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Abstract: O-GlcNAcylation is a post-translational modification that influences tyrosine phosphorylation
in healthy and malignant cells. O-GlcNAc is a product of the hexosamine biosynthetic pathway, a side
pathway of glucose metabolism. It is essential for cell survival and proper gene regulation, mirroring
the metabolic status of a cell. STAT3 and STAT5 proteins are essential transcription factors that can
act in a mutational context-dependent manner as oncogenes or tumor suppressors. They regulate
gene expression for vital processes such as cell differentiation, survival, or growth, and are also
critically involved in metabolic control. The role of STAT3/5 proteins in metabolic processes is partly
independent of their transcriptional regulatory role, but is still poorly understood. Interestingly,
STAT3 and STAT5 are modified by O-GlcNAc in response to the metabolic status of the cell.
Here, we discuss and summarize evidence of O-GlcNAcylation-regulating STAT function, focusing in
particular on hyperactive STAT5A transplant studies in the hematopoietic system. We emphasize that
a single O-GlcNAc modification is essential to promote development of neoplastic cell growth through
enhancing STAT5A tyrosine phosphorylation. Inhibition of O-GlcNAcylation of STAT5A on threonine
92 lowers tyrosine phosphorylation of oncogenic STAT5A and ablates malignant transformation.
We conclude on strategies for new therapeutic options to block O-GlcNAcylation in combination
with tyrosine kinase inhibitors to target neoplastic cancer cell growth and survival.

Keywords: STAT5A; STAT5B; STAT3; JAK kinases; tyrosine phosphorylation; O-GlcNAcylation;
O-GlcNAc transferase; O-GlcNAcase

1. Introduction

The metabolic state of tumor cells dramatically differs from the metabolism of healthy cells, and this
largely defines the proliferation and expansion of malignancies. In the 1920s, the German biochemist and
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Nobel Prize laureate Otto H. Warburg observed the phenomenon of tumor cells radically changing their
metabolism, which was termed the “Warburg effect”. It was demonstrated that cancer cells downregulate
mitochondrial function and increase the production of lactate through cytoplasmic enzyme cascades.
Lactate can enter the tricarboxylic acid (TCA) cycle to feed glutamate production, facilitating lipid synthesis
or neoangiogenesis in a hypoxic environment [1]. Since this discovery, many researchers have focused
on understanding the advantages that cancer cells obtain by undergoing a more expensive and less
efficient method of energy production. For a long time, the role of anaerobic glycolysis in cancer was
neglected. However, recent cancer and immunology research has provided a better understanding of
the consequences and advantages that changes in metabolic processes bring for normal or neoplastic
cells [2–4]. Importantly, cancer cells are highly dependent on glucose and glutamine with respect to
energy production. As the uptake of these compounds is crucial, the intracellular concentration of
these molecules increases. This leads to increased glycolysis in cancer cells and thereby an increased
flux through the hexosamine biosynthetic pathway (HBP), which, in the end, provides the cell with
uridine diphosphate-acetylglucosamine (UDP-GlcNAc). This further serves as a donor for O-linked
β-N-acetylglucosamine (O-GlcNAc) modification of proteins [5]. Interestingly, increased O-GlcNAcylation
of proteins necessary for the TCA cycle, such as pyruvate dehydrogenase protein X component (PDHX),
disturbs their function and leads to a disruption of mitochondrial function [6]. Therefore, increased
O-GlcNAcylation status in cancer cells may promote this switch from oxidative phosphorylation to the
Warburg effect.

Our findings on the influence of O-GlcNAc modification on signal transducer and activator of
transcription (STAT) protein function demonstrate that metabolic changes are indeed of fundamental
importance for the development of aggressive cancer growth and survival. Experimental models
were mainly based on insights of normal or oncogenic STAT5A signaling [7]. Here, we shed light
on how the STAT3/5 transcription factors can integrate metabolic signals to contribute to oncogenic
transformation, involving O-GlcNAcylation in association with excessive tyrosine phosphorylation.

2. Overview of the Janus Kinase Signal Transducer and Activator of Transcription (JAK-STAT)
Signaling Pathway

The Janus kinase (JAK)-STAT pathway is a core cancer pathway that transmits a signal from the
cell surface to the nucleus through cooperation between JAK kinase and STAT transcription factors.
It determines cellular fate, proliferation, and survival. However, it is also critically involved in the
regulation of cell cycle arrest or in promoting senescence (Figure 1a). JAK-STAT signaling is initiated
when two or more cytokine receptor chains interact upon stimulation by different ligand mediators,
such as interleukins (IL), or upon binding of most myeloid or lymphoid cell-acting cytokines [8,9].
Cytokine receptors lack kinase domains, but upon ligand stimulation they can activate one or several
members of the four JAK kinases, namely JAK1, JAK2, JAK3, and Tyrosine kinase (TYK) 2 [10,11].

Upon binding of a cytokine to its receptor complex, a slight conformational change occurs in the
transmembrane domain of the cytokine receptor, allowing for a mechanical movement of the pseudokinase
domain away from the kinase domain of the dimeric JAK complex. This promotes JAK autoactivation,
triggering a phosphorylation cascade and subsequently the activation of a large number of key signaling
molecules, including the STATs [12]. Overall, freeing of the JAK pseudokinase from the kinase domain leads
to the subsequent formation of docking sites for downstream adaptor and effector proteins [13,14]. Growth
factor receptors or G-protein coupled receptors were also shown to be able to activate STAT proteins upon
ligand binding, either dependent or independent of JAK kinase activity. In cancer, gain-of-function (GOF)
JAK mutations are frequent, resulting in constitutive JAK kinase activity that can further promote the
activation of other core cancer pathways, such as RAS-RAF-MAPK or PI3K-AKT-mTOR (Figure 1a).

A vast number of cytokines, such as prolactin, erythropoietin (EPO), thrombopoietin (TPO),
growth hormone, IL-2, IL-3, IL-4, IL-5, IL-7, IL-9, IL-15, IL-21, IL-31, oncostatin M (OSM) and
granulocyte-macrophage colony-stimulating factor (GM-CSF) can activate STAT5. Upon tyrosine
phosphorylation (pYSTAT), STAT proteins undergo a drastic conformational change to a transcriptionally
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active state by forming parallel homo- or heterodimers (e.g., STAT1/1, STAT1/3, STAT3/3, STAT5A/5A,
STAT5B/5B, or STAT5A/5B) [15,16]. In the hematopoietic system, loss of STAT5 is associated with reduced
blood cell lineage capacity, e.g., anemia or lymphopenia. In contrast, overexpression or hyperactivation of
STAT5 is associated with leukemic growth or neoplastic transformation. For example, myeloproliferative
neoplasms (MPN), chronic myeloid leukemia (CML), acute myeloid leukemia (AML), and various
lymphomas are driven by increased pYSTAT5 levels [8,17,18].
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Figure 1. The JAK2-STAT5-SOCS pathway and domain structure of STAT5. (a) Upon cytokine binding to
respective cytokine receptor chain(s), a conformational change in the transmembrane domain triggers
activation of associated Janus kinase (JAK) kinases that bind to the BOX1 and BOX2 membrane proximal
motifs. Subsequently, antiparallel STAT5 dimers are efficiently recruited and JAK dimers then activate
STAT5 by tyrosine phosphorylation. STAT5 then undergoes a drastic conformational change to form
parallel dimers. Furthermore, serine/threonine phosphorylation of STAT family members triggers
shuttling in and out of the nucleus as well as transcriptional elongation. STATs are usually inactivated
by tyrosine phosphatases, which are much more highly expressed than the rate limiting JAK kinases.
In contrast, inhibition of cytokine receptor and JAK kinase signaling is executed via ubiquitination by SOCS
family members, downstream targets of STATs that provide negative feedback control. JAK2 glycosylation
is also observed (our unpublished data). (b) The STAT5A domain structure is schematically illustrated
with the O-GlcNAc modification depicted at T92 (indicated by asterisk) within an ATQL motif (highlighted
in black) in the N-domain. STATs consist of six domains: N-terminal domain (blue), coiled coil domain
(purple), DNA binding domain (green), linker domain (orange), SH2 domain (yellow) and transcriptional
activation/stability domain (red) [15,16,19]. Reported phosphorylation sites and respective kinases are
also shown. OGT, O-GlcNAc transferase; OGA, O-GlcNAcase.
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The seven STAT family members (STAT1-4, STAT5A, STAT5B, and STAT6) control cell proliferation,
survival, and metabolism, as well as regulate important cell fate decisions and tissue remodeling.
The functions of STAT proteins are best described in hematopoiesis and immunity, where they play
essential roles in the development of all hematopoietic lineages and, subsequently, proper functioning
of immune cells controlling infectious disease, cancer, or autoimmune processes [20]. Outside of
the blood, STAT proteins also possess important functions for sex determination, reproduction,
body growth, neuro-endocrine processes, intestinal homeostasis, and injury repair, with specific
and complex functions in the liver, kidney, ovary, colon, and epithelial glands (e.g., prostate, mammary
or pituitary gland) [21–24].

STAT family members are between 750 and 850 amino acids long, and they consist of six
conserved domains (Figure 1b) [7,8,18]. The N-terminal domain of STAT proteins is involved in
receptor docking. Specifically, the N-domain of STAT1/3/4/5A/5B can participate in higher-order
oligomer formation [25]. Furthermore, the N-domain of STAT1/3/5 is involved in interactions with
nuclear hormone receptors, such as the stress hormone receptor/glucocorticoid receptor and sex
steroid hormone receptors. The DNA binding domain binds to two types of response elements:
interferon (IFN)-stimulated response element (ISRE) and IFN-γ-activated elements (GAS), the latter
being an inverted repeat of TTC/TN3-4A/GAA that allows parallel dimer binding in a symmetric
fashion. The SH2 domain is needed for efficient receptor recruitment, parallel dimer orientation,
and subsequent DNA binding. Importantly, most somatic GOF mutations of STAT3 and STAT5B
occur in hematopoietic cancers within the SH2 domain, further emphasizing its importance for STAT
function, particularly in blood cells. In addition to facilitating the transcriptional activity of STATs, the
transactivation domain at the C-terminus is also involved in phosphatase docking and subsequent
STAT inactivation via removal of phosphates from tyrosine or serine residues. Excessive levels of
reactive oxygen species (ROS) can inactivate the catalytic function of phosphatases, further explaining
the loss of negative regulation in disease processes [15,16,19].

It is critical that activated JAK-STAT proteins are tightly regulated or silenced when cytokine or
growth factor responses are terminated. This is mainly achieved through the induction of negative
feedback loops via suppressor of cytokine signaling (SOCS) proteins or tyrosine phosphatases.
The latter are also partly under the control of JAK kinases, which provide specificity and selectivity of
the signal transduction in a cell type-specific manner [8].

In summary, STAT proteins form homo- or heterodimers and translocate from the cell membrane
into the nucleus, which is partly regulated by serine/threonine kinases. Here, they efficiently regulate
transcription by binding to promoter and enhancer regions of cytokine-inducible genes, providing
growth and survival signals as well as steering metabolism in a transient manner in normal cells, but
persistently in cancer cells [9,10,14,26,27].

3. O-GlcNAcylation as an Essential Post-Translational Modification

O-GlcNAc is a highly dynamic serine- or threonine-linked monosaccharide modification that
marks thousands of proteins. This post-translational modification (PTM) plays a major role in
the development of cancer, neurodegeneration, and diabetes. In contrast to the high number of
different phosphatases and kinases, the O-GlcNAc modification is regulated by only two enzymes:
O-GlcNAc transferase (OGT) as a writer and O-GlcNAcase (OGA) as an eraser. Both are essential
genes and their loss is embryonically lethal. They promote the proliferation and survival of different
cell types, including neurons, fibroblasts, and embryonic stem cells. A loss of these enzymes disturbs
protein glycosylation and, therefore, proper cell development during embryonic development [28–31].
The donor for O-GlcNAc modification—uridine diphosphate-GlcNAc (UDP-GlcNAc)—is generated in
the hexosamine biosynthetic pathway (HBP) [28,32–34].

The HBP is a non-canonical pathway in glucose metabolism, in which, depending on the
metabolic state, 1–5% of intracellular glucose is processed to UDP-GlcNAc. To generate the donor
for O-GlcNAcylation processes, six enzymatic steps are essential, and two of these are shared with the



Int. J. Mol. Sci. 2019, 20, 1028 5 of 14

glycolysis pathway. First, cytoplasmic glucose molecules are phosphorylated by hexokinase 1/2 (HK) to
generate glucose-6-phosphate. Second, glucose-6-phosphate is then converted into fructose-6-phosphate
by phosphoglucose isomerase (GPI). In the third step, glutamine acts as a nitrogen donor to form
glucosamine-6-phosphate via the enzyme glutamine: fructose-6-phosphate transaminase (GFAT).
Thereafter, N-acetylglucosamine-6-phosphate (GlcNAc-6P) is generated by glucosamine-phosphate
N-Acetyltransferase (GNPNAT) using acetyl coenzyme A (AcCoA). Subsequently, the enzyme GlcNAc
phosphomutase (PGM3) converts GlcNAc-6P into GlcNAc-1P. In the final step, GlcNAc-1P and uridine
triphosphate (UTP) are combined to form UDP-GlcNAc (Figure 2a) [29,35,36].
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Figure 2. The hexosamine biosynthetic pathway (HBP) and the two key enzymes: O-GlcNAc
transferase (OGT) as a writer and O-GlcNAcase (OGA) as an eraser with their isoform structures. (a) The
donor for O-GlcNAcylation, UDP-GlcNAc is synthesized when glucose enters the HBP. Here, glutamine
serves as a nitrogen donor and AcCoA serves as an acetyl donor. More detailed pathway descriptions
can be found in the text [27,29,35,36]. (b) Three OGT isoforms are known: ncOGT, mOGT, and sOGT.
They are generated by alternative splicing and they largely differ in the number of tetratricopeptide
repeats (TPRs) at the N-terminus, which is necessary for protein–protein interactions. The catalytic
domains I and II are responsible for binding to UDP-GlcNAc and transferring the O-GlcNAc group
to serine or threonine residues on target proteins. The OGT enzyme can, for example, be recruited to
the cell membrane via the PIP-binding activity domain (PPO) domain as characterized in response to
insulin receptor activation by insulin [28,29,37,38]. (c) There are two known isoforms of OGA: a long
(OGA-L) and a short (OGA-S). Both share a catalytic domain and an OGT binding domain. The long
isoform contains a pseudo-HAT domain, which is located at the C-terminus, and the short isoform
has only a short amino acid stretch with less known function. Both isoforms have a cleavage site for
caspase 3 at position D413, which is associated with apoptosis [28,29,39].

Although there is no consensus sequence known for O-GlcNAc modification, loop structures or
intrinsically disordered (ID) regions are much more likely to be modified than α-helices or β-sheet
regions [28,40]. Screening O-GlcNAc sites on peptides defined the preferred modification sequence as
(TS)(PT)(VT)S/T(RLV)(ASY) (modification site indicated in bold) [41]. Nevertheless, O-GlcNAcylation
is not restricted to this motif, and other sites may also be modified.

OGT is the only enzyme known to add O-GlcNAc modification to proteins. There are three known
OGT isoforms, generated by alternative splicing. All splice variants are distinguished by the number of
tetratricopeptide repeats (TPRs). The longest, nucleocytoplasmic OGT (ncOGT, 110 kDa), is located in
both the cytoplasm and nucleus. An alternative start codon in the fourth exon is used for the expression
of mitochondrial OGT (mOGT) with a size of 103 kDa. This variant also has an additional mitochondrial
targeting site (MTS) and is involved in glycosylation of mitochondrial proteins. Though the existence
of mOGT has been reported in human cells, its function is still controversial, especially in other species.
The third isoform, short OGT (sOGT), is 70 kDa, is derived from a longer transcript and is localized,
along with ncOGT, in the cytoplasm and the nucleus [28,29,37,38,42].

All three OGT variants contain a glycosyltransferase catalytic activity region, divided into
the catalytic domain (CD) I, which is the catalytically active site of the protein, and the CD II
which binds UDP-GlcNAc. Both are separated by an intervening domain (InD), whose function
is not clarified so far (Figure 2b). The TPRs at the N-terminal region of OGT are found in a
wide variety of proteins, from bacteria to human, and they facilitate protein–protein interactions.
They are involved in many cellular processes, such as cell cycle regulation, transcriptional control,
protein folding, and stress responses. In OGT, the TPRs have an essential function in protein
recruitment for O-GlcNAcylation [34,41]. OGT is recruited to the plasma membrane via the PIP-binding
activity domain (PPO) in response to insulin regulating glucose homeostasis, where it interacts with
phosphatidyl-inositol-3-phosphate (PIP3) [28,29,37,38].

Recently, a protein was discovered that is responsible for O-GlcNAcylation of extracellular
domains of transmembrane proteins, namely the EGF domain-specific OGT (EOGT). It is localized to
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the ER and binds, in contrast to conventional OGT, to a conserved binding motif: a serine or threonine
between the fifth and the sixth cysteine residue of EGF repeats. Although EOGT and OGT share very
few sequence similarities, both are regulated by the HBP flux and have the same function of attaching
O-GlcNAc to serine and threonine residues [43,44].

OGA is the enzyme responsible for removal of the O-GlcNAc modification from proteins. It exists
in two splice variants: long (OGA-L, 103 kDa) and short (OGA-S, 76 kDa) (Figure 2c). Both variants
share a catalytic amidase domain and an OGT binding region. At the position D413, OGA can be
cleaved by caspase 3, which is associated with apoptosis. At the C-terminal end, OGA-L contains a
pseudo-histone acetyltransferase (HAT) domain, which shares similarities with the domain found in
HATs, but has no functional HAT activity. This leads to controversies about the actual function of this
domain. In contrast to OGA-L, OGA-S lacks this pseudo-HAT domain, but has a unique amino acid
extension, which is necessary to attach to lipid droplets. Therefore, OGA-L is mainly localized to the
cytoplasm and the nucleus, whereas OGA-S resides inside of lipid droplets [28,29,39,45].

4. O-GlcNAc is Crucial for JAK-STAT Pathway Functions

Proteins can be covalently modified by the addition of different modifications, such as phosphate,
methyl, acetyl, or glucose groups, on specific amino acids. These PTMs influence the biochemical
properties of a protein or its function. Protein phosphorylation can also be used to transmit a signal or
to inactivate proteins. Many other PTMs are known, such as ubiquitination, sumoylation, neddylation,
or succinylation, which can alter protein function or mark them for degradation [46–51].

Target gene spectra of STAT proteins are shaped by cell type-specific interactions and PTMs,
splicing of STAT transcription factors, or proteolytic processing, where disturbances of these processes
contribute to disease mechanisms. The most crucial PTM in the JAK-STAT pathway is tyrosine
phosphorylation, which orchestrates these proteins to become active. Notably, other PTMs can
influence STAT5 activity. Sumoylation and methylation inhibit the function of STAT5, whereas
glycosylation via O-GlcNAc is required for STAT5 activity, promoting increased pYSTAT5 levels
and increased transcriptional capacity [7,52,53]. Therefore, various PTMs should be considered when
studying abnormal activities of STAT5 proteins in disease processes such as hematopoietic cancers.

In cases where the PTM balance is altered, aberrant protein function will likely result. For example,
the W515L mutation in the TPO receptor (TPOR) leads to hyperphosphorylation of JAK2, STAT3,
STAT5, and other important signal transducers, promoting myeloid cell transformation. This TPOR
mutation is the most frequent mutation in JAK2V617F-negative essential thrombocytopenia or
myelofibrosis [54].

It was shown that oxidative stress induced by hypoxia shifts glycolysis to the HBP. It is interesting
that STAT5 can directly regulate hypoxia inducible factor (HIF)1β, whereas STAT3 directly controls
HIF1α. Consequently, both STAT3 and STAT5 are involved in angiogenesis, and they can regulate
metabolic processes under hypoxic conditions [55]. Surprisingly, different metabolic conditions do not
correlate with protein O-GlcNAcylation status in general. Some studies show that glucose starvation
causes higher protein O-GlcNAcylation, likely caused by secondary effects that have not been fully
elucidated [28,56,57]. Furthermore, it was shown that a high O-GlcNAc status can increase cancer cell
resistance against chemotherapeutic drugs, such as doxorubicin [58]. Therefore, O-GlcNAc is a highly
interesting and versatile PTM that could be an attractive target for new anti-cancer drug development,
particularly in the context of oncogenic STAT5A in hematopoietic cancers.

As previously mentioned, O-GlcNAc modification influences protein functionality and
activity. Based on wheat germ agglutinin (WGA) affinity chromatography, STAT1/3/5A/5B/6 are
glucose-modified on a threonine or serine residue [59]. So far, further detailed mapping was only
performed for STAT5A and STAT5B. Here, the glucose was shown to be attached to T92 within an
ATQL tetrapeptide motif in an N-domain α-helix that was conserved in both STAT5 gene products
(Figure 1b) [7]. Blocking O-GlcNAcylation by mutation of T92 to alanine substantially decreased
tyrosine phosphorylation of oncogenic STAT5A. Given that STAT5A tyrosine phosphorylation is
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important for its interaction with CBP/p300 HATs, this may suggest that blocking O-GlcNAcylation at
T92 might also reduce this interaction and subsequently influence chromatin accessibility [7,28,60].

In the case of STAT5B, which is more frequently mutated in cancer, the influence of O-GlcNAc on
phosphorylation could not be demonstrated, even in the presence of the strongly activating STAT5B
N642H mutation [7,59]. These findings might suggest that O-GlcNAcylation of hyperactive STAT5A
or STAT5B variants regulates distinct functions. Indeed, STAT5A appears to be less oncogenic than
STAT5B, at least in certain models [61], and since both proteins can make homo- or heterodimers
and have similar gene transcription profiles, such distinct regulation of STAT5A and STAT5B by
O-GlcNAcylation could potentially facilitate this oncogenic specificity. Notably, serine-phosphorylated
mitochondrial STAT3 is essential for RAS-driven transformation. Currently, it has not been investigated
if STAT3 is also O-GlcNAcylated and if it interacts with OGT [62]. It is tempting to speculate that such
a scenario may occur, but this still needs to be tested experimentally.

If the site of O-GlcNAcylation is in close proximity to a phosphorylation site, both can sterically
compete with each other. Therefore, this suggests that a change in protein function and stability can
depend on the antagonism of a phosphorylation or glycosylation modification at a given threonine
or serine residue. Thus, O-GlcNAcylation can influence other PTMs, such as phosphorylation of
proteins [7,28,63]. There are also additional PTMs, such as sumoylation, ubiquitination, or acetylation,
known to modify STAT5 [48]. Therefore, it cannot be excluded that O-GlcNAcylation may also
influence these PTMs, or vice versa. Furthermore, phosphorylation positively regulates the activity
and stability of OGT [64,65], and a number of ubiquitin modifications have also been detected on
the OGT protein by mass spectrometry [66], although their function in regulating the protein has
not been experimentally determined. Therefore, PTMs also play an important role in regulating the
O-GlcNAcylation pathway.

Mutations, such as STAT5AS710F, increase its tyrosine phosphorylation status and thereby the
activity and gene transcription capacity. Consequently, control over cell proliferation decreases and
cancer can emerge and develop. Inhibiting O-GlcNAcylation of the hyperactive STAT5A variant
normalizes oncogenic transcription of target genes back to wild type level. There are several indirect
approaches to block O-GlcNAcylation of STAT5A. First, glucose depletion can reduce the flux into
the HBP and thereby lower the UDP-GlcNAc concentration, resulting in decreased O-GlcNAcylation.
This concept is consistent with the idea that a low metabolic status causes a low glycosylation rate
(Figure 3). Second, blocking the generation of UDP-GlcNAc by small molecular weight chemical
inhibitors, such as alloxan or 6-diazo-5-oxo-L-norleucine (DON) that block or reduce the HBP flux,
will cause a reduction in UDP-GlcNAc synthesis. DON does not directly inhibit OGT, but it inhibits
GFAT in the HBP (Figure 3) [7].

Third, the genetic approach of mutating T92 to alanine removes the target substrate motif and
thereby inhibits O-GlcNAcylation of STAT5A. Bone marrow transplantation into irradiated mice
demonstrated that the T92A mutation, and the subsequently abolished O-GlcNAcylation, prevented
oncogenic transformation driven by constitutively active STAT5A, yet still resulted in overall stable
hematopoiesis and normalization of proto-oncogene transcription of c-myc, D-type cyclins, OSM,
or Bcl-2 family members.

In many cancers, especially in most hematologic cancers, STAT5 activation and its oncogenic gene
expression is not only enhanced, but also kept persistent, whereas signaling involving activation
of STAT5 is rather transient under physiological conditions. Cancer-specific metabolic changes
enhance glycosylation, which subsequently modulates STAT5 activity through enhanced tyrosine
phosphorylation. Reducing O-GlcNAc by changing the metabolic status, via glucose depletion or
hypoxia, can reduce oncogenic transcription of STAT5 target genes to wild type levels, as was shown
in the context of the GOF mutation of STAT5A [7]. Here, it should be mentioned that it is possible
that these stress conditions may also increase O-GlcNAcylation of some proteins by increased OGT
expression caused by a reduced HBP flux [57].
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Figure 3. Inhibition of O-GlcNAcylation of oncogenic STAT5A. Three different modes of action explain
oncogenic (1) or normal (2,3) function of STAT5A. A racecar, a family car, or a damaged car serve
as a metaphor to illustrate oncogenic transcription processes. In the case of gain-of-function (GOF)
mutated STAT5A and sufficient nutrient supply, then increased ‘power’ and a full ‘fuel tank’ allows
oncogenic transformation to occur (1). In the case of low metabolic status, and therefore less ‘power’
(2), the cancer cells driven by oncogenic STAT5A cannot divide as they lack the ‘fuel’ required for
important cellular processes. Independently from the metabolic status, blocking O-GlcNAcylation by
mutation, illustrated by a damaged car, also lowers oncogenic transcription in the context of a GOF
oncogenic variant of STAT5A (3). When the critical O-GlcNAcylation site is abolished by mutation, then
transformation is lost, and cancer cells driven by oncogenic STAT5A revert to normal cell signaling [7].

Our findings on the control of O-GlcNAc-modified STAT5A can also have consequences for
many hematopoietic cell types that have distinct responses to low or high pYSTAT5 levels, giving
rise to distinct T-cell effector or Treg functions or subsets, different B-cell (B1 versus B2) subsets,
or myeloid cell functions (M1 to M3 macrophages) [67]. The discussed work and mechanism of STAT5
O-GlcNAcylation raises the possibility of developing new anti-cancer therapy strategies by inhibiting
O-GlcNAcylation of hyperactive STAT5 in combination with inhibition of hyperactive tyrosine kinase
signaling. In addition, we have also detected O-GlcNAcylation of JAK kinases, and our labs are actively
engaged in mapping and exploring the mechanisms into the regulatory functions of this modification
in essential players of the JAK-STAT core cancer pathway. We hypothesize that O-GlcNAcylation of
JAK kinases may regulate the O-GlcNAcylation and/or activation of STATs.

In summary, metabolic and transcriptional control through O-GlcNAcylation of key proteins of
the JAK-STAT pathway has therapeutic targeting potential, but there is clearly still more to investigate
in order to understand the full consequences of this modification in cancer.
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AcCoA Acetyl Coenzyme A
AML Acute Myeloid Leukemia
CALR Calreticulin
CD Catalytic domain
CML Chronic Myeloid Leukemia
DON 6-diazo-5-oxo-L-norleucine
EOGT EGF domain-specific OGT
EPO Erythropoietin
GFAT Glutamine Fructose-6-phosphate Transaminase
GM-CSF Granulocyte-Macrophage Colony-Stimulating Factor
GNPNAT Glucosamine-Phosphate N-Acetyltransferase
GOF Gain Of Function
GPI Phosphoglucose Isomerase
HAT Histone Acetyl Transferase
HBP Hexosamine Biosynthetic Pathway
HIF Hypoxia Inducible Factor
HK Hexokinase
ID Intrinsically disordered
IFN Interferon
IL Interleukin
InD Intervening domain
JAK Janus kinase
MCP Monocarboxylate transporter
MPN Myeloproliferative neoplasm
MTS Mitochondrial targeting site
OGA O-GlcNAcase
O-GlcNAc O-linked β-N-acetyl glucosamine
OGT O-GlcNAc transferase
OSM Oncostatin M
PDHX Pyruvate dehydrogenase protein X component
PGM3 GlcNAc Phosphomutase
PIP3 Phosphatidyl-inositol-3-phosphate
PPO PIP-binding activity domain
PTM Post-translational modification
ROS Reactive oxygen species
SH Src homology
SOCS Suppressor of cytokine signaling
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STAT Signal transducer and activator of transcription
TCA Tricarboxylic acid
TPO Thrombopoietin
TPOR Thrombopoietin receptor
TPR Tetratricopeptide repeat
TYK Tyrosine kinase
UDP-GlcNAc Uridine diphosphate-GlcNAc
UTP Uridine triphosphate
WGA Wheat germ agglutinin
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