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INTRODUCTION

Aquaculture conditions are often exposed to various stress-
ors. Stressors can be a consequence of elevated rearing 
densities [1], suboptimal water quality, decreased dissolved 
oxygen and elevated carbon dioxide (CO2) levels [2,3], ther-
mal fluctuations [4,5], diet [6], presence of enemies and 

pathogens [7– 11], and transportation, sorting, handling and 
confinement stresses [6,12– 14].

Stressors were reported to reduce hippocampal (dorso-
lateral pallium in teleost) volume [15– 17] and, as a result, 
to impact memory and learning [18– 20]. The amygdala— in 
particular, the basolateral amygdala (dorsomedial pallium in 
teleost)— increases dendritic length and spine density, and as 

Received: 1 February 2021 | Accepted: 15 April 2021

DOI: 10.1111/imm.13345  

R E V I E W

Influence of chronic stress on the mechanism of the cytotoxic 
system in common carp (Cyprinus carpio)

Mazal Shimon- Hophy |   Ramy R. Avtalion

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original 
work is properly cited.
© 2021 The Authors. Immunology published by John Wiley & Sons Ltd.

Abbreviations: 5- HT, 5- hydroxytryptamine; A, adrenaline; ACTH, adrenocorticotropic hormone; ANS, autonomic nervous system; AR, adrenergic 
receptor; CD, cluster of differentiation; CNS, central nervous system; CRF, corticotropin- releasing factor; CRH, corticotropin- releasing hormone; DRN, 
dorsal raphe nucleus; FoxP3, forkhead box P3; GABA, gamma- aminobutyric acid; GR, glucocorticoid receptor; HPA, hypothalamus- pituitary- adrenal gland; 
HPI, hypothalamus- pituitary- interrenal cells; IFN, interferon; IgM, immunoglobulin M; IL, interleukin; MAIT, mucosal- associated invariant T cell; MCH, 
melanin- concentrating hormone; MR, mineralocorticoid receptor; NA, noradrenaline; NCC, nonspecific cytotoxic cell; NCCRP1, nonspecific cytotoxic cell 
receptor protein 1; TGF, transforming growth factor; Th1, T helper 1 cell; TNF, tumour necrosis factor.

Laboratory of Comparative Immunology 
and Genetics, The Mina and Everard 
Goodman Faculty of Life Sciences, Bar- 
Ilan University, Ramat- Gan, Israel

Correspondence
Mazal Shimon- Hophy, Laboratory of 
Comparative Immunology and Genetics, 
The Mina and Everard Goodman Faculty 
of Life Sciences, Bar- Ilan University, 
Ramat- Gan, Israel.
Email: hophymazal@gmail.com

Senior author: Mazal Shimon- Hophy

Funding information
The research was funded by our money 
and with the help of friends as mentioned 
in the acknowledgement.

Abstract
Aquaculture conditions expose fish to internal and environmental stressors that increase 
their susceptibility to morbidity and mortality. The brain accumulates stress signals and 
processes them according to the intensity, frequency duration and type of stress, recruit-
ing several brain functions to activate the autonomic or limbic system. Triggering the 
autonomic system causes the rapid release of catecholamines, such as adrenaline and 
noradrenaline, into circulation from chromaffin cells in the head kidney. Catecholamines 
trigger blood cells to release proinflammatory and regulatory cytokines to cope with acute 
stress. Activation of the limbic axis stimulates the dorsolateral and dorsomedial pallium 
to process emotions, memory, behaviour and the activation of preoptic nucleus- pituitary 
gland- interrenal cells in the head kidney, releasing glucocorticoids, such as cortisol to the 
bloodstream. Glucocorticoids cause downregulation of various immune system functions 
depending on the duration, intensity and type of chronic stress. As stress persists, most 
immune functions, with the exception of cytotoxic functions, overcome these effects and 
return to homeostasis. The deterioration of cytotoxic functions during chronic stress ap-
pears to be responsible for increased morbidity and mortality.
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a result, there are changes in emotions [21,22]. Furthermore, 
stress exaggerates adverse effects, such as shrinking of the 
thymus and spleen or other lymphatic organs, changes in 
the number and distribution of leucocytes, or appearance 
of bleeding or ulcers that increase susceptibility to morbid-
ity and mortality [23]. Stressors have negative impacts on 
different physiological responses associated with growth, 
nutrition, reproduction and immune responses [3,24– 29]. 
Understanding and monitoring the biological mechanisms 
underlying stress responses in fish may alleviate the harmful 
effects of stress through selective breeding and changes in 
management practices, resulting in improved animal welfare 
and production efficiency.

This review will summarize the processes that mainly reg-
ulate chronic stress and influence immune system functions. 
These processes severely impair the cytotoxic functions in 
the immune system, and as result, they have implications for 
morbidity, mortality and efficiency of production in aqua-
culture. The evaluation of stress's influence on the immune 
system will be based primarily on previous studies conducted 
in our laboratory.

BRAIN REGULATION OF STRESS

The stress mechanism is still far from explaining the detailed 
molecular processes and the exact brain structures that par-
ticipate in stress regulation, but it is known that, unlike mam-
mals, the fish's telencephalon lacks a cortex but possesses 
telencephalon cortical- like functions, as reported in several 
fish species [30]. The fish's telencephalon contains several 
distinct neuronal populations that have been characterized as 
functional homologues to mammalian forebrain areas. For 
example, the dorsomedial and dorsolateral pallium have been 
characterized as functional homologues to the mammalian 
basolateral amygdala and hippocampus, respectively, and are 
implicated in stimulus salience, memory and learning [31– 
33]. Furthermore, the ventral part of the telencephalon was 
reported to be functionally homologous to the lateral septum 
[31,33], which is very important in the regulation of emo-
tional reactivity and goal- oriented behaviour[34– 36].

Mammalian studies have found that the brain accumulates 
external and internal signals of stress, processes them and 
recruits several neuronal circuits to maintain physiological 
integrity [37]. The intensity, frequency, duration and type 
of stress will evoke autonomic stress response or limbic cir-
cuits, such as the prefrontal cortex, amygdala, hippocampus, 
paraventricular nucleus of the hypothalamus and the nucleus 
accumbens [38,39]. The amygdala (dorsomedial pallium 
in teleost) functions like a command centre that processes 
emotions and sends stress signals to the hypothalamus (pre-
optic nucleus in teleost), while the hypothalamus works as 
a command centre that communicates through other parts 

of the body, such as the autonomic nervous system and the 
hypothalamus- pituitary- adrenal/head kidney axis to control 
functions, such as breathing, blood pressure, heart rate and 
the immune system [40] (Figure 1). Excessive or inadequate 
basal activity and responsiveness of this system might impair 

F I G U R E  1  Putative regulation of stress in common carp. Acute 
stress usually activates the sympathetic neurons in the autonomic 
nervous system (ANS), which, in turn, activates the chromaffin cells 
of the head kidney to release catecholamines, such as adrenaline (A) 
and noradrenaline (NA). Catecholamines bind to their receptors in the 
blood cells and promote the production of specific cytokines. Chronic 
stress activates the axis of hypothalamus- pituitary- interrenal cells 
of the head kidney (HPI) and promotes the release of corticotropin- 
releasing hormone (CRH) from the hypothalamus. This activates 
the pituitary gland to release adrenocorticotropic hormone (ACTH) 
into the bloodstream, which then allows the secretion of cortisol 
from the interrenal cells. Cortisol binds to its receptors in blood 
cells and, as a result, various processes take place according to the 
intensity and duration of stress. Similarly, cortisol in the feedback 
process regulates hypothalamic, hippocampal and locus coeruleus 
(LC) activity. Stressor stimuli from various brain areas, such as 
prefrontal cortex- like formation, LC and dorsal raphe nucleus (DRN), 
stimulate the amygdala to elicit the proper activation of the HPI axis 
and different body functions. The amygdala facilitates the release of 
NA, corticotropin- releasing factor (CRF) and 5- hydroxytryptamine 
(5- HT) from the hypothalamus. The amygdala likely attenuates the 
negative feedback exerted by glucocorticoids by reducing hippocampal 
glucocorticoid receptors (GR), thus facilitating HPI axis activation
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development, growth and body composition, and lead to a 
host of behavioural and somatic pathological conditions [41].

AUTONOMIC NERVOUS SYSTEM 
(ANS) REGULATION OF STRESS

In mammals and teleost fish, immune organs are innervated 
by sympathetic neurons. In fish, sympathetic innervation of 
lymphoid tissue has been found in the spleen of coho salmon 
(Oncorhynchus kisutch), where nerve fibres are associ-
ated with vasculature and melanomacrophage centres [42]. 
Moreover, immune cells express receptors for stress hor-
mones and neurotransmitters, including adrenergic receptors 
(AR). Mammalian innate immune cells express both α-  and 
β- ARs subtypes, while exclusive expression of ARs of the β2 
subtype has been found on T and B lymphocytes [43].

In mammals, lymphoid organs are innervated by sym-
pathetic and parasympathetic nerve fibres [44,45] whose 
activation stimulates or inhibits the immune response. 
Furthermore, leucocytes express both cholinergic and adren-
ergic receptors [46]. However, little is known about the fish 
cholinergic system versus the fish adrenergic system, which is 
predominant in the stress response (Figure 1). Catecholamine 
receptors are present on the immune cells of teleost fish [47], 
and many lymphoid tissues receive sympathetic innerva-
tion. For example, in coho or silver salmon (Onchorhynchus 
kisutch), the spleen is highly innervated by adrenergic fibres 
in the vasculature and parenchyma [42]. Several radio- ligand 
binding experiments have demonstrated the presence of β- 
ARs (b- AR) in the anterior kidney, spleen and peritoneal 
leucocytes of goldfish (Carassius auratus) [48], and in the 
head kidney and spleen leucocytes of the American catfish 
(Ictalurus punctatus) [49]. The influence of sympathetic in-
nervations on the immune system of teleost fish is exerted 
through the binding of adrenaline and noradrenaline to their 
functional adrenoceptors, α- AR (a- AR) and b- AR, which are 
present in immune system cells [47]. Catecholamines inhibit 
the innate and acquired immune response in various species 
of teleosts through b- AR activation. However, a- AR stimu-
lation leads to the production of antibodies [47,50– 52] The 
adrenoceptor b2a- AR mRNA is constitutively expressed in 
the brain, especially in the preoptic nucleus (homologous to 
the mammalian hypothalamus) and immune organs. During 
the in vivo inflammatory response, b2a- AR expression is up-
regulated in the peritoneal leucocytes. Additionally, adren-
aline inhibits the expression of proinflammatory cytokines, 
chemokines and their receptors in fish phagocytes cultured 
in vitro [53]. Adrenaline may influence the inflammatory 
response via direct regulation of leucocyte migration or 
apoptosis during zymosan- induced peritoneal inflammation 
in the common carp [54]. Similar to the ANS responses in 
mammals [55], these responses in fish can be influenced by 

the immune system through cytokines produced by glial cells 
(e.g. astrocytes) in the central nervous system (CNS), which 
modulates neuroendocrine responses. The ANS response can 
also be altered by peripheral signals that gain access to the 
CNS through circumventricular organs, which are structures 
without blood- brain barriers [56]. Nevertheless, it was re-
cently confirmed that adrenaline behaves in different ways 
in different teleost species. While adrenaline did not modu-
late the expression of immune- related genes in rainbow trout 
(Oncorhynchus mykiss) head kidney primary cell culture, 
adrenaline enhanced the expression of interleukin 1β (IL- 1b) 
and transforming growth factor- β1 (TGF- b1) stimulated by 
inactivated V. anguillarum in sea bream (Sparus aurata), and 
the effect was diminished by propranolol [57]. Conversely, 
catecholamine secretion from teleost chromaffin cells in the 
head kidney is regulated by a host of cholinergic and non- 
cholinergic pathways that ensure sufficient redundancy and 
flexibility in the secretion process to permit synchronized re-
sponses to a myriad of stressors [58].

HYPOTHALAMUS- PITUITARY- 
INTERRENAL (HPI)  AXIS 
REGULATION OF STRESS

In mammals, the hypothalamus- pituitary- adrenal (HPA) axis 
is modulated by extra- hypothalamic limbic structures, par-
ticularly the hippocampus and the amygdala [59,60]. While 
hippocampal neurons exert an inhibitory effect on the acti-
vation of the axis, amygdala activity exerts a significant fa-
cilitating effect [59]. The amygdala has two direct efferent 
connections and one indirect efferent connection with the 
hypothalamus: (1) the stria terminalis directly connects the 
amygdala with the preoptic area in the hypothalamus; (2) the 
ventral pathway directly connects the central amygdala and 
basolateral amygdala with the hypothalamus [61]. An indi-
rect pathway consists of projections from the central amyg-
dala to the bed nucleus of the stria terminalis, the efferents 
of which retro- project to corticotropin- releasing factor (CRF) 
cells in the paraventricular nucleus of the hypothalamus [62]. 
In teleosts, the mechanism of stress regulation in the HPI axis 
is still obscure; however, when stress signals are perceived, 
the hypothalamic region of the nucleus preopticus responds 
by releasing corticotropin- releasing hormone (CRH) into the 
pituitary. This signal is received by CRH receptor subtype 1 
(CRH- R1) on pituitary corticotropes from the pars distalis. 
The binding of CRH with its receptor stimulates adrenocor-
ticotropic hormone (ACTH) release into circulation [63,64]. 
ACTH stimulates the production and release of the main glu-
cocorticoid cortisol from the head kidney's interrenal cells 
[65] (Figure 1).

Cortisol exerts its effect on target cells by binding to the 
cytosolic glucocorticoid receptor (GR) [66]. The cortisol- GR 
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complex translocates into the nucleus, where it binds to 
responsive glucocorticoid elements and modifies gene 
expression [67]. As in mammals, both the GR and the miner-
alocorticoid receptor (MR) can bind cortisol [68]. In contrast 
to mammals, fish have duplicate GR genes (GR1 and GR2) 
that are translated into functional proteins [67]. GR1 also 
exists in two variants: GR1a and GR1b [69,70]. Thus, there 
are four receptors capable of binding cortisol in fish: GR1a, 
GR1b, GR2 and MR. However, their ability to induce down-
stream gene activation depends on the cortisol concentration 
[71]. The CRF signal is mediated by at least two receptors 
(CRFR1 and CRFR2). CRFR1 has been reported to mediate 
HPI axis activation, whereas CRFR2 contributes to the ex-
pression of several behavioural and physiological reactions 
in response to stress [65,72]. Moreover, similar to the process 
with mammals, 5- hydroxytryptamine (5- HT) in teleosts in-
fluences hypothalamic CRF release, where the 5- HT recep-
tor type 1A plays a central role in the regulation of the HPI 
axis [73– 76]. Additionally, the HPI axis is under feedback 
control by cortisol through the MR and GR in the hypothal-
amus and pituitary [77– 79]. Studies suggest the presence of 
interactions between HPI and limbic functions in the teleost 
telencephalon [30,80]. Moreover, associations found between 
telencephalic 5- HT and HPI axis activities [30,74,76,81– 83] 
support similar involvement of this section of the brain in 
HPI axis regulation, as observed in mammals [84].

Glucocorticoids regulate multiple aspects of immune 
defences in mammals and influence the secretion of proin-
flammatory and anti- inflammatory cytokines [85]. Similarly, 
cortisol receptors have been identified and described in fish 
immune cells, and cortisol affects the immune response in 
common carp (Cyprinus carpio) [70,71], rainbow trout 
(Oncorhynchus kisutch) and gilthead sea bream (Sparus 
aurata) [86]. Cortisol influences the secretion of cytokines 
from leucocytes, and these cytokines regulate the HPI axis 
activity in response [87]. Additionally, cortisol inhibits 
proliferation and induces apoptosis in lymphocytes of the 
blood, head kidney, spleen, and thymus [88]. This process 
is dependent on the GR and RU486 (mifepristone), a spe-
cific GR blocker, preventing these cortisol processes [89]. In 
mammals, it has been reported that chronic or acute admin-
istration of dexamethasone, a potent GR agonist, can cause a 
significant neurotransmission imbalance between glutamate 
and gamma- aminobutyric acid (GABA) via upregulation of 
GABAergic neurons and downregulation of glutamatergic 
neurons in the amygdala, and, consequently, cortisol regulates 
stress- induced emotions [90]. The main function of ACTH in 
fish is the regulation of cortisol production in the head kid-
ney's interrenal cells [65]. In rainbow trout (Oncorhynchus 
mykiss), mifepristone use reduces stress- induced cortisol se-
cretion by reducing hypothalamic CRH mRNA expression 
[91]. The corticotropic action of CRH can be avoided through 
the administration of the non- selective antagonist of the 

CRH receptor [92]. An additional hypothalamic factor is the 
melanin- concentrating hormone (MCH), a strong inhibitor 
of CRH- stimulated ACTH secretion [93,94]. Rainbow trout 
(Oncorhynchus mykiss) that acclimated to abundant light had 
higher MCH and ACTH levels and lower cortisol levels in 
plasma, unlike fish acclimated to a dark environment [95,96]. 
MCH is a peptide that mediates colour changes in teleost fish 
(an antagonist of the alpha- melanocyte- stimulating hormone 
a- MSH) [97], and its plasma levels are modified under stress 
conditions. However, hypothalamic MCH regulates food 
intake and energy balance in mammals [98] and goldfish 
(Carassius auratus) [99]. Nonetheless, the effect of MCH is 
significantly lower than the effect of CRH on food intake and 
energy balance in fish under stress conditions.

INFLUENCE OF STRESS ON THE 
IMMUNE SYSTEM

Studying the effect of stress on the immune system is chal-
lenging due to the variable responses in different individual 
carps. Therefore, following up changes in cytokines and leu-
cocytes levels in peripheral blood during stress treatments 
was preferred over sampling their levels in the spleen, kid-
ney, head kidney and liver. Monitoring the blood enables 
changes in each carp to be ascertained without killing the 
specimen [100]. A systematic study revealed which function 
of the carp immune system was most affected by hypoxic 
stress and how the duration of stress influences the expres-
sion of these functions. Acute stress enhances the fast path-
way that activates the sympathetic nervous system to release 
catecholamines, such as adrenaline and noradrenaline, from 
chromaffin cells in the head kidney, and the released catecho-
lamines bind to their receptors in leucocytes [101,102]. As a 
result, the proinflammatory function (IL- 1b, IL- 6 and tumour 
necrotic factor α (TNFa)) is upregulated and, at the same 
time, the activity of regulatory function (TGFb and IL- 10) is 
upregulated, probably in order to return proinflammatory ac-
tivity to homeostasis [100,103]. Chronic stress activates the 
hypothalamus- pituitary- interrenal cell axis and, as a result, 
interrenal cells in the head kidney mainly release cortisol 
[65]. The cortisol binds to its receptors in leucocytes and pro-
motes different processes in the leucocytes [65,67].

The results of monitoring the influence of chronic hy-
poxic stress on immune activity in the common carp pe-
ripheral blood leucocytes are shown in Table 1, and these 
results reveal a downregulation of regulatory (IL- 10, TGFb, 
forkhead box P3 (FoxP3)), proinflammatory (IL- 1β, IL- 6), 
and inflammatory (IL- 17) functions until the second week 
of chronic stress. However, in the third week, their change 
in levels overcame and returned to homeostasis [100]. 
TNFa levels did not change during hypoxic stress treat-
ments (Table 1), but TNFa behaved slightly differently in 
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chronic cortisol implants in rainbow trout (Oncorhynchus 
mykiss) for five days [104]. The chronic cortisol treatment 
showed results similar to those in acute hypoxic stress 
(Table 1). In contrast, the main impaired functions, even 
after 22 days of chronic stress [100,105], were as follows: 
(1) cytotoxic mediators, such as interferon (IFN)- γ2b, Fas 
ligand (FasL), NK lysin and granzyme; (2) IL- 12 and Tbet, 
which are responsible for Th1 cell proliferation and mat-
uration, which mediates host defence against intracellular 
pathogens [106– 108]; and (3) IL- 8, which attracts leuco-
cytes to the infection site [109]. IL- 8, which was downreg-
ulated during the 22- day chronic stress period, can explain 
the macrophage/neutrophil/leucocyte mobilization decline 
in different body compartments, as shown by Wojtaszek 
and colleagues [110].

In contrast to the sharp decrease in the level of cytotoxic 
cytokines following chronic stress, nonspecific cytotoxic re-
ceptor protein 1 (NCCRP1) levels increased sharply. It has 
been confirmed that the NCCRP1, which was previously re-
lated to a marker of nonspecific cytotoxic cells (NCC) [111] 
and as a variant of NK cells in teleosts, is not a marker of any 
cell type, but is abundant in γδT, mucosal- associated invari-
ant T (MAIT), T carp lymphocytes and even in thrombocytes 

[112]. Further study will clarify what role it plays in stress 
processes.

Chronic administration of cortisol (simulating chronic 
stress) decreased the relative expression of IFNa- 1, heat 
shock proteins 70 (HSP70) and 90 (HSP90), serum amyloid 
A protein and glucocorticoid receptors in Salmo salar [113]. 
Macrophage cell lines revealed the inhibition of chemo-
taxis, phagocytosis, and respiratory burst activity in goldfish 
(Carassius auratus) [114]. These chronic administrations of 
cortisol strengthened the downregulation of cytotoxic func-
tions by chronic stress (Table 1).

Innate function (immunoglobulin M (IgM) and comple-
ment C3s mRNA) (Table 1) was not significantly affected 
during acute or chronic hypoxic stress treatments [100], 
chronic confinement stress events of juvenile Eurasian perch 
(Perca fluviatilis) [115] or high stocking density of Eleginops 
maclovinus [29]. These results contradicted findings regard-
ing husbandry, confinement and crowding- induced stresses 
[4,116– 118]. Presumably, these differences among the re-
sults are attributable to the presence of modulators that reg-
ulate IgM humoral activity [119]. Similarly, C3s mRNA 
showed no significant changes in either acute or chronic 
stresses, although its levels fluctuated throughout the chronic 

T A B L E  1  Changes in the levels of mRNA components that represent different functions in the immune system of common carp following 
stress

Cytokines Con AS CSW1 CSW2 CSW3

IL1b 1·00 ± 0·12 5·15 ± 0·67* 1·42 ± 0·17 0·06 ± 0·02* 2·69 ± 0·60*

IL6 1·00 ± 0·18 1·47 ± 0·28* 1·43 ± 0·79 0·16 ± 0·11 1·16 ± 0·20

TNFa 1·00 ± 0·14 3·73 ± 0·27* 1·29 ± 0·17 0·61 ± 0·06 0·79 ± 0·10

IFNg2b 1·00 ± 0·12 1·4 ± 0·19 0·00 ± 0·00* 0·00 ± 0·00* 0·00 ± 0·00*

C3s 1·00 ± 0·8 0·79 ± 0·21 18·44 ± 9·11 4·43 ± 1·91 10·66 ± 5·36

IgM 1·00 ± 0·12 1·35 ± 0·16 1·67 ± 0·22 1·51 ± 0·10 1·99 ± 0·30

IL10 1·00 ± 0·15 3·01 ± 0·34* 0·35 ± 0·07* 0·0006 ± 0·0001* 0·51 ± 0·07

FoxP3 1·00 ± 0·14 2·51 ± 0·73 0·27 ± 0·04* 0·0021 ± 0·0004* 0·80 ± 0·14

TGFb 1·00 ± 0·14 1·98 ± 0·21* 0·99 ± 0·13 0·0027 ± 0·0004* 3·63 ± 0·48

IL8 1·00 ± 0·1 3 0·81 ± 0·08 0·18 ± 0·03* 0·0016 ± 0·0003* 0·30 ± 0·07*

CD95 1·00 ± 0·28 1·14 ± 0·17 1·78 ± 0·4 3·38 ± 0·87* 2·34 ± 0·45*

FasL 1·00 ± 0·17 1·00 ± 0·19 0·83 ± 0·18 0·47 ± 0·1* 0·23 ± 0·08*

granzyme 1·00 ± 0·39 0·45 ± 0·11 0·81 ± 0·28 0·50 ± 0·14 0·26 ± 0·06*

NKlyzin 1·00 ± 0·61 0·26 ± 0·07* 0·35 ± 0·12 0·25 ± 0·06* 0·30 ± 0·07*

NILT1 1·00 ± 0·81 1·77 ± 0·57 1·50 ± 0·50 1·39 ± 0·63 0·56 ± 0·26

NILT2 1·00 ± 0·31 1·56 ± 0·71* 1·32 ± 0·59 1·78 ± 0·60 0·77 ± 0·23

IL12b 1·00 ± 0·18 0·06 ± 0·12* 1·04 ± 0·99* 0·00003 ± 0·00006*

Tbet 1·00 ± 0·41 0·90 ± 0·27 0·52 ± 0·11 0·72 ± 0·18 0·29 ± 0·13*

STAT4 1·00 ± 0·63 3·16 ± 0·45* 1·03 ± 0·31 1·51 ± 0·55* 0·75 ± 0·28

CXCR3 1·00 ± 0·38 0·83 ± 0·21* 0·84 ± 0·34 0·80 ± 0·23 0·44 ± 0·32

Note:: The above results are aggregated from references.[100,105].
Abbreviations: AS, acute stress; Con, control; CSW1, chronic stress after 8 days; CSW2, chronic stress after 15 days; CSW3, chronic stress after 22 days.
*P ≤ 0·05.
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stress period (Table 1). These results differ from haemolytic 
findings [9,120]; however, they are consistent with reported 
hypoxia and cortisol- induced stress results [121,122].

Stress- influenced functions revealed the deterioration of 
cytotoxic activity and cytokines regulating Th1 prolifera-
tion (Table 1), but what about the other leucocytes? Studies 
of leucocyte levels by fluorescence- activated cell sorting 
(FACS) and by mRNA levels of cell markers revealed a de-
crease in the levels of like- B, like- plasma, macrophages and 
CD4 (Th1) cells (Table 2 and Figure 2) [100]. These results 
are consistent with others’ findings of a decrease in leuco-
cyte numbers in Oncorhynchus mykiss [123], the suppres-
sion of phagocytic and lymphocyte proliferative activities in 
Platichthys flesus and Solea senegalensis [124], and the apop-
tosis of B cells in Cyprinus carpio [125]. However, we cannot 
be certain if stress also caused MAIT cell deterioration [112], 

because of contrasting microscopic results; therefore, there is 
a need to further study these cells. In vitro studies confirm the 
above- mentioned results, revealing that cortisol treatments 
had the following effects: (1) decreased the phagocytosis 
of head kidney cells from tilapia (Oreochromis niloticus x 
O. aureus), common carp (Cyprinus carpio), and silver sea 
bream (Sparus sarba) [126]; (2) inhibited the pro- oxidative 
activity of leucocytes from the head kidneys of golden sea 
bream (Sparus aurata) [127]; (3) inhibited the prolifera-
tion of monocyte/macrophage cell lines from rainbow trout 
(Oncorhynchus mykiss) [128]; and (4) induced programmed 
cell death (apoptosis) of macrophages from silver sea bream 
(Sparus sarba) and Atlantic salmon (Salmo salar) [129].

Cluster of differentiation 8 (CD8), NK and γδT cells 
(Table 2 and Figure 2) did not show any decrease corre-
sponding to that of cytotoxic cytokines, although they are 
known for the high production of IFNγ, FasL, granzyme and 
NK lysin [130– 133]. Figure 2 has not yet been published, 
but is shown here to emphasize that the changes in cytokines 
shown in Table 1 are not the result of cell destruction but 
rather of their metabolism impairment. Moreover, γδT cells 
are the most numerous cells in carp leucocytes (Figure 2) and 
are thought to be the greatest producers of IFNγ [134,135]. 
However, their cell amounts do not decrease following 
chronic stress or the decrease in cytotoxic cytokine levels. 
This indicates that chronic stress suppresses cytotoxic cyto-
kine metabolism and the proliferation of Th1, macrophages/
monocytes and plasma cells. Consequently, this suppression 
may explain the increased susceptibility to diseases resulting 
from chronic stress [3,116,120,136].

The decrease or increase in metabolism was shown in the 
volume of the cells (Figure 3). During acute stress responses, 
when the metabolism of proinflammatory and regulatory cy-
tokines was upregulated, cell volume increased up to three 
times (according to measurements of the cell area), while 
during chronic stress responses, the cell volume of γδT cells 
decreased up to three times following three- week periods of 
chronic stress. Figure 3 reinforces the perception that chronic 
stress mainly impairs the metabolism of cytotoxic cytokines.

T A B L E  2  Changes in the cell types following stress treatments in peripheral blood leucocytes of common carp

Treatment Cell type Con AS CSW1 CSW2 CSW3

mRNA levels CD4 1·00 ± 0·41 0·92 ± 0·37 0·37 ± 0·12* 0·38 ± 0·11* 0·14 ± 0·06*

CD8a 1·00 ± 0·44 1·16 ± 0·56 0·85 ± 0·16 1·18 ± 0·48 0·38 ± 0·14

T (TCRε) 1·00 ± 0·23 0·52 ± 0·06* 0·38 ± 0·06* 0·49 ± 0·09* 0·41 ± 0·06*

γδT(TCRγδ) 1·00 ± 0·13 1·29 ± 0·35 1·70 ± 0·40* 1·29 ± 0·23 0·67 ± 0·22

Cell per cent Monocytes/macrophages 1·05 ± 0·09 1·01 ± 0·32 0·30 ± 0·06* 0·26 ± 0·09* 0·21 ± 0·05*

B- like cells 8·50 ± 1·69 4·28 ± 0·95* 3·86 ± 1·40 1·34 ± 0·37* 1·38 ± 0·17*

Plasma- like cells 4·86 ± 2·52 3·76 ± 0·76 2·54 ± 0·70 1·64 ± 0·42* 0·93 ± 0·25*

Abbreviations: AS, acute stress; Con, control; CSW1, chronic stress during a 1- week period; CSW2, chronic stress during a 2- week period; CSW3, chronic stress 
during a 3- week period; results aggregated from references [100,105].
*P ≤ 0·05.

F I G U R E  2  The distribution of leucocyte types in common 
carp peripheral blood following stress treatments. Cell markers 
were produced from mixed 1000 ng cDNA of eight fish by PCR 
amplification and loaded on 1·3% agarose gel with TBE (Tris/Borate/
EDTA) running solution. (1) T cell (CD3- TCRε), (2) γδT cells 
(TCRγδ), (3) CD4, (4) CD8, (5) NK cells (CD56), (6) macrophages/
monocytes (CD209) and (7) NCCRP1

CON

CSW2

CSW3

1 2 3 4 5 6 7

CSW1
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SUMMARY

The continued sustainability of the aquaculture industry de-
pends on its profitability. Stress is considered to be a major 
factor contributing to poor health in cultured fish. Studying 
the influence of stress on the immune system enables us to 
recommend tools to manage fish sensitivity, morbidity, and 
mortality in fish ponds.

The mechanisms of processes regulating the immune sys-
tem during stress have not been fully elucidated in mammals 
and are even more unclear in fish. Little is known about the 
specific aetiological pathways that lead from a triggering 
stressor to the development of a specific pathological pheno-
type, or the interactions between neurotransmitters, such as 
NA, 5HT, GABA and glutamate.

Despite the clear involvement of brain structures, such as 
the amygdala, hippocampus and HPI axis, it remains unclear 
how these structures cause various pathological disorders, 
as well as how they cause different responders to respond 
differently to the same stress stimuli. Previous studies on 
different stress responses have reported similar changes with 
respect to neurotransmitter activity, neuroplastic changes and 
alterations in amygdalar and HPI function, suggesting that 
these properties are common and that phenotypic specificity 
is rooted in upstream mechanisms.

Recent studies indicate that the brain accumulates and 
processes stress signals and activates several brain structures 
to maintain physiological integrity. The intensity, duration 
and type of stress evoke autonomic system or limbic circuits. 
The autonomic system immediately responds to acute stress 
and stimulates chromaffin cells in the head kidney to re-
lease proinflammatory and regulatory cytokines. The limbic 
structures tend to respond slowly to chronic stress; the limbic 
homologs of the amygdala and hippocampus accumulate sig-
nals from different brain areas to process emotions and the 

memory of stress, and activate the HPI axis and other body 
functions, such as blood pressure, heart rate and energy accu-
mulation. The HPI axis stimulates interrenal cells in the head 
kidney to release glucocorticoid hormones, such as cortisol, 
to the bloodstream. Glucocorticoids deteriorate cytotoxic ac-
tivity, resulting in the downregulation of cytokines involved 
in cytotoxic activity and the downregulation of cell prolifer-
ation as well as cells involved in phagocytosis, antibody pro-
duction and Th1. The downregulation of cytotoxic activity is 
critical for disease resistance and unwanted cell elimination. 
Therefore, further study of the mechanistic processes of stress 
regulation is required to reduce fish morbidity and mortality.
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