a.

Figure 7: Comparison of the trace plots of the HMC path for 𝛽s, j in the full and conditional models. The y-axis shows value of
species-specific parameters 𝛽s, j in each chain for increasing number of species.
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