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Background. Growing evidence shows that dysregulation of miRNAs plays a significant role in papillary thyroid cancer (PTC)
tumorigenesis and development.1e abnormal expression of miR-384 has been acknowledged in the proliferation ormetastasis of
some cancers. However, the function and the underlying mechanism of miR-384 in PTC progression remain largely unknown.
Methods. Real-time PCR was conducted to detect miR-384 expression in 58 cases of PTC and their adjacent noncancerous tissues.
MTT, soft agar assay Transwell assay, and wound-healing assay were carried out to explore the biological function of miR-384 in
PTC cell lines of BCPAP and K1. Bioinformatics analysis, dual-luciferase reporter assay, western blot, and functional com-
plementation analysis were conducted to explore the target gene of miR-384. Moreover, Spearman’s correlation analysis was
conducted to reveal the correlation between miR-384 and PRKACBmRNA in PTC. Results. 1e expression of miR-384 decreased
obviously in PTC, especially in the tumors with lymph node metastasis or larger tumor size. 1e ectopic upregulation of miR-384
significantly suppressed PTC progression, and the inhibition of miR-384 had the opposite effects. Moreover, PRKACB gene was
confirmed as the target of miR-384. Conclusion. 1e study suggests that miR-384 serves as a tumor suppressor in PTC progression
by directly targeting the 3′-UTR of PRKACB gene.

1. Introduction

Papillary thyroid cancer (PTC) is the most common subtype
of thyroid malignancy with approximately 77% diagnosed in
women [1]. In addition, the incidence of PTC has been
increasing in the past few years [2]. And many factors have
been recognized to be involved in the progression of PTC,
such as the thyroid sarcoidosis, epigenetic changes, envi-
ronmental exposure, and radiation exposure [3, 4]. PTC
patients with certain clinicopathological features have been
associated with a poorer prognosis, such as the elder age,
larger tumor size, lymph node, or distant metastasis [5–9].
However, the molecular mechanisms remain poorly un-
derstood. 1erefore, in-depth study of the molecular
mechanism involved in the initiation and development of
PTC is very important.

One of the molecules of interest in terms of elucidating
the mechanism of cancer is microRNAs (miRNAs) family.
miRNAs are small noncoding RNAs which are highly
conserved and degrade the target mRNAs by binding to their
3′-untranslated region (3′-UTR) [10, 11]. Research on
miRNAs for the diagnostic and therapeutic probes has been
a hot topic [12–14]. Recent studies implied that miRNAs
might serve as new biomarkers for PTC. For example,
miRNA-299-5p regulates estrogen receptor alpha and in-
hibits migration and invasion of papillary thyroid cancer
cells [15]. Downregulation of miR-338-3p inhibits PTC
progression by repressing AKT3 expression [16].

It has been previously demonstrated that miR-384 (miR-
384-3p) exerted the tumor-suppressing role in breast cancer,
colorectal cancer, and pancreatic cancer by affecting Wnt,
Ras, or AKT pathway [17–20]. However, the specific
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function and the mechanism of miR-384 in PTC progression
require further investigation. 1e current study aims at
delineating the biological function and mechanism of miR-
384 in PTC progression and trying to explore novel potential
therapeutic target for PTC.

2. Materials and Methods

2.1. Clinical Samples and Cell Culture. A total of 58 pairs of
PTC samples and their paired adjacent noncancerous were
obtained from the Pathology Department, 1ird Affiliated
Hospital of Xinxiang Medical University (Xinxiang, China),
during the period of January 2017 to June 2018. All the
samples were taken directly from intraoperative procedures
and then frozen in liquid nitrogen for later use. All the cases
had no chemotherapy, radiotherapy, and immunotherapy
history. 1e samples had been diagnosed and divided into
PTC and adjacent noncancerous by two independent pa-
thologists who were blinded to the clinical results on the
basis of hematoxylin-eosin (HE) staining. 1e medical
records including the age, gender, tumor size, and lymph
node metastasis of the patients were collected.1e study had
been approved by the Ethics Committee of XinxiangMedical
University (Xinxiang, China).

Human PTC cell lines of BCPAP and K1 purchased from
American Type Culture Collection (ATCC) were cultured in
RPMI-1640 (Invitrogen) supplemented with 10% fetal bo-
vine serum (FBS, Gibco) and 1% penicillin/streptomycin
(Invitrogen). 1e cells were cultured in a humidified in-
cubator with 5% CO2 at 37°C.

2.2. RNA Extraction and Quantitative Real-Time PCR.
Total RNA was isolated from the fresh PTC, adjacent
noncancerous tissues, and the cultured PTC cells with
TRIzol (Invitrogen, USA) according to the manufacturer’s
instruction. 2 μg of total RNA was reverse-transcribed to
cDNA, and the quantitative detection of miR-384 was
performed via the All-in-One TM miRNA real-time PCR
Detection Kit (GeneCopoeia, China) by the Applied Bio-
systems 7500 Sequence Detection system as previously de-
scribed [16]. U6 or GAPDHwas used as internal control.1e
data were calculated with the 2–ΔΔCT method. 1e primers
were supplied in Supplemental Tables.

2.3. Western Blot. 1e concentration of protein lysates
extracted from the PTC cells was detected by BCA Protein
Assay Reagent (1ermo Scientific, USA). To separate the
protein, the protein lysates were subject to 10% sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE). 1en the separated protein was transferred onto
polyvinylidene difluoride (PVDF, Merck Millipore) mem-
branes. Next, the 5% nonfat dry milk was used to block the
PVDF membranes at room temperature. 1e PVDF mem-
branes were cultured with the primary antibodies of anti-
PRKACB (rabbit, 1 : 300, Proteintech, USA), anti-ERK1/2
(CST, USA), anti-CREB (rabbit, 1 : 500, CST, USA), anti-p-
ERK1/2 (1r202/Tyr204) (CST, USA) and anti-p-CREB
(Ser133) (rabbit, 1 : 500, CST, USA), anti-a-tubulin (mouse, 1 :

2000, Proteintech, USA), and the appropriate HRP-conju-
gated secondary antibodies (1 : 5000, CST, USA). At last, the
specific protein bands on the membranes were measured by
chemiluminescence imaging analysis system (Tanon, China).

2.4. MTT Assay, Soft Agar Assay, Transwell Migration Assay,
Wound-Healing Assay, and Immunohistochemistry. 1e
details of MTT assay, soft agar assay, Transwell migration
assay, wound-healing assay, and immunohistochemistry
(IHC) are shown in the supplementary materials and
methods (Supplementary Materials and Methods).

2.5. Plasmid Construction, Transfection, and Dual-Luciferase
Reporter Assays. 1e full length of the 3′-UTR PRKACB
gene is 3209 bp, and the binding site of miR-384 was located
at 4421–4428 bp.1en, we PCR-amplified the 3′-UTR region
of 4321–4490 bp inverted it into the psiCHECK-2 luciferase
reporter plasmid (Promega, China) at the site of XhoI/NotI.
Cells were seeded on 24-well plates (1× 105/well) and cul-
tured in 5% CO2 at 37°C. 1e next day, the cells were
cotransfected with the mir-384 mimic, psiCHECK-2-lucif-
erase reporter gene plasmids psiCHECK-2-PRKACB-3′-
UTR, or their control plasmids using the Lipofectamine 2000
Reagent (Invitrogen, USA) following the manufacturer’s
protocol. 48 hours later after the transfection, luciferase and
renilla activities were detected by Dual-Luciferase Reporter
Assay Kit (Promega, China) according to the manufacturer’s
instructions. Each experiment was performed in triplicate.

2.6. Tumorigenesis in Nude Mice. 1e animal experiments
were performed on 4-to 6-week-old BABL/c nude mice
which were obtained from the Center of Laboratory Animal
Science of Guangdong (Guangzhou, China) according to the
Chinese regulations and standards for using laboratory
animals. 2×106 cells of K1/miR-384, K1/miR-384, and K1/
miR-384 + PRKACB were injected subcutaneously in the
hind limbs (n� 4 for each group). 1en, a slide caliper was
used to measure the tumor size every 6 days
(volume� length×width× height). 3 weeks later, the mice
were euthanized and the tumors were excised. 1e tumors
were fixed in 4% paraformaldehyde and embedded in
paraffin, and 4 μm sections were prepared and stained with
HE or IHC. 1e primary antibody of Ki-67 was purchased
from Maixin (Fuzhou, China).

2.7. Statistical Analysis. 1e statistical analyses were per-
formed with SPSS20.0 for Windows. Data of the study were
shown as the means± standard deviations (mean± SD).
Student’s t-test or one-way ANOVA with post hoc contrasts
by LSD test was conducted to compare the means. p< 0.05
was considered as statistically significant. Mann–Whitney
U-test was performed to compare the medians. 1e rela-
tionship between miR-384 expression and PRKACB mRNA
expression was analyzed by Spearman’s correlation analysis.
p values < 0.05 are indicated by ∗, and p values < 0.01 are
indicated by ∗∗.
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3. Results

3.1. miR-384 Expression Was Decreased and Correlated with
the Clinicopathological Characteristics in PTC. 1e KM
Plotter analysis revealed that the low miR-384 expression
showed poor prognosis in thyroid carcinoma patients
(p � 0.0007) (Figure S1). To further explore the expression
and significance of miR-384 in PTC, real-time PCR was
firstly used to investigate miR-384 expression in 58 cases of
fresh PTC and their paired adjacent noncancerous tissues.
1e results demonstrated that the expression of miR-384 was
reduced in 83.0% (49/58) of PTC (T) compared with their
paired adjacent noncancerous tissues (N). And among them,
the twofold difference (N/T> twofold) was shown in 44
cases (75.0%) (Figure 1(a)). Student’s t-test revealed that
miR-384 expression reduced obviously in PTC (Figure 1(b)).
In addition, we analyzed the correlation between miR-384
expression and clinicopathological characters. 1e results of
Mann–Whitney U-test demonstrated the expression was
much higher in tumors with lymph node metastasis, in
larger size than that without lymph node metastasis, in
smaller size (Figures 1(c) and 1(d) and Table 1). 1e above
results showed that the reduced expression of mir-384 might
play a crucial role during the PTC progression.

3.2. Ectopic Overexpression of miR-384 Suppressed PTC
Progression. To investigate the role of miR-384 in PTC
progression, hsa-miR-384 mimics were transfected into
BCPAP and K1 cells and the cells with ectopic over-
expression of miR-384 were obtained (Figure 2(a)). MTT,
soft agar assay, and wound-healing assay were conducted to
explore the function of miR-384 on the PTC progression.
1e results of MTT and soft agar assay revealed that the
proliferation of PTC reduced significantly by the ectopic
overexpression of miR-384 (Figures 2(b)–2(d)).1e result of
Transwell migration assay and wound-healing assay showed
that the migrated ability of PTC cells was obviously sup-
pressed by the ectopic overexpression of miR-384
(Figures 2(e) and 2(f )). 1erefore, the ectopic over-
expression of miR-384 suppressed PTC progression.

3.3. Suppression of Endogenous miR-384 Promoted PTC
Progression. 1en, we transfected miR-384 inhibitors into
BCPAP and K1 cells and obtained the cells with endogenous
suppression of miR-384 (Figure 3(a)). Results of MTTassay,
soft agar assay, Transwell migration assay, and wound-
healing assay demonstrated that suppression of miR-384
could significantly promote the proliferative and migratory
abilities of the BCPAP and K1 cells compared with their
negative control cells (Figures 3(b)–3(f)). So, miR-384
suppression promoted the progression of PTC.

3.4. miR-384 Directly Targeted the 3′-UTR of PRKACB Gene.
1e publicly available bioinformatics algorithms (TargetScan
and miRDB) were used to predict the theoretical target gene of
miR-384. And PRKACB gene was found to be a potential target
of miR-384 (Figure 4(a)). To observe the response of PRKACB

toward miR-384, real-time PCR and western blot were used to
determine the expression of PRKACB mRNA and protein. It
was found that both PRKACB mRNA and the protein were
obviously decreased with the overexpression of miR-384, and
miR-384 suppression had the opposite effects (Figures 4(b)–
4(d)). In addition, we detected the activation of PKA down-
stream effectors of p-ERK1/2 and P-CREB. It was found that
they were also suppressed by miR-384. To further confirm the
direct interaction between miR-384 and PRKACB, the dual-
luciferase reporter assay system was conducted. As shown in
Figure 4(e), the luciferase activity was remarkably suppressed
when cells were cotransfected with miR-384 mimic and wild-
type PRKACB 3′-UTR. But no obvious differences were ob-
served when cotransfected with the mutant 3′-UTR constructs
or their scramble vectors. 1e above results verified that
PRKACB was the target gene of miR-384. Collectively, these
results indicated that miR-384 regulated the expression of
PRKACB gene by directly binding its 3′-UTR. Our results
provided evidence on the direct inhibiting role of miR-384 on
the PRKACB, thus attenuating the PKA activity.

3.5. miR-384 Suppressed PTC Progression through Inhibition
of PRKACB. To further understand whether PRKACB gene
was involved in miR-384-mediated PTC progression, the
expression of PRKACB gene was restored in K1/miR-384
and BCPAP/miR-384 cells (Figures 5(a)–5(c) and
Figures S2(a)–S2(c)) by transfecting the PRKACB gene ORF
constructs without 3′-UTRs. 1en, we conducted the MTT
assay, soft agar assay, and wound-healing assay in the vector
cells and miR-384-overexpressing cells, and the miR-384-
overexpressing cells restored PRKACB gene. 1e results
verified that the ectopic overexpression of PRKACB gene
could reverse the influence of miR-384 on PTC proliferation
and migration (Figures 5(d)–5(h) and Figure S2(d)–S2(h)).
To further observe the in vivo effects of miR-384 in PTC
cells, we performed the tumorigenesis assay in nude mice
with K1/Vector, K1/miR-384, and K1/miR-
384 + PRKACB cells. It was found that the tumor size in K1/
miR-384 group was smaller than that in K1/Vector group
(Figures 5(i) and 5(j)). However, when we restored the
expression of PRKACB gene in K1/miR-384 cells, the tumor
size increased (Figures 5(i) and 5(j)). 1e results of IHC
demonstrated that the tumors of K1/miR-384 group had
lower Ki-67 indices than that in the Vector group
(Figures 5(k) and 5(l)). However, when we restored the
expression of PRKACB gene in K1/miR-384cells, the Ki-67
indices increased (Figures 5(k) and 5(l)).

3.6. Correlation between miR-384 and PRKACB Expression.
To further explore whether the above results could be sup-
ported by clinical tissues, we analyzed the expression of miR-
384 and PRKACB mRNA in the same 20 cases of fresh PTC
tissues by real-time PCR. 1e results showed that the ex-
pression level of PRKACBmRNAwas higher in the cases with
lower miR-384 expression than that with higher miR-384
expression (Figure 6(a)). And the Spearman correlation an-
alyses revealed that there was a negative correlation between
PRKACB mRNA and miR-384 expression (Figure 6(b)). In
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addition, the expression of PRKACB protein in the 58 cases of
PTC and their paired noncancerous tissues was detected by
IHC. 1e results of IHC showed that the expression of
PRKACB protein was mainly localized in the cytoplasm
(Figure 6(c)). 1e IRS analysis revealed that PRKACB protein
was highly expressed in 47 (81.0%) cases of PTC samples and 8
(13.8%) cases of noncancerous samples. Further analysis
revealed that PRKACB protein was highly expressed in 45
cases of PTC samples with low miR-384 expression (49 cases),
while it was lowly expressed in 4 cases of PTC samples in those
with highmiR-384 expression (9 cases).1ese findings were in
accordance with the results of qPCR.

4. Discussion

It is well known that thyroid carcinoma (TC), especially
PTC, is the most common type of endocrine malignancy
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Figure 1: miR-384 was decreased and correlated with the clinicopathological characteristics of PTC. (a) Expression of miR-384 in 58 cases
of fresh human PTC tissues and their paired adjacent noncancerous tissues by real-time PCR analysis; miR-384 expression was normalized
to U6 and expressed relative to the matched adjacent normal tissues (2− ΔΔCt). (b) Mean expression of miR-384 in 58 cases of fresh human
PTC tissues and their paired adjacent noncancerous tissues by real-time PCR (ΔCt, mean± SD, n� 58, ∗∗p< 0.01). (c) Expression of miR-
384 by real-time PCR according to the primary tumor size (ΔCt, mean± SD, n� 58, ∗∗p< 0.01). (d) Expression of miR-384 by real-time
PCR according to the lymph node metastasis (ΔCt, mean± SD, n� 58, ∗∗p< 0.01).

Table 1: Clinicopathologic characteristics of miR-384 expression in
PTC patients.

Clinicopathological variables
miR-384
expression p value

Low High
Age (years)
<45 6 12 0.089
≥45 23 17

Gender
Male 7 13 0.097
Female 22 16

Tumor size (cm)
<2 17 27 0.002
≥2 12 2

N classification 0.000
Yes 17 2
No 12 27
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Figure 2: Overexpression of miR-384 inhibited the progression of PTC cells. (a) Overexpression of miR-384 in BCPAP and K1 cells verified
by real-time PCR. (b–d) 1e proliferative ability of the indicated cells detected by MTT assays and soft agar assays. Only cell colonies
containing more than 50 cells were counted. Error bars represent mean± SD from 3 independent experiments. (e–f) Representative images
of wound-healing assay (original magnification, ×100). Histograms represent the average migrated distances at the indicated times. Error
bars represent mean± SD from three independent experiments. (g) Transwell migration assay. Representative images (left) and quan-
tification (right) of migrated cells across a Transwell chamber. ∗∗p< 0.01.
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Figure 3: Inhibition of endogenous miR-384 promoted the progression of PTC cells. (a) Expression of miR-384 in BCPAP and K1 cells
transfected with inhibitor or their paired negative control lentiviral vector by real-time PCR. (b–d) 1e proliferative ability of the indicated
cells detected by MTT assays and soft agar assays. Only cell colonies containing more than 50 cells were counted. Error bars represent
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periments. (g) Transwell migration assay. Representative images (left) and quantification (right) of migrated cells across a Transwell
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[21]. As we know, the prognosis of PTC patients is much
better than most of the other malignant tumors. It has been
reported that the 5-year survival rate of PTC was more than

95% [22]. However, some of them might develop into more
aggressive thyroid cancers. Moreover, the recurrence was
found in about 30% of the PTC patients [23]. So, it is
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Figure 4: miR-384 decreased PRKACB expression by directly binding to its 3′-UTR. (a) Predicted miR-384 target sequences in the 3′-UTRs
of PRKACB and their mutants containing altered nucleotides in the 3′-UTRs. (b–c) Real-time PCR analysis of PRKACB. (d) Western blot
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necessary to further explore the molecular characteristics of
PTC.

MicroRNAs are small noncoding RNAs which could
negatively regulate the expression of the target genes by
directly binding their 3′-UTRs [24]. It has been found that

the deregulation of miRNA expression is a common feature
of many types of human cancers, including thyroid cancer
[25, 26]. Accumulated evidence has demonstrated that the
aberrant expression of miRNAs plays crucial roles in cancer
initiation and progression [27–30]. In this article, we
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explored the relationship between the dysregulated miR-384
and the progression of PTC. We detected miR-384 ex-
pression in 58 cases of PTC and their matched adjacent
noncancerous tissues by real-time PCR. 1e results showed
that miR-384 expression remarkably decreased in PTC,
especially in cases with lymph node metastasis, elder pa-
tients, and female patients. Furthermore, the expression level
of miR-384 was obviously lower in the cases with larger
tumor size than those with smaller size. In addition, we
found that the proliferation and migration of PTC cells were
obviously suppressed by miR-384 overexpression. More-
over, the suppression of miR-384 remarkably increased the
proliferation andmigration of PTC.1e above results agreed
with the previous study of Sun et al. [31]. In brief, miR-384
plays a role of cancer suppressor. 1erefore, it is necessary to
further explore the underlying mechanism of miR-384 in
suppressing PTC progression.

It is well known that miRNAs modulate their target gene
expression by partially pairing with the 3′-UTRs and about
two-thirds of human mRNAs were regulated by miRNAs
[32]. In the current study, cAMP-dependent protein kinase
catalytic beta subunit (PRKACB) was selected as the theo-
retical target gene of miR-384 by the analysis of prediction
software. PRKACB gene has been identified to be an

important oncogene in cancer progression, especially in the
progression of endocrine cancers by modulating cAMP
signaling activity [33, 34]. Moreover, it was recently found
that miR-302a-3p suppresses hepatocellular carcinoma
progression by targeting the 3′-UTR of PRKACB gene [35].

We next conducted dual-luciferase reporter assay, real-
time RT-PCR, and western blot to further explore whether
PRKACB was exactly the target gene of miR-384 in PTC.
Our results provided evidence on the direct inhibiting role of
miR-384 on the PRKACB, thus attenuating the PKA activity.
It is thus reasonable that miR-384 may suppress PTC
progression at least partially by impairing PKA signal
transduction pathway. In addition, it was found that the
inhibition role of miR-384 in PTC progression could be
rescued by the overexpression of PRKACB gene. Further-
more, it was found that PRKACB gene expression increased
obviously in human PTC tissues compared with their paired
noncancerous samples. In addition, there was a negative
correlation betweenmiR-384 and PRKACB gene expression.
All of the results verified that miR-384 suppressed PTC
progression by directly targeting PRKACB gene.

In summary, our study confirmed that the down-
regulation of miR-384 is an independent prognostic factor
for poorer prognosis of PTC patients, and miR-384 inhibits
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PTC progression by directly targeting PRKACB gene.
1erefore, miR-384/PRKACB might be a novel potential
therapeutic target for PTC.
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