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Abstract: Integral membrane proteins of the divalent anion/Na+ symporter (DASS) family are
conserved from bacteria to humans. DASS proteins typically mediate the coupled uptake of Na+ ions
and dicarboxylate, tricarboxylate, or sulfate. Since the substrates for DASS include key intermediates
and regulators of energy metabolism, alterations of DASS function profoundly affect fat storage,
energy expenditure and life span. Furthermore, loss-of-function mutations in a human DASS have
been associated with neonatal epileptic encephalopathy. More recently, human DASS has also been
implicated in the development of liver cancers. Therefore, human DASS proteins are potentially
promising pharmacological targets for battling obesity, diabetes, kidney stone, fatty liver, as well as
other metabolic and neurological disorders. Despite its clinical relevance, the mechanism by which
DASS proteins recognize and transport anionic substrates remains unclear. Recently, the crystal
structures of a bacterial DASS and its humanized variant have been published. This article reviews
the mechanistic implications of these structures and suggests future work to better understand how
the function of DASS can be modulated for potential therapeutic benefit.

Keywords: membrane protein; anion transporter; sodium symporter; dicarboxylate transporter;
substrate recognition; sodium coordination

1. Introduction

Integral membrane proteins from the divalent anion/Na+ symporter (DASS) family are found
in all domains of life [1–3]. They typically move Krebs cycle intermediates or sulfate across cell
membranes by dissipating the electrochemical Na+ gradient. Specifically, mammalian DASS proteins
NaDC1, NaDC3, and NaCT co-transport three or more Na+ ions and C4-dicarboxylate (such as
succinate) or C6-tricarboxylate (such as citrate), whereas NaS1 and NaS2 co-transport two or three Na+

ions and sulfate [4–8]. Mammalian DASS proteins carry out their function at the plasma membrane
of epithelial cells or cells of the central nervous system. The location of and functional difference
among the human DASS proteins has been previously reviewed [9] and therefore not discussed
here. Additionally, previous phylogenetic analysis has also suggested that the five human DASS
transporters can be divided into three sub-groups [9]. The bacterial DASS proteins, by contrast, are
located in the cytoplasmic membrane and catalyze the coupled uptake of two or more Na+ ions and
C4-dicarboxylate [10–14]. Although most of the DASS proteins are co-transporters or symporters
(Figure 1), some members from the non-vertebrates, including INDY from the fruit fly, function as
exchangers and are Na+-independent [15,16].
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Figure 1. Two modes of transport identified in the divalent anion/Na+ symporter (DASS) proteins. 
Many DASS proteins, including VcINDY and five human DASS transporters, function as 
Na+-dependent co-transporters or symporters (left). Whereas, the fruit fly INDY, which is the 
founding member of the DASS family, appears to be a Na+-independent exchanger or antiporter 
(right). For simplicity, the DASS proteins are drawn as cylinders (blue and yellow) and the 
membrane as a grey rectangle. 

Since the DASS substrates include key intermediates and regulators of energy metabolism, the 
modulation of DASS activity can profoundly impact fatty acid synthesis, energy expenditure, and 
life span. For example, a number of mutations in a DASS-encoding gene had been found to nearly 
double the average adult life-span in fruit flies, likely by promoting a metabolic state that mimics 
caloric and dietary restriction [17,18]. In addition, the knockdown of the genes encoding NaDC2 and 
NaCT in worms could decrease their body size and fat content, and/or increase their life span [19,20]. 
Moreover, the deletion of the gene encoding NaCT protected mice from the adiposity and insulin 
resistance induced by high-fat feeding and aging [21]. In addition, several loss-of-function mutations 
in human NaCT have been associated with severe epilepsy and encephalopathy early in life, as well 
as developmental delay and tooth dysplasia in children [22]. Furthermore, a recent study reported 
that the loss of NaCT could halt the growth of liver cancer cells, probably by changing both the 
energy production and cell signaling in these cells [23]. Apart from the di/tricarboxylate substrates, 
sulfate is one of the most abundant anions in mammalian plasma. As such, mammalian NaS1 and 
NaS2 have been implicated in regulating sulfate conjugation and the detoxification of xenobiotics 
[2].  

Altogether, these studies support human DASS proteins as potentially novel therapeutic targets 
for tackling diet-induced obesity, type 2 diabetes, kidney stone, and fatty liver, in addition to other 
metabolic and neurological disorders [1–3]. Despite such importance, the molecular mechanism of 
DASS remained unclear, largely owing to the paucity of structural information on any 
substrate-bound DASS. Recently, the X-ray structures of a bacterial DASS have been reported, 
elucidating the transporter architecture as well as the Na+- and substrate-binding sites [24,25]. This 
review discusses these structures in the context of relevant biochemical data and suggests future 
directions towards illuminating the general principles underlying DASS-mediated transport. 

2. Structure Determination of DASS 

The molecular structure of any DASS remained unknown until 2012, when the 3.2 Å resolution 
crystal structure of citrate-bound VcINDY (Figure 2), a DASS from Vibrio cholerae, was reported [24]. 
This structure (PDB 4F35) revealed the transporter architecture and implicated the amino acids in 
Na+- and citrate-binding. However, like other well-characterized bacterial DASS proteins, VcINDY is 
known to transport succinate and other C4-dicarboxylates, rather than citrate, a C6-tricarboxylate 
[14,24]. Furthermore, although VcINDY was suggested to catalyze the co-transport of three Na+ ions 
and C4-dicarboxylate [14], only one Na+-binding site was observed in the 3.2 Å resolution X-ray 

Figure 1. Two modes of transport identified in the divalent anion/Na+ symporter (DASS)
proteins. Many DASS proteins, including VcINDY and five human DASS transporters, function
as Na+-dependent co-transporters or symporters (left). Whereas, the fruit fly INDY, which is the
founding member of the DASS family, appears to be a Na+-independent exchanger or antiporter (right).
For simplicity, the DASS proteins are drawn as cylinders (blue and yellow) and the membrane as a
grey rectangle.

Since the DASS substrates include key intermediates and regulators of energy metabolism,
the modulation of DASS activity can profoundly impact fatty acid synthesis, energy expenditure,
and life span. For example, a number of mutations in a DASS-encoding gene had been found to nearly
double the average adult life-span in fruit flies, likely by promoting a metabolic state that mimics
caloric and dietary restriction [17,18]. In addition, the knockdown of the genes encoding NaDC2 and
NaCT in worms could decrease their body size and fat content, and/or increase their life span [19,20].
Moreover, the deletion of the gene encoding NaCT protected mice from the adiposity and insulin
resistance induced by high-fat feeding and aging [21]. In addition, several loss-of-function mutations
in human NaCT have been associated with severe epilepsy and encephalopathy early in life, as well
as developmental delay and tooth dysplasia in children [22]. Furthermore, a recent study reported
that the loss of NaCT could halt the growth of liver cancer cells, probably by changing both the energy
production and cell signaling in these cells [23]. Apart from the di/tricarboxylate substrates, sulfate is
one of the most abundant anions in mammalian plasma. As such, mammalian NaS1 and NaS2 have
been implicated in regulating sulfate conjugation and the detoxification of xenobiotics [2].

Altogether, these studies support human DASS proteins as potentially novel therapeutic targets
for tackling diet-induced obesity, type 2 diabetes, kidney stone, and fatty liver, in addition to other
metabolic and neurological disorders [1–3]. Despite such importance, the molecular mechanism of
DASS remained unclear, largely owing to the paucity of structural information on any substrate-bound
DASS. Recently, the X-ray structures of a bacterial DASS have been reported, elucidating the
transporter architecture as well as the Na+- and substrate-binding sites [24,25]. This review discusses
these structures in the context of relevant biochemical data and suggests future directions towards
illuminating the general principles underlying DASS-mediated transport.

2. Structure Determination of DASS

The molecular structure of any DASS remained unknown until 2012, when the 3.2 Å resolution
crystal structure of citrate-bound VcINDY (Figure 2), a DASS from Vibrio cholerae, was reported [24].
This structure (PDB 4F35) revealed the transporter architecture and implicated the amino acids in
Na+- and citrate-binding. However, like other well-characterized bacterial DASS proteins, VcINDY is
known to transport succinate and other C4-dicarboxylates, rather than citrate, a C6-tricarboxylate [14,24].
Furthermore, although VcINDY was suggested to catalyze the co-transport of three Na+ ions
and C4-dicarboxylate [14], only one Na+-binding site was observed in the 3.2 Å resolution X-ray
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structure [24]. Although a second Na+-binding site was predicted, no direct structural evidence was
found and the assignment of this site was uncertain. Thus, the 3.2 Å structure sheds little light on how
VcINDY recognizes substrate and multiple Na+ ions.
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elements in VcINDY are outlined, with transmembrane helices shown as green rectangles. Red and 
blue dots highlight amino acids that bind succinate/citrate and Na+, respectively. Positions for the 
relevant humanizing mutations, which include S200T, P201G, V322I, T379V, A376T, S381T, A382T, 
and A383T, are marked by green asterisks. For clarity, some residues in the human DASS proteins 
were omitted and indicated by “…”. Notably, the amino-acid sequence identity between VcINDY 
and NaCT is 23%, but the degree of sequence conservation in and around the citrate- and 
Na+-binding sites is substantially higher, suggesting that the VcINDY structure provides a useful 
model for studying the mechanism of NaCT or other human DASS. Sequence alignment was 
performed by using the program ClustalW. 

To address such critical questions, the structure of succinate-bound VcINDY, determined at a 
resolution of 2.8 Å, was published in 2017 [25]. This structure (PDB 5UL7) elucidates a previously 
undiscovered Na+-binding site in VcINDY as well as how this protein selects for 
trans-C4-dicarboxylate. In the same study, the structure of a citrate-bound VcINDY (PDB 5UL9) as 
well as those of the succinate- (PDB 5ULD) and citrate-bound MT5 (PDB 5ULE), a humanized 

Figure 2. Amino-acid sequence alignment of representative DASS proteins. Residues conserved among
VcINDY and three human orthologues are colored magenta, regions of secondary structural elements
in VcINDY are outlined, with transmembrane helices shown as green rectangles. Red and blue dots
highlight amino acids that bind succinate/citrate and Na+, respectively. Positions for the relevant
humanizing mutations, which include S200T, P201G, V322I, T379V, A376T, S381T, A382T, and A383T,
are marked by green asterisks. For clarity, some residues in the human DASS proteins were omitted and
indicated by “ . . . ”. Notably, the amino-acid sequence identity between VcINDY and NaCT is 23%, but
the degree of sequence conservation in and around the citrate- and Na+-binding sites is substantially
higher, suggesting that the VcINDY structure provides a useful model for studying the mechanism of
NaCT or other human DASS. Sequence alignment was performed by using the program ClustalW.

To address such critical questions, the structure of succinate-bound VcINDY, determined at a
resolution of 2.8 Å, was published in 2017 [25]. This structure (PDB 5UL7) elucidates a previously
undiscovered Na+-binding site in VcINDY as well as how this protein selects for trans-C4-dicarboxylate.
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In the same study, the structure of a citrate-bound VcINDY (PDB 5UL9) as well as those of the succinate-
(PDB 5ULD) and citrate-bound MT5 (PDB 5ULE), a humanized variant of VcINDY, were established
at 2.8 Å resolution [25]. These crystal structures cast new light on how citrate competitively inhibits
VcINDY-mediated succinate transport as well as how a DASS distinguishes between C4-dicarboxylate
and C6-tricarboxylate. In combination with mutagenesis and functional studies, these structures offer
a solid framework for understanding how DASS proteins select and transport anionic substrates.

3. Overall Structure of VcINDY

The structure of succinate-bound VcINDY [25] reveals a homodimeric arrangement (Figure 3),
with each protomer consisting of eleven membrane-spanning helices (named TM1-TM11), two
re-entrant helix-turn-helix hairpins (HPin and HPout), and two interfacial helices (H4c and H9c).
As viewed from the membrane, the VcINDY dimer looks like an inverted bowl with its concave side
facing the cytoplasm, thereby allowing for the aqueous solution to reach the midpoint of the membrane.
This protein architecture facilitates substrate diffusion to the binding site and it partially solves the
problem of translocating anionic substrate across the hydrophobic lipid bilayer, an energetically
unfavorable process. The N- and C-domains of VcINDY are similarly folded, despite opposite
membrane topology and modest amino-acid sequence similarity [25].
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The cytoplasmic view of the VcINDY structure (right panel), highlighting the solvent-accessible 
succinate (black arrows) and buried Na+ ions. As such, the crystal structure captures the transporter 
in the inward-open state. Unless noted otherwise, structural analysis in this review was performed 
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YdaH [26,27] despite a lack of significant amino-acid sequence similarity. Specifically, the structure 
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VcINDY bears 18 and 13% amino-acid sequence identity to MtrF and YdaH, respectively. Although 
most of the DASS proteins, including VcINDY, are co-transporters, the AbgT transporters function 
as antibiotic efflux pumps and they are exchangers [26,27]. Apparently, the AbgT and DASS proteins 
constitute a new group of secondary membrane transporters with shared dimeric organization and 
structural fold, even though they seem to have distinct physiological functions and transport 
mechanisms. It remains unclear, however, whether the AbgT and DASS proteins arose from 
convergent or divergent evolution.  

Figure 3. Structure of the succinate-bound VcINDY. Structure of dimeric VcINDY, as viewed from
the membrane bilayer (left panel). VcINDY is shown in ribbon rendition, the N (amino acids 18-231)
and C (amino acids 232-462) domains in one protomer are colored cyan and yellow, respectively,
whereas the other protomer is colored magenta. Na+ ions (green) and succinate are drawn as spheres.
The cytoplasmic view of the VcINDY structure (right panel), highlighting the solvent-accessible
succinate (black arrows) and buried Na+ ions. As such, the crystal structure captures the transporter in
the inward-open state. Unless noted otherwise, structural analysis in this review was performed by
using the program O and figure was prepared by using the software PyMOL.

Moreover, VcINDY bears structural resemblance to the dimeric AbgT transporters, MtrF and
YdaH [26,27] despite a lack of significant amino-acid sequence similarity. Specifically, the structure of
succinate-bound VcINDY can be superimposed onto those of MtrF (PDB 4R1I) and YdaH (PDB 4R0C)
to yield rms deviations of 3.1 and 3.5 Å for 294 and 305 Cα atoms, respectively. Moreover, VcINDY
bears 18 and 13% amino-acid sequence identity to MtrF and YdaH, respectively. Although most of the
DASS proteins, including VcINDY, are co-transporters, the AbgT transporters function as antibiotic
efflux pumps and they are exchangers [26,27]. Apparently, the AbgT and DASS proteins constitute a
new group of secondary membrane transporters with shared dimeric organization and structural fold,
even though they seem to have distinct physiological functions and transport mechanisms. It remains
unclear, however, whether the AbgT and DASS proteins arose from convergent or divergent evolution.
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4. Na+-binding Sites in VcINDY

The binding sites of two Na+ ions, designated as Na1 and Na2 (Figure 4), were identified in
VcINDY [25]. Despite compelling structural evidence, it is generally a challenge to unambiguously
establish the Na+-binding sites in protein structures. Therefore, to validate the observed Na+-binding
sites, one putative cation-coordinating amino acid in Na1 or Na2 was replaced by Ala. Both of these
two single mutants exhibited impaired transporter activity and substantially altered Na+-dependence
of succinate transport, thereby confirming the assigned Na+-binding sites [25]. Moreover, most of
the Na+-binding amino acids are conserved (Figure 2), suggesting that both cation binding sites are
shared by the DASS members [25]. Notably, the binding site Na2 can also be found in YdaH [25,27],
further supporting the notion that the AbgT and DASS transporters represent a group of membrane
transporters with similar structure.
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Figure 4. Close-up views of the Na+-binding sites in VcINDY. Structure of the Na+-binding site in the
N domain (left panel). The previously unobserved Na+-binding site within the C domain (right panel).
Na+ ions are drawn as green spheres and relevant amino acids as stick models. Dashed lines (blue)
indicate the coordination interactions.

In VcINDY, each Na+ ion is penta-coordinated to two amino-acid side-chain and three backbone
carbonyl oxygen atoms (Figure 4). The two Na+ ions are bound to the pseudo-symmetry-related
HPin and HPout, and thus Na1 and Na2 are structurally similar [25]. The structures of Na1 and
Na2 also resemble those of the Na+-binding sites found in other transporters, including AbgT,
VcCNT (a Na+-dependent concentrative nucleoside transporter), and GltPh (a Na+-coupled aspartate
symporter). All of these binding sites comprise a helix-turn-helix hairpin and a discontinuous
helix [27–29], thereby defining a class of widespread Na+-binding motifs in membrane proteins.
By contrast, yet another common Na+-binding motif can be found in the transporters with the LeuT-like
structural fold [30], which consists of a substantially bent and discontinuous helix in addition to a long
but usually continuous helix.

5. Di- and Tri-carboxylate Binding Sites in VcINDY

Within the Na+-binding cleft in VcINDY, the binding sites for succinate and citrate were also
observed [25]. Specifically, the bound succinate interacts with VcINDY through H-bonding interactions
(Figure 5) and it is partly exposed to the cytoplasm, indicating that the transporter adopts an
inward-open conformation (Figure 3). Moreover, the alanine substitutions of several succinate-binding
amino acids reduced the binding of succinate to VcINDY and impaired transport function, thereby
confirming the biological relevance of the substrate-binding site [24,25]. Notably, the bound succinate
adopts an extended conformation, arguing that VcINDY is specific for C4-dicarboxylate in a stretched
conformation. Since most of the succinate-interacting amino acids are evolutionarily conserved
(Figure 2), this preference for trans-dicarboxylate is likely to be shared by the DASS proteins.
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Figure 5. Close-up views of the succinate- and citrate-binding sites in VcINDY. Structure of the
succinate-binding site (left panel). Detailed view of the citrate-binding site (right panel). Succinate
(grey), citrate (green) and relevant amino acids are drawn as stick models, whereas the Na+ ions are
shown as green spheres. Dashed lines (blue) highlight the interactions between VcINDY and succinate
or citrate.

The citrate-bound VcINDY is structurally similar to the succinate-bound protein, with the citrate-
and succinate-binding sites overlapping substantially, which is consistent with the contention that
citrate inhibits the transport of succinate by preoccupying the substrate-binding site in VcINDY, i.e.,
as a competitive inhibitor. Furthermore, the two co-crystal structures suggest that HPin, HPout, and
the unwound region in TM10 constitute a “trans-dicarboxylate-recognition” module in DASS [25].
This module lacks any protonatable or positively charged amino acids, starkly contrasting the
succinate-binding water-soluble proteins, in which Arg and Lys form charge-charge interactions
with the bound dicarboxylate [31–35].

In vivo, at least two carboxylates in citrate are deprotonated and negatively charged [14]. In the
citrate-bound VcINDY, one carboxylate group makes no contact with the transporter. By contrast,
both carboxylates in succinate are stabilized by the H-bonding interactions made with VcINDY.
Therefore, the negative charges in citrate appears not fully “neutralized” by its interactions with
VcINDY, which may explain why citrate is less effective in inhibiting VcINDY–mediated transport
than C4-dicarboxylates and why citrate preferably binds to the inward-facing VcINDY [14,25].

Previous studies also implied that the coordination of Na+ promotes substrate binding to
DASS [10–13]. In VcINDY, the Na+ ions in Na1 and Na2 coordinate several succinate-binding amino
acids and thus stabilize the conformation of these amino-acid side chains. This arrangement helps to
explain why the transport of succinate and Na+ is strictly coupled, as they bind to a common subset
of amino acids, and the binding or unbinding of one likely affects that of the other [25]. Moreover,
the Na+ ions may attract negatively charged succinate through long-range electrostatic interactions
within the low-dielectric intramembrane environment. Furthermore, the amino ends of four short
helices from HPin, HPout, TM5, and TM10, which possess localized positive dipoles, all point toward
the bound succinate. The stabilization of negative charges by the opposing, positive helix dipoles
within inverted structural repeats seems to be a common strategy in achieving anion selectivity by
membrane proteins [36–39].

6. Structures of A Humanized Variant of VcINDY

To gain new insights into the transport mechanism of human DASS, the structures of a humanized
variant of VcINDY in complexes with citrate and succinate were determined to 2.8-Å resolutions [25].
In order to generate this mutant, MT5, eight amino acids surrounding the citrate-binding cleft were
replaced by their counterparts in human NaCT (Figure 2), which primarily transports citrate [6].
Although the structure of citrate-bound MT5 remains similar to that of VcINDY, one important
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difference centers on one carboxylate of the bound citrate (Figure 6). In contrast to that in VcINDY, this
carboxylate group from citrate latches onto the amino ends of TM5b and the second helix in HPout

in MT5, with its putative negative charge being stabilized by the positive helix dipoles. Since NaCT
transports trianionic citrate [6] and MT5 was co-crystallized with citrate at pH~7 [25], the citrate-bound
MT5 structure may predict the interactions between NaCT and its bound substrate in vivo.
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Interestingly, the succinate-bound structure of MT5 revealed that the humanized variant binds
succinate virtually in the same way as VcINDY (Figure 6). Moreover, the transport kinetics for
MT5-mediated succinate uptake is also similar to those of VcINDY [25]. However, citrate inhibited the
MT5-meditated uptake of succinate much more effectively than it did on VcINDY [25]. In accordance
with this observation, MT5 seemed to interact with citrate more strongly within the crystals than
VcINDY. Although no appreciable citrate-transporting activity in MT5 was detected, the structure of
citrate-bound MT5 likely recapitulates the substrate-binding properties of NaCT to a significant extent,
in light of the amino-acid sequence similarity between VcINDY and NaCT, as well as the homolog
swap mutations carried by MT5 (Figure 2). It remains unclear, on the other hand, why MT5 failed to
transport citrate in vitro despite its higher affinity for citrate than that of VcINDY [25]. One plausible
explanation would be that MT5 still lacks key structural elements that somehow enable NaCT to
transport citrate more effectively than MT5, which may be found through inspection of the amino-acid
sequence alignment (Figure 2) and further mutagenesis study.

7. Substrate Recognition By DASS and Other anion Transporters

The structures of VcINDY and its humanized variant suggest that the amino ends of TM5b and
the second helix in HPout form a second substrate-recognition module in DASS for differentiating
C6-tricarboxylate from C4-dicarboxylate [25]. In a C4-dicarboxylate-specific VcINDY, this module
includes a Pro and a Thr (Figure 7), which selects against citrate by pushing away one of its
carboxylate groups and likely gives rise to negative charge surplus within the hydrophobic membrane
environment. In a C6-tricarboxylate-transporting NaCT, however, the Pro and Thr are superseded
by Gly and Val, respectively, which enables direct interaction with the same carboxylate group in
citrate (Figure 7). Thus, DASS appears to be equipped with two substrate-recognition modules:
one selective for trans-C4-dicarboxylate and the other for C6-tricarboxylate. Na+ also contributes to the
binding of C4-dicarboxylate to DASS by stabilizing the first structural module. Taken together, these
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structures shed new light on how a DASS recognizes its substrate and offer a new angle to understand
protein-mediated anion transport in general [25].Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 8 of 12 
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Figure 7. Structural basis for substrate recognition by DASS. The N and C domains in VcINDY
(left panel) and its humanized variant (right panel) are colored cyan and yellow, respectively. Relevant
amino acids are drawn as stick models, whereas the bound succinate (left panel) or citrate (right panel),
as well as the Na+ ions (green) are shown as spheres. Positive helix dipoles for short helices TM5b
and TM10b are highlighted by plus signs, whereas the negatively charged carboxylates in succinate
or citrate are indicated by minus signs. The charged state of succinate or citrate is deduced based on
the crystallization pH (~7). Both the helix dipoles and Na+ appear to contribute to the anion binding.
Furthermore, P201 and T379 may enable VcINDY to select for succinate but against citrate. In MT5,
P201, and T379 are replaced by Gly and Val, respectively, which may allow the membrane-embedded
transporter to bind citrate more strongly than VcINDY.

A striking feature of the substrate-binding site in VcINDY is the absence of any positively charged
amino acid, i.e., Lys or Arg. Apparently, DASS has evolved such a scheme probably because positively
charged amino acids would discourage the binding of Na+ in their vicinity due to electrostatic
repulsion and/or cause the transporter to bind anionic substrate much too tightly, thereby discouraging
the dissociation of substrate from the transporter [25]. Besides DASS, at least three families of
transporters with available structures selectively transport anionic substrates: SeCitS and KpCitS
from the citrate-sodium symporter family [40,41], GltPh and GltTk from the excitatory amino acid
transporter family [29,42], and NarK and NarU from the nitrate/nitrite porter family [43–45].

In contrast to VcINDY, all the other three anion transporters utilize positively charged amino
acids to bind the negatively charged groups in the substrate. This difference may reflect the distinct
substrate-binding sites and/or the coupling mechanisms [25]. For example, an Arg residue in the
substrate-binding site of GltPh appears critical in determining acidic versus neutral substrate selectivity,
since the neutralization of this Arg residue increased the tendency of the transporter to select for
neutral rather than acidic substrate [46]. In GltPh, however, an Asp residue is located in close proximity
to this Arg, the former of which may neutralize the positive charge on the Arg side-chain and weaken
the electrostatic attraction between the Arg and anionic substrate, thereby facilitating the release of the
negatively charged substrate during transport.
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8. Elevator-like Mechanism and Future Perspectives

Despite recent progress in the structural studies of VcINDY, great uncertainties remain in the
mechanistic understanding of the DASS-mediated anion transport. Particularly, in all the known
structures of VcINDY, the substrate-binding site opens into the cytoplasm, i.e., adopting the inward-facing
conformation. Therefore, the molecular basis for the interconversion between the inward- and
outward-facing conformations, which lies at the heart of the transport mechanism [47,48], remains
unclear. Moreover, the structural comparison of the succinate- and citrate-bound VcINDY and its
humanized variant gave little insight into how a DASS selects between di/tricarboxylates and sulfate.
Furthermore, although modulation of the function of DASS seems to be a viable therapeutic option for
battling metabolic and neurological disorders, the mechanism of such modulation is poorly understood.

To address these critical questions, future work should be aimed at deciphering the structure
of an outward-facing DASS. Previous studies have implied that VcINDY undergoes an elevator-like
movement during transport [49]. Such a structural mechanism appears to be widespread in a variety of
transporters with diverse physiological function, including the anion transporters SeCitS and GltPh [50].
In these transporters, the protein can be divided into the scaffold and transport domains, the latter of
which contains the substrate- and cation-binding sites. During transport, the scaffold domain, or the
“hoistway”, remains stationary, whereas the transport domain, or the “cabin”, moves up and down,
thereby exposing the substrate- and cation-binding sites alternately to either side of the membrane.
Based on this concept, a structural model of the outward-facing VcINDY (Figure 8) can be built by
using the succinate-bound structure [25]. Despite its usefulness as a starting point for deciphering the
transport mechanism, this outward-facing model of VcINDY needs to be further modified through
additional biochemical and/or structural studies, since the transporter likely interacts with its substrate
somewhat differently in distinct conformations [41].
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Figure 8. Structural model of the outward-facing VcINDY. Structure of the inward-facing VcINDY
as viewed from the membrane bilayer (left panel). VcINDY is drawn as a ribbon diagram, with its
scaffold (residues 18-128, 250-357) and transport (residues 129-249, 358-462) domains colored blue and
orange, respectively. Na+ ions (green) and succinate are shown as spheres. The structural model of the
outward-facing VcINDY (right panel). The orientation and coloring scheme are both the same as in
panel A. As the transport domain traverses the membrane, VcINDY alternates between the inward-
and outward-facing conformations.

This elevator-like mechanism also predicts that any compounds that can glue the transport and
scaffold domains of DASS together can serve as effective inhibitors of the transporter. Thus, the
structural model of outward-facing VcINDY alongside the inward-facing structure may be useful for
designing such inhibitors. These compounds likely act as allosteric inhibitors of DASS and they are
presumably different from what have been studied previously, as prior work appears to focus on those
chemicals that target the Na+- and substrate-binding sites in the human DASS transporters [51,52]. Needless
to say, these allosteric inhibitors can vastly expand the scope for the development of potentially useful
therapeutics that target the human DASS proteins. Furthermore, to gain further insights into the
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mechanism of the sulfate-transporting DASS proteins, including human NaS1 and NaS2, future work
should also include the structure determination of a sulfate-transporting DASS. Although challenging,
these studies will advance our understanding of how a DASS transports key metabolites inside cells
and how its function can be modulated. Such knowledge promises to inform the design of new
pharmaceuticals to prevent and treat the DASS-associated diseases.
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Abbreviations

DASS Divalent Anion/Sodium Symporter
NaDC1 Na+-dependent DiCarboxylate symporter1
NaDC3 Na+-dependent DiCarboxylate symporter3
NaCT Na+-dependent Citrate Transporter
INDY I’m Not Dead Yet
NaS1 Na+-dependent Sulphate symporter1
NaS2 Na+-dependent Sulphate symporter2
VcINDY Vibrio Cholerae I’m Not Dead Yet (a divalent anion/sodium symporter from Vibrio cholerae)
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