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Majorana zero modes in 
the hopping-modulated 
one-dimensional p-wave 
superconducting model
Yi Gao1, Tao Zhou2, Huaixiang Huang3 & Ran Huang1

We investigate the one-dimensional p-wave superconducting model with periodically modulated 
hopping and show that under time-reversal symmetry, the number of the Majorana zero modes 
(MZMs) strongly depends on the modulation period. If the modulation period is odd, there can be at 
most one MZM. However if the period is even, the number of the MZMs can be zero, one and two. 
In addition, the MZMs will disappear as the chemical potential varies. We derive the condition for 
the existence of the MZMs and show that the topological properties in this model are dramatically 
different from the one with periodically modulated potential.

Recently, searching for Majorana fermions (MFs) in condensed matter systems has attracted much atten-
tion1–4. MFs are their own antiparticles and in condensed matter systems, they can appear as quasipar-
ticle excitations in topological superconductors. Because of their nonlocality and non-Abelian statistics, 
the zero-energy MFs, also called Majorana zero modes (MZMs) which refer to the zero-energy in-gap 
excitations, are proposed to be possible to realize fault tolerant topological quantum computation5–7. 
There are several suggestions of physical systems that may support the MZMs8–13, among which the 
one-dimensional p-wave superconducting (SC) model (also called the Kitaev model)5, due to its sim-
plicity and elegance, is the most studied one. Possible realization of the Kitaev model includes quantum 
wires with a strong spin-orbit coupling (or topologically insulating wires subject to a Zeeman magnetic 
field) and in proximity to a superconductor11,12. In addition, it can also be realized in cold-atom sys-
tems9,14. Other proposals to realize the MZMs include ferromagnetic atomic chains placed in proximity 
to a conventional superconductor with strong spin-orbit coupling15 and atomic chains with a spatially 
modulated spin arrangement16–20.

Up to now, most of the theoretical works focus on ideal homogeneous5 or potential-modulated Kitaev 
chains21–23, or Kitaev chains with longer-range hopping and pairing23,24, or even quasi-one-dimensional 
Kitaev chains with a finite width25,26. Particularly in the periodically potential-modulated case21–23, it 
was found that under time-reversal symmetry, the number of the MZMs can be at most one and if the 
potential vanishes at certain sites, then the MZM will be very robust and stable for arbitrary strength of 
the modulation. However, a very important problem unaddressed is the stability and fate of the MZMs 
under hopping modulation. Naively people may speculate that they are similar under potential and hop-
ping modulations. Whether this is true needs to be verified. Furthermore, if the two modulations result 
in different topological properties, we want to know what is new the hopping modulation can lead to. 
Therefore in this work, we investigate the hopping-modulated one-dimensional p-wave SC model which 
is an extension of the original Kitaev model. We found that, under time-reversal symmetry, the number 
of the MZMs strongly depends on the period of the modulation. If the period is odd, there can be at most 
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one MZM. However if the period is even, in some parameter regimes the number of the MZMs can be 
two. Furthermore, the MZMs will disappear as the chemical potential varies no matter the period is odd 
or even. Therefore the topological properties of the hopping-modulated model are drastically different 
from those of the potential-modulated one.

Method
We consider a one-dimensional Kitaev p-wave SC model where the hopping is periodically modulated, 
the Hamiltonian can be written as
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where π α δ= ( + )t icos 2i  is the periodically modulated hopping integral. Δ  ≠ 0 is the p-wave SC pair-
ing gap and V is the chemical potential. Here α =  p/q is a rational number with p and q being coprime 
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and Q is a unitary matrix that diagonalizes HBdG.
Defining Majorana operators γi
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B as
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with φn,i and ψn,i being the amplitudes of the MFs γi
A and γi

B in the nth eigenstate, respectively. If there 
exist MZMs, then none of the En in Eq. (1) is zero under periodic boundary condition (PBC) while some 
of them become zero under open boundary condition (OBC) and the number of the MZMs is the num-
ber of the zero En.

Since ti is modulated with a period q (the unit cell is enlarged by q times), therefore under PBC, we 
have
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Using Fourier transform, = / ∑, ,
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with the nonzero matrix elements of Mk and Δ k being = = −, + + ,M M tk
s s

k
s s

s
1 1  and 
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Since we assume ti and Δ  in Eq.  (1) is real (up to a global phase) throughout the paper, thus Hk 
respects the time-reversal, particle-hole and chiral symmetries and it can be unitarily transformed to an 
off-diagonal matrix as26–28
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here τy is a Pauli matrix acting on the particle-hole space. Then the system belongs to the class BDI which 
is characterized by the  index while the number of the MZMs can be represented by W which is cal-
culated through
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In fact, W   just counts how many times the determinant of Ak crosses the imaginary axis as k evolves 
from 0 to π/q.

Results and Discussion
First we consider the α =  1/2 case, where t1 =  − t2 =  − cosδ. Under PBC, we have
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Since Det(Ak) is real, W must be zero otherwise Det(Ak) will be zero for some k (which means the 
bulk energy gap vanishes), therefore, there can be no MZMs.

Generally, the periodic modulation can take many forms. For arbitrary t1 and t2 (t1 ≠ − t2), we have
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If V ≠ 0 and ( ) ( ) <π= = /Det A Det A 0k k0 2 , then Det(Ak) will cross the imaginary axis once as k changes 
from 0 to π/2. In this case, =W 1 and one MZM exists. Interestingly, at V =  0, we have
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In this case, the system can be divided into two separated subsystems A1k and A2k. As k evolves from 
0 to π/2, we have
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Therefore, if both π= = /A Ak k1 0 1 2 and π= = /A Ak k2 0 2 2 are less than zero, then two MZMs will show up 
in this case and the existence of these two MZMs has been numerically verified (for example, t1 =  0.5, 
t2 =  − 0.8 and Δ  =  0.5).

For α =  1/3, we have
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where t1 =  cos(2π/3 +  δ), t2 =  cos(4π/3 +  δ) and t3 =  cosδ. In this case,
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and δ( ) = + (− + ∆ + ) /π= , / Det A V V[ cos3 3 6 2 ] 2k 0 3
2 2  (−  and +  are for k =  0 and π/3, respec-

tively). If ( ) ( ) <π= = /Det A Det A 0k k0 3 , then ( )Det Ak  will cross the imaginary axis exactly once as k 
evolves from 0 to π/3, which means that =W 1 and one MZM exists in this case [E1 in Eq.  (2) is 
zero under OBC]. On the contrary, ( ) ( ) =π= = /Det A Det A 0k k0 3  means that the bulk energy gap van-
ishes and ( ) ( ) >π= = /Det A Det A 0k k0 3  means that Det(Ak) will not cross the imaginary axis as k 
evolves from 0 to π/3 in such a way that W =  0, in both cases no MZMs exist. Specifically, for 
δ =  (2m +  1)π/6 with m being an integer, we have cos3δ =  0, therefore ( ) ( )π= = / ⩾Det A Det A 0k k0 3  and 
no MZMs can exist, irrespective of the values of Δ  and V. For example, we set Δ  =  1 and L =  1632. 
In Figs 1 and 2 we plot the energy spectra under OBC and ( ) ( )π= = /Det A Det Ak k0 3  under PBC, respec-
tively. As we can see, at V =  0, MZM exists for any δ, except for δ =  π/6, π/2, 5π/6, 7π/6, 3π/2, 11π/6 
where the bulk energy gap closes. As V increases, for some δ, MZM vanishes and as δ evolves from 0 
to 2π, topologically trivial (without MZM) and nontrivial (with one MZM) phases appear in turn. A 
typical distribution of the zero-mode MFs is shown in Fig. 3 and we can see that the two MFs γi

A and 
γi

B are well separated in real space and are located at the left and right ends, respectively while the 
actual decay length of these two MFs increases/decreases as the bulk energy gap decreases/increases. 
Finally when V  > 0.32 where the condition (− + ∆ + ) >V V3 6 2 12 2  is satisfied, MZM disappears 
for any δ and there is only topologically trivial phase and indeed for δ =  (2m +  1)π/6 with m being an 
integer, MZMs do not exist for any V.

For α =  1/4, we have t1 =  − t3 =  − sinδ and t2 =  − t4 =  − cosδ. In this case,

Figure 1. The energy spectra for α = 1/3 under OBC. Here Δ = 1 and L = 1632. (a–d) are for V =  0, 0.1, 
0.2 and 0.3, respectively. Only < .E 0 05n  are plotted.
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At first glance, since Det(Ak) is real, thus, similar to the α =  1/2 case, there should be no MZMs. 
However, this is not true at V =  0. In the following we set Δ  =  1 and L =  1632 as an example. As we can 
see from Fig. 4, indeed at V =  0.1, there are no MZMs. However at V =  0, MZMs exist for π/4 <  δ <  3π/4 
and 5π/4 <  δ <  7π/4. These MZMs are doubly degenerate [both E1 and E2 in Eq. (2) are zero under OBC] 

Figure 2. Det(Ak=0)Det(Ak=π/3) as a function of δ and V, for α = 1/3 under PBC. The black solid, red 
dashed, blue dotted and green dash dotted lines are for V =  0, 0.1, 0.2 and 0.3, respectively. The gray dotted 
line denotes Det(Ak=0)Det(Ak=π/3) =  0. Here Δ  =  1 and L =  1632.

Figure 3. The distribution of the zero-mode MFs along the one-dimensional lattice for α = 1/3 under 
OBC. Here Δ  =  1, L =  1632, V =  0.3 and δ =  0.32π, as denoted by the red arrow in Fig. 1(d).



www.nature.com/scientificreports/

6Scientific RepoRts | 5:17049 | DOI: 10.1038/srep17049

and the distribution of the zero-mode MFs is shown in Fig.  5. The existence of these two MZMs can 
be explained as follows. At V =  0, we found that the eigenvalues of Hk in Eq. (6) are doubly degenerate, 
therefore Hk can be divided into two independent subsystems by a unitary transformation as

=









,

( )
†PH P

H
H

0
0 16k

k

k

1

2

here both H1k and H2k are 4 ×  4 matrices while their eigenvalues are exactly the same. The unitary matrix 
P can be written as

Figure 4. The energy spectra for α = 1/4 under OBC. Here Δ  =  1 and L =  1632. (a) V =  0. (b) V =  0.1. 
Only < .E 0 05n  are plotted.

Figure 5. The distribution of the zero-mode MFs along the one-dimensional lattice for α = 1/4 under 
OBC. Here Δ  =  1, L =  1632, V =  0 and δ =  0.253π. (a) The eigenstate corresponding to E1 =  0. (b) The 
eigenstate corresponding to E2 =  0.
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At k =  0, δ( ) = ( ) =Det A Det A cos 2k k1 2  while at k =  π/4, ( ) = ( ) = ∆ −Det A Det A 2 1k k1 2
2 . If 

δ ( ∆ − ) <cos 2 2 1 02 , then both Det(A1k) and Det(A2k) will cross the imaginary axis exactly once as k 
evolves from 0 to π/4, indicating that there exists one MZM in each subsystem and the number of the 
MZMs for the whole system is two. Therefore for α =  1/4, at V =  0, the number of the MZMs are either 
two or zero while at V ≠ 0, there are no MZMs. For general ti ( = ,… , )i 1 4 , at V ≠ 0, Det(Ak) may not be 
real and there may exist one MZM. However at V =  0, the system can still be divided into two subsys-
tems. In this case, if the conditions (∆ + )(∆ + ) − (∆ − )(∆ − ) <t t t t[ ] [ ] 01 3
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MZMs.

Furthermore we found that, for general periodic modulation, if the period q is odd, then the number 
of the MZMs is either zero or one. On the other hand, if q is even, then at V ≠ 0, the number of the 
MZMs is still zero or one. However at V =  0, the system can always be divided into two independent 
subsystems and if the conditions
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are simultaneously satisfied, there will be two MZMs.
In summary, we have studied the number of the MZMs and their stability in the hopping-modulated 

one-dimensional p-wave SC model. We found that the former strongly depends on the period of the 
modulation. If the period q is odd, there can be at most one MZM in the system while for an even q, 
the number of the MZMs can be zero, one and two. The existence of two MZMs can occur only at V =  0, 
since in this case, Ak in Eq.  (7) can always be divided into two independent sub-matrices by a unitary 
transformation as

=
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At certain conditions, there exists one MZM in each subsystem and the number of the MZMs for the 
whole system is two. If A1k can be further separated into two subblocks by another unitary transforma-
tion R (which is k-independent and real, up to a global k-independent phase) as

=
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then after a tedious calculation we can prove that Det(C1k) and Det(C2k) cannot be complex simultane-
ously and they can cross the imaginary axis at most once as k varies from 0 to π/q. Therefore, even if A1k 
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can be further separated into two subblocks C1k and C2k, only one of them may host one MZM, making 
the maximal number of the MZMs in A1k be one. The same argument can be applied to A2k as well. Thus 
for an even modulation period, there can be at most two MZMs. For the specific modulation form we 
considered [ti =  cos(2πiα +  δ) with α =  p/q], only at q =  4n ( = , , ,…)n 1 2 3  can Eqs  (19) and (20) be 
simultaneously satisfied, therefore only in this case can there exist two MZMs. Furthermore, the MZMs 
will vanish as the chemical potential V varies. In the periodically potential-modulated model considered 
in Refs. 21–23, when the time-reversal symmetry is present, there can be at most one MZM and if the 
potential vanishes at certain sites, then the MZM will be very robust and stable for arbitrary strength of 
the modulation. Clearly this is not the case in the periodically hopping-modulated model, therefore the 
topological properties differ drastically between these two models.

At last we would like to emphasize the motivation as well as the physical implications of our study. 
As we know, exploring various topological properties in different models is of both fundamental and 
practical importance. From the fundamental point of view, it may help people to understand the mech-
anism and condition for the existence of the MZMs. As stated in the introduction section, intuitively 
people may speculate that the topological properties are similar between the hopping-modulated and 
potential-modulated Kitaev models. However in fact this is not the case as has been demonstrated in our 
study where both the number and stability of the MZMs differ drastically between these two models and 
these different behaviors have never been reported before. Furthermore we have demonstrated that, for 
multiband systems, special caution has to be taken when calculating the number of the MZMs from the 
 index. That is, when the system can be separated into two subsystems, the number of the MZMs may 
be mistakenly thought to be zero while there are actually two MZMs. On the other hand, from the prac-
tical point of view, our work, together with those previous studies concentrating on the potential mod-
ulation, may help to guide researchers to fabricate various topological phases with different numbers of 
the MZMs and to further manipulate them in order to realize topological quantum computation. We 
expect that our model is most likely to be realized in cold-atom systems and in optical superlattices 
where the hopping can be adjusted. In solid state devices, the direct modulation of hopping may be 
difficult. However we notice, the p-wave Kitaev model corresponds to the transverse spin model as29

∑ ∑σ σ σ σ σ= − + + ,
( )+ +H J J h[ ]
23i

x i
x

i
x

y i
y

i
y

i
i
z

1 1

with = ( + ∆)/J t 2x , = ( − ∆)/J t 2y  and h =  − V/2. Therefore the chemical potential V =  0 can be 
achieved by setting h =  0 (zero Zeeman field). Furthermore, since t =  Jx +  Jy and Δ  =  Jx −  Jy, the modu-
lation of hopping may be possible if Jx +  Jy varies in space while Jx −  Jy is constant. This may be realized 
in atomic chains with a spatially modulated spin arrangement (see refs. 16–20). Therefore the ideas in 
our work are both fundamentally sound and practically applicable.
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