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Glycans comprise ubiquitous and essential biopolymers, which usually occur as highly diverse
mixtures. The myriad different structures are generated by a limited number of carbohydrate-active
enzymes (CAZymes), which are unusual in that they catalyze multiple reactions by being relatively
unspecific with respect to substrate size. Existing experimental and theoretical descriptions of
CAZyme-mediated reaction systems neither comprehensively explain observed action patterns nor
suggest biological functions of polydisperse pools in metabolism. Here, we overcome these
limitations with a novel theoretical description of this important class of biological systems in which
the mixing entropy of polydisperse pools emerges as an important system variable. In vitro assays of
three CAZymes essential for central carbon metabolism confirm the power of our approach to
predict equilibrium distributions and non-equilibrium dynamics. A computational study of the
turnover of the soluble heteroglycan pool exemplifies how entropy-driven reactions establish a
metabolic buffer in vivo that attenuates fluctuations in carbohydrate availability. We argue that this
interplay between energy- and entropy-driven processes represents an important regulatory design

principle of metabolic systems.
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Introduction

Glycans, comprising polysaccharides and oligosaccharides,
constitute the most abundant polymers found in nature but are
far less investigated than proteins and nucleic acids (Seeberger,
2005; BeMiller, 2008). They govern a remarkably wide range of
biological functions, including carbon and energy storage (Ball
and Morell, 2003; Zeeman et al, 2010), mechanical stabilization
of cells or tissues (Cosgrove, 2005), cell-cell or cell-protein
interactions (Seeberger, 2005; Finkelstein, 2007) and organelle
division (Yoshida et al, 2010). Moreover, they have attracted
considerable interest as renewable energy source (Himmel et al,
2007; Zeeman et al, 2010) and starting materials or additives for
many technological applications (Takaha and Smith, 1999).
Glycans can possess complex chemical structures and often
occur as a polydisperse mixture of compounds with different
molecular weights (BeMiller, 2008). Their biosynthesis and
degradation involves the concerted action of numerous
carbohydrate-active enzymes (CAZymes) (Davies and Henris-
sat, 2002; Coutinho et al, 2003; Kobayashi and Ohmae, 2006;
Cantarel et al, 2009), which can repeatedly act on sugar donors
and acceptors to generate polydispersity. Hence, two aspects
complicate the description and characterization of CAZyme-
mediated systems. First, polymer-active CAZymes typically do
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not catalyze only a single reaction and consequently rate laws
with the usual Kinetic (K, and Vi,,) and thermodynamic (Keq)
parameters are insufficient to appropriately characterize their
dynamics. Second, polydispersity implies that a huge number
of variables are required to precisely describe the system. A
model based on differential equations describing the temporal
change of each individual species would be impractical due to
potentially infinite numbers of reactants and conversions.
Numerical tractability may be increased by novel rule-based
approaches (Feret et al, 2009) or by replacing individual
chemical species by a continuous mixture, leading to integro-
differential equations (Aris, 1989). However, despite many
experimental studies (Jones and Whelan, 1969; Lin and Preiss,
1988; Kakefuda and Duke, 1989; Colleoni et al, 1999; Steichen
et al, 2008) and some attempts to model (Thoma, 1976;
Nakatani, 1999) the kinetics of CAZymes, a generally
applicable theoretical description is still lacking.

Our aim is to provide a general understanding of enzymes
acting on polydisperse substrates. For our approach, we
employ statistical thermodynamics and represent polydisperse
mixtures of substrates as statistical ensembles. The thermo-
dynamic theory allows characterizing systems with a huge
number of particles by a small number of state variables, such
as temperature, pressure, internal energy or entropy. We develop
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an analogous description to show that the same principle
holds for polydisperse reactant mixtures. In these systems, the
state variable entropy has a particularly important role.
If energy is neither added nor removed from the system, the
equilibrium state is characterized by maximal entropy
(Alberty, 2003). Conceptually, we thus follow early ap-
proaches describing chemical systems of polymers (Flory,
1944; Tobolsky, 1944). Whereas in these early studies the
entropy was introduced for specific idealized conditions,
we provide here a rigorous deduction from fundamental
principles (Landau and Lifschitz, 1979) to arrive at a
generally applicable expression of the mixing entropy (Box1;
Supplementary information). A further critical advancement
of our theory is the inclusion of enzymatic reactions. Enzymes
catalyze changes in the polydisperse mixture. However, these
changes are not completely arbitrary, but are limited to those
that are in accordance with the underlying enzymatic
mechanisms. Consequently, enzymatic systems acting on
polydisperse mixtures are described as constrained statistical
ensembles (Box 1).

To develop and experimentally validate our concept, we focus
here on CAZymes catalyzing interconversions of a-1,4-glucans,
intermediates in the metabolism of the most common storage
polysaccharides, starch and glycogen (Ball and Morell, 2003).
This class of polysaccharides consists exclusively of glucose
residues linked by a-1,4 glucosidic bonds. Each distinct substrate
can thus be characterized by the number of glucose residues,
denoted as degree of polymerization (DP). Two CAZymes,
disproportionating enzyme 2 (DPE2) and the cytosolic phos-
phorylase (Pho) mediate the turnover of the soluble hetero-
glycan (SHG) pool (Fettke et al, 2006, 2009b) in the cytosol
of plant cells. We use this system to exemplify the utiliza-
tion of polydisperse systems for metabolic regulation, thus
presenting a novel interpretation for the SHG pool. This system
shows how a metabolic function (carbohydrate provision and
allocation) can be achieved robustly by CAZymes without
requiring any additional control mechanisms such as allo-
steric regulations.

Results

Disproportionating enzymes increase the entropy
of reaction systems

Disproportionating enzyme 1 (DPE1; Jones and Whelan, 1969;
Lin and Preiss, 1988; Kakefuda and Duke, 1989; Colleoni et al,
1999; Critchley et al, 2001) is a plastidial 4-a-glucanotransfer-
ase (EC 2.4.1.25; GH77) (Takaha and Smith, 1999) catalyzing
readily reversible reactions according to the equation
Gn+Gn < Gy_g+Gp g, where G, denotes an o-1,4-glucan
with DP x, and g=1,2,3 is the number of transferred glucosyl
residues (Supplementary Figure S1). All reactions occur
without noticeable net enthalpy change since for every
intersugar linkage cleaved another one is formed and every
linkage contains approximately the same enthalpy (Goldberg
et al, 1991), raising the question of the reaction’s driving
force. To the best of our knowledge, Nakatani (1999) was
the first to propose, based on stochastic simulations, that
in equilibrium the DP distribution has maximal entropy.
Within the framework of statistical thermodynamics, it can
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be proven rigorously that this must indeed be the case
(see Supplementary information). Moreover, our theoretical
approach allows predicting the exact form of the equilibrium
distribution.

In order to understand the action of enzymes like DPE1, it is
helpful to interpret the distinct chemical species as different
energy levels. This allows the reactant mixture to be described
as a statistical ensemble (Flory, 1944; Landau and Lifschitz,
1979; Alberty, 2003). Enzymes catalyze transitions between
the energy levels and the enzymatic mechanisms define which
transitions are possible (Box 1; Supplementary Figure S1).
Thus, enzymatic action results in a dispersal of energy. If, as is
the case for DPEL, there is no net change in enthalpy, then this
dispersal of energy is the only driving force of the reactions.
Thus, according to the second law of thermodynamics
(Landau and Lifschitz, 1979), the equilibrium distribution of
the glucan mixture can be calculated by determining the
maximum entropy under the constraints defined by the
enzymatic mechanisms (Box 1). At equilibrium, the DPs are
exponentially distributed (see Equation (3) and Box 1 Figure).
The distribution is fully characterized by the exponent 3
(Equation 4), which depends on the average DP of the initially
supplied glucans, DP;,;. The characteristic exponent 3 can be
interpreted as a generalization of the equilibrium constant Keq
for polydisperse mixtures (Box 1).

We have experimentally tested our predictions by incubat-
ing DPE1 with defined maltodextrins. The reactions were
followed until no change in the glucan patterns was detectable
and the reaction system apparently reached equilibrium. The
glucan patterns confirm the prediction that an exponential
distribution is approximated and that the characterizing factor
B depends only on the average initial DPs, DP;,; (Figure 1A-C;
Supplementary Figure S2). Furthermore, the observed dis-
tributions quantitatively confirm the predicted decrease of 8
with increasing DP;,; (Figure 1D and E). From the observed
glucan patterns, we determined the experimental entropy,
which also is in accordance with the predicted entropy
(Equation 5), in equilibrium (Figure 1F).

Similar to the plastidial DPE1, the cytosolic 4-a-glucano-
transferase DPE2 (Chia et al, 2004; Fettke et al, 2006) mediates
a randomization of «-1,4-glucans. In contrast to DPEI,
DPE2 transfers single glucosyl residues only and neither
utilizes maltotriose as a donor nor maltose as an acceptor
(Steichen et al, 2008). This means that maltose molecules
cannot be elongated and maltotriose molecules cannot be
further shortened. Thus, whenever maltose donates a glucose
residue a glucose molecule is released, and whenever glucose
acts as acceptor a maltose molecule is formed. As a result,
DPE2 effectively obeys an additional constraint: the conserva-
tion of the sum of glucose and maltose molecules
(x7 + x,=const., see Supplementary Figure S3). Again, an
exponential equilibrium distribution is predicted but the
additional constraint leads to a different functional depen-
dence of B on DP;,;, which is experimentally confirmed (see
Supplementary Equation S57 and Supplementary Figure S4).
The example of DPE2 shows the importance of recognizing
constraints resulting from enzymatic mechanisms and illus-
trates how polydisperse mixtures relax to different equilibrium
distributions when subjected to enzymes with different action
patterns.
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Box 1 Enzymatic reactions on polydisperse substrates
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Generation of polydisperse mixtures by CAZymes: o-1,4-glucans, linear polysaccharides consisting of glucose residues that are linked by a-1,4-glucosidic bonds,
are important intermediates in carbohydrate metabolism. Any such glucan can be characterized by its number of residues or degree of polymerization (DP).
Glucanotransferases, such as DPE1, transfer glucosy! residues between a-1,4-glucans of any DP. Panel A illustrates the action of DPE1 for the pure initial substrate
maltotetraose (DP;,=4). All possible products of the first reaction step and a representative second step with a single pair of substrates are shown, indicating the
strong diversification of the glucan pool generated by the huge number of possible reactions. Every transfer reaction conserves the number of molecules present in
the reaction mixture as well as the total number of glucose residues distributed in the polydisperse pool. As a consequence, the average DP maintains the constant
value DP;;, which is in general determined by the average DP of the initially applied mixture of glucans and can assume also non-integer values. Therefore, at any
time the relationships

S xp=1 and > DP-xpp=DPy (1)

DP=1 DP=1

hold, where xpp describes the molar fraction of the glucan with the respective DP. This illustrates how polydisperse pools of glucans are generated by enzymatic
action.

Thermodynamic description of polydisperse reactant mixtures: As any reaction, the DPE1-mediated disproportionation must proceed in the direction in which
the Gibbs free energy, G=H—TS, decreases, where H is the enthalpy, T the temperature and S the entropy. The enthalpy H measures the energy contained in
the reactants. Since the energy contained in the bonds of a glucan increases with increasing DP, the different DPs can be considered as different energy levels.
The molar fractions xpp can be interpreted as the occupation of the corresponding energy states. Thus, the distribution {xpp} represents a statistical ensemble which
fully characterizes a polydisperse reactant mixture (Flory, 1944; Landau and Lifschitz, 1979; Alberty, 2003). The entropy S measures the dispersal of energy within
the ensemble. It is defined as

S=-R>  xpIn(xp), ©)
DP=1

where Ris the universal gas constant. The DPE1-mediated transfer reactions occur without net enthalpy change, AH=0 (Goldberg et al, 1991; Tewari et al, 1997).
Consequently, decrease in Gibbs free energy is equivalent to entropy increase, which results exclusively from changes in the composition of the glucan pool. This is
illustrated in panel B. At =0, the reactant mixture is monodisperse and contains only maltotetraose molecules. In this case x,=1 and xpp=0 for DP 4, resulting in
S=0. For t— o0, the equilibrium distribution in which the energy (or interglucose bonds) is maximally dispersed is reached.

Determination of the equilibrium distribution: The equilibrium distribution can be computed by identifying those values of xpp, which maximize entropy (2) under
the constraints imposed by the enzymatic mechanisms. For DPE1, the constraints are given by the relationship (1) and the resulting equilibrium distribution reads

Xpp = (EB — 1) g PDP (3)

with the characteristic exponent B. For DPE1, the exponent assumes the particularly simple form

p=n <DP[?:ii 1> )

demonstrating how 3 fully characterizes the equilibrium in dependence on the initial substrates (see the derivation of Supplementary Equation S45 in Supplementary
information). While exponential distributions as in Equation (1) are also found for the other examples considered in the text, the specific expressions for 3 differ due to
additional constraints on the enzymatic transitions. Inserting the distribution (3) and the expression (4) for 3 in the expression for the entropy yields the corresponding
equilibrium entropy for DPE1

Si
R

The characteristic exponent is a generalization of the equilibrium constant. The equilibrium constant Ky, for the single reactions can be calculated from the
equilibrium concentrations (3), resulting in Keq=(X,_gXn - q)/ (X:Xm)=1 for every individual reaction. The functional form of B, given by Equation (4), provides
additional information by revealing the dependence on the initial conditions. The exponent f is predicted to decrease when the average DP;,; increases. Apparently,
B serves as an appropriate descriptor of equilibria of polydisperse mixtures and, since it entails the equilibrium constants of the individual reactions, it can be
considered as a generalization of the mass action ratio in equilibrium.

= DPjy In(DPyyi) — (DPini — 1) In(DPjri — 1). (5)

Stochastic simulations and time-resolved utilized as a glucosyl donor. These findings established the
experiments reveal different time scales of DPE1 idea, that there are ‘forbidden linkages’ which cannot be
cleaved, a rule that was later applied to DPEs from other

A ding t i t DPE1 f hit tat . . . . . .
ccording to préevious reports on rom white potato species, such as Arabidopsis thaliana (Lin and Preiss, 1988)

(Jones and Whelan, 1969), maltose is neither formed nor
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Figure 1 DPE1 maximizes entropy in vitro. (A—C) Experimentally determined equilibrium distributions depend only on the average degree of polymerization of the
initial substrates, DP;,. All DP patterns obey the theoretically expected exponential distribution where the exponential factor B depends on the initial substrates, as
demonstrated by maltotriose G (black in A), maltotetraose Gy (red in B) and maltopentaose Gs (blue in C). The distributions are independent of how DP;,; is realized. In
each panel, the distributions obtained from two different initial conditions with identical DP;; are indistinguishable (Gz and a 1:1 mixture of G, and Gy (gray) in (A), G4 and
a 1:1 mixture of Gz and Gs (orange) in (B), G and a 1:1 mixture of Gz and G- (cyan) in (C)). (D) Comparison between the experimental results (dots) and the theoretical
predictions (solid lines) in a semi-log plot demonstrates the differences of the coefficients 8 (corresponding to the slopes) for different initial substrates. (E) Agreement of
observed and predicted B demonstrates the entropic mechanism of glucanotransferases. (F) The experimentally determined equilibrium entropies S,q (dots) in
dependence on the average initial degree of polymerization (DP;,;) match with the values predicted by Equation (5), indicated by the solid line. Distributions for DP;,=2
and DP;,;=7 are shown in Supplementary Figures S2B and S5B, respectively. (All error bars denote standard deviation of three independent experiments.) Source data

is available for this figure in the Supplementary information.

and Chlamydomonas reinhardtii (Colleoni et al, 1999).
However, our measurements (Figure 2) clearly demonstrate
that this rule is not valid at least for recombinant DPE1 from A.
thaliana. Presumably, this discrepancy is due to differences in
the length of the incubation period. As revealed by our
measurements, ~10min after incubation a quasi-stationary
equilibrium is reached in which maltose is undetectable.
Subsequently, maltose levels rise and approach the theoreti-
cally predicted equilibrium with a much lower rate after
several days (Figure 2A). These data are consistent with the
assumption that 4-a-glucanotransferases prefer distinct glucan
binding modes (Suganuma et al, 1991; Nakatani, 1999, 2002;
Takaha and Smith, 1999). Based on this view, we developed a
stochastic model which reproduces the observed time-
resolved glucan patterns under the sole assumption that
glucosyl transfers occur with an 800-fold smaller probability
than transfers of maltosyl or maltotriosyl residues (Figure 2A).
The two time scales can be identified by following the change
in mixing entropy (Figure 2B). The quasi equilibrium entropy
(dotted line in Figure 2B) is theoretically calculated by exclud-
ing maltose from the ensemble representing the polydisperse
mixture (see Supplementary Equation S48 in Supplementary
information). In the vicinity of the quasi equilibrium, the
mixing entropy increases more slowly, while steadily evolving
toward the predicted maximum entropy state. Our simulations
demonstrate that three Kkinetic constants are sufficient to
characterize the DPEl-mediated system: one rate constant
reflecting maximal turnover and two constants describing
different transfer probabilities reflecting different subsite

4 Molecular Systems Biology 2011

affinities at the substrate binding domain (Thoma et al, 1971;
Suganuma et al, 1991; Nakatani, 1999). Experimentally, these
values are not accessible through simple incubation experi-
ments in analogy to the classical treatment of enzymes
catalyzing single reactions, but rather require monitoring of
the entire reactant mixture. An alternative description based
on two maximal turnover constants can reproduce the same
kinetics but is biochemically less plausible. Glycoside hydro-
lase domains usually possess several binding subsites which
allow for different alignments of the substrate formed with
different probabilities (Thoma et al, 1971). In contrast, the
transfer step always acts between well-defined subsites
irrespective of the actual alignment of the substrate (Barends
et al, 2007).

Generalization for energetically open systems

The interpretation of the distinct reactants as different energy
states offers a straightforward generalization to reaction
systems in which bond enthalpy is not conserved. Taking into
account the sum of energies of formation g', the equilibrium is
determined by a minimum in Gibbs free energy (Alberty, 2003)
given by g=g'—TS, where T is the temperature and S the
entropy (cf. Supplementary Equation S31 in Supplementary
information).

First, we consider the reaction system catalyzed by a-glucan
phosphorylase (Pho; EC 2.4.1.1; GT35). Reversibly transferring
terminal glucosyl residues from the non-reducing ends of soluble
glucans to orthophosphate, this CAZyme does not conserve the

© 2011 EMBO and Macmillan Publishers Limited



Molar fraction (%)

Entropy S (R)

1078 1072 107 10° 10’ 102
Time (h)

Figure 2 Low binding affinity for maltose induces a quasi equilibrium
distribution. (A) The experimental time course (dots) shows the generation of
the different glucans for DPE1 incubated with maltotriose, demonstrating that
maltose is produced on a slower time scale compared with the other glucans.
Stochastic simulations (solid lines) assuming an 800-fold reduced probability for
the transfer of single glucosyl residues compared with maltosyl and maltotriosyl
residues accurately reproduce the data. (B) The increase in entropy exhibits two
time scales. In the first phase, the entropy rapidly increases toward a quasi
equilibrium state without detectable maltose. The dotted line at Sqeq indicates
the predicted equilibrium entropy for a constrained system not capable of
producing maltose (see Supplementary information). The second phase is
characterized by a much slower relaxation towards the real equilibrium Sgq
(dashed line). The corresponding temporal DP distributions are shown in
Supplementary Movie. (All error bars describe standard deviation of three
independent experiments.). Source data is available for this figure in the
Supplementary information.

bond enthalpy since it replaces a glucosidic by an ester bond.
The resulting equilibrium distribution for different initial
conditions, predicted by minimizing the Gibbs free energy, is
described by an implicit equation, f(B, DPjy;,T; Ag) = 0, which
additionally depends on the difference in the enthalpies
of bond formation, Ag (see Supplementary Equation S68 in
Supplementary information). The predictions are experimen-
tally confirmed by in vitro experiments (Figure 3).

Exothermic reactions shift equilibrium
distributions
As a prototype of a multi-enzyme system, we consider the

action of DPE1 in the presence of hexokinase (HK, EC 2.7.1.1),
which phosphorylates glucose at the expense of ATP to
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produce glucose-6-phosphate and ADP. In this direction, the
reaction is exothermic and its equilibrium is experimentally
controlled by the ATP level. Since the HK reaction diminishes
the glucose pool accessible to DPE1 but keeps the number of
interglucose bonds constant, the equilibrium pattern of the
glucans is shifted toward larger DPs (Figure 4; Supplementary
Figure SS). This result concurs with earlier findings (Walker
and Whelan, 1959; Kakefuda and Duke, 1989) showing the
capability of DPE1 to synthesize amylose, which now
experience a quantitative theoretical explanation. The pre-
dicted exponential distribution of the equilibrium pattern is
again accurately described by the parameter 3. Here,

g'=u-Ag and

S=-R (uln(u) +a;In(ay) + as In(a;) + Z xDpln(xDp)>,
DP=1

where u is the molar fraction of glucose-6-phosphate,
a, and a; are the molar fractions of ADP and ATP, respec-
tively, and Ag is the molar Gibbs energy of the HK reaction.
Minimizing the Gibbs energy results in an implicit equation
for p = B(DPyy, ATP, T; Ag), which now additionally depends
on the applied ATP level and the equilibrium constant of
HK (see Figure 4B and Supplementary Equation S84 in
Supplementary information).

Physiological significance of entropy and
polydisperse systems

The proposed description of CAZymes provides a novel way
to characterize enzymes acting on polydisperse substrates,
resolving some of the discrepancies in previous studies on
DPEs. Because mixing entropy has a pivotal role in these
systems we call the associated enzymes entropic. This is not
to be confused with the supposed entropic effect on enzymatic
rates associated with reducing the molecular degrees of freedom
upon substrate binding (Jencks, 1997; Warshel et al, 2006). In
the following, we discuss how randomization of the metabolite
pool and the associated entropy increase are used constructively
for establishing important physiological functions.

The thermodynamic analysis sheds new light on several
aspects of glycan metabolism in plants (Critchley et al, 2001;
Stitt et al, 2010; Zeeman et al, 2010). When the plastidial HK or
the glucose exporter is active, glucose molecules are removed
from the polydisperse pool of a-1,4-glucans and are therefore
no longer available as acceptor substrates for the DPEI-
mediated transfer reactions. Our results (Figure 4) suggest that
under these conditions DPE1 mediates an energy-independent
elongation of glucans and thereby provides substrates for the
plastidic a-glucan phosphorylase or even supports starch
synthesis directly. The latter conjecture is consistent with the
phenotype of a C. reinhardtii mutant lacking a functional DPE1
which displays aberrant starch synthesis (Colleoni et al, 1999).

Entropy-induced robustness

Stochastic simulations allow us to investigate the role of
enzymes generating mixing entropy in non-equilibrium open
systems. Here, we want to exemplify this for carbon meta-
bolism in plants.

Molecular Systems Biology 2011 5
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Figure 3  Equilibrium distributions of the degree of polymerization for phosphorylase experiments. (A) Schematic representation of the mechanism of phosphorylase.
From an o-1,4-linked glucan chain, one glucose residue is reversibly transferred to orthophosphate (red), producing glucose-1-phosphate (G1P). The gray box
represents any primer molecule, which can also be a glucan. (B) The experimental distribution (red bars) for a 1:50 mixture of DP;,=7 and orthophosphate exhibits a
steep decrease. From the theoretical prediction (See Supplementary Equation S68) shown in blue, we can fit the unknown parameter ky = exp(—Ag/RT) as 0.19.
The inlet shows the logarithmic data (red) and further predictions for k,=0.1 (dashed) and k,=0.4 (solid). (C) Comparison between G, (black) and G (red) incubated
with G1P in a 1:4 ratio demonstrates the dependence on the initial substrate. (D) Both distributions obey an exponential distribution as shown by the logarithmic plot.
The agreement of experiments (dots) and theoretical predictions (lines) validates the theoretical approach. (Error bars indicate standard deviation of three independent
experiments.). Source data is available for this figure in the Supplementary information.

A Kkey process in plants is the starch-to-sucrose pathway in
leaf cells during darkness (Smith et al, 2005; Fettke et al,
2009a). Transitory starch degradation in chloroplasts essen-
tially provides maltose, which is exported to the cytosol in
order to support glycolysis as well as sucrose synthesis.
Glycolysis is the ubiquitous pathway of energy metabolism to
produce chemical energy equivalents in form of ATP, and
sucrose is the major form in which carbon is transported to
sink organs of plants. It turns out that by exporting maltose,
using it as a glucosyl donor (DPE2), plants can bypass the first
ATP-dependent reaction of glycolysis (hexokinase) and
produce the intermediate glucose-1-phosphate (G1P) via
phosphorolysis (a-glucan phosphorylase) of a soluble pool
of heteroglycans (SHG; Lu and Sharkey, 2004; Fettke et al,
2009b). G1P serves as a substrate for both the downstream
processes of glycolysis and sucrose synthesis.

Notably, Arabidopsis leaf cells contain around 100 chlor-
oplasts, and starch content and degradation rate may vary
considerably depending on external conditions such as light
intensity or day length (Gibon et al, 2004; Graf and Smith,
2011). Maltose export occurs locally through the specific
maltose exporter MEX1 (Niittyld et al, 2004) leading to
inhomogeneous maltose concentrations in the cytosol. A
challenge for the plant is to integrate fluctuating carbon fluxes
in a way that ensures stable levels of substrates for down-
stream processes, in particular glucose and G1P. Moreover, the
supply of these substrates has to be temporarily ensured
during light-dark transitions. It has been hypothesized
that these buffering functions are provided by the SHG pool
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(Fettke et al, 2009a), but no conclusive mechanistic explana-
tion exists how these functions are achieved. Interestingly, a
significant mass fraction of the SHG pool consists of glucose
residues, which are added and removed by DPE2 and cytosolic
a-glucan phosphorylase (Pho), two ‘entropic enzymes’ char-
acterized in this work. Thus, it is tempting to suggest that the
entropy-driven maintenance of polydispersity by these en-
zymes provides an explanation for the role of SHG in buffering
carbon fluxes.

A minimal model which mimics the physiological scenario
found in the cytosol of plant leaves during darkness is shown
in Figure S5A. In order to study the role of the SHG pool, we
compare this system with an alternative one in which mixing
entropy does not play a role. We consider a noisy maltose
input, which may for example result from an inhomogeneous
transport of maltose (G2) into the cytosol. A single process
consuming G1P and glucose (G1) represents the activity of
downstream pathways. We study the output performance for
two mechanisms: (1) maltose is converted into glucose and
G1P by the concerted action of the entropic enzymes DPE2 and
Pho; (2) maltose is directly split by a single reaction according
to G2 + Pi«>G1 + G1P, which could for example be catalyzed
by maltose phosphorylase (MPho, EC 2.4.1.8). While system 2
depends on a classical enzyme catalyzing one specific
reaction, the enzymes of system 1 produce a polydisperse
pool of metabolites. As demonstrated above, an important
contribution of the driving force of these enzymes is an
increase in the mixing entropy of the reactant mixture (see also
Sections S2.2 and S2.3 in Supplementary information). In this
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Figure 4 Energetically unbalanced reactions affect the equilibrium parameter
B. In the presence of hexokinase (HK), the DPE1-mediated equilibrium
distribution depends on the applied amount of ATP, the Gibbs energy of the HK
reaction and the average initial degree of polymerization, DP;y. (A) The
equilibrium distribution of DPE1 incubated with 500 nmol maltotriose (Gs) and
125 nmol ATP (red) is shifted toward longer DPs compared with the distribution
without ATP (blue). The semi-logarithmic plot (inset) shows that observed
(circles) and predicted (lines) distributions are in good agreement. (B) In
systematic experiments, the ATP level was varied between 0 and 500 nmol
leading to an ATP/glucan ratio between 0 and 1 for the two different initial
substrates G (black) and G; (magenta). From distributions corresponding to
those in (A), the equilibrium parameter  was determined by fitting to data
(symbols) and compared with the theoretical prediction (lines) according to
Supplementary Equation S84 (see Supplementary information). Predictions were
calculated with the experimentally determined average equilibrium constant of
the HK reaction. Shadowed regions describe the corresponding standard
deviation of four independent experiments. (All error bars correspond to standard
deviation of three independent experiments.). Source data is available for this
figure in the Supplementary information.

sense, system 1 is, in contrast to system 2, to a large extent
driven by entropy gradients, defined as the change of entropy
with reaction progress (Wicken, 1978).

The downstream activity represented by the G1P output rate
differs for the two systems. As shown in Figure 5B, the MPho
system (red) strongly follows the noisy input leading to large
fluctuations in downstream activity, whereas the increased
internal entropy due to the SHG buffer (blue) dampens the fast
fluctuations. Although the MPho system can reach higher
output rates, the SHG system exhibits a larger physiological
robustness because in case of starvation it can, for a limited
time, still provide energy from buffered glucans with larger
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DPs. This is visible by the exponential damping of metabolic
activity after setting the influx to very small values at around
8000 s in Figure 5B.

Analyzing the dependence of the output on the maltose
influx into the (cytoslic) system (Figure 5C) demonstrates that
the SHG system exhibits a rather constant metabolic activity
independent of the influx strength as long as the temporal
average of the input does not vary too much. In contrast, the
MPho system reacts nearly immediately to changes in the
input as shown by the linear relation. To summarize, this
system exemplifies how cells may exploit mixing entropy in
metabolism to (a) attenuate rapid fluctuations, thus function-
ing like a low-pass filter, (b) allow for transient support of
downstream activity after a drop in maltose influx through
buffering and (c) integrate largely varying influxes to achieve a
constant output activity in a robust manner.

For two reasons, a simple buffering by high maltose levels is
biologically not feasible (Sharkey et al, 2004): first, high
maltose levels are toxic to the plant and second, it would imply
a high osmotic pressure on leaf cells because the plasma
membrane is impermeable for maltose.

A low-pass filter could in principle also be achieved by a
monodisperse maltose buffer, in which maltose is bound to a
hypothetical buffer molecule with a higher capture rate
compared with its release rate (see Section S3.2 in Supple-
mentary information and Supplementary Figure S6). However,
this would again lead to a high osmotic pressure since the
buffer concentration has to be large in order to compensate
fluctuations. Furthermore, cells would need to regulate the
buffer concentration in dependence on the ratio of maltose
influx to glycolytic activity. In case of high maltose influx, the
buffer becomes saturated, leading to a reduced capability to
dampen fluctuations. This can only be compensated by further
buffer production. The SHG buffer mechanism circumvents
these problems. First, high osmotic pressure is avoided
because of its polydispersity. Second, the buffer size is
intrinsically regulated because accumulation of maltose will
simply lead to the production of glucans with a longer DP
without the need to increase the concentration of buffering
molecules.

Discussion

Although the description of polydisperse mixtures in the
framework of statistical thermodynamics is well established in
chemistry (Flory, 1944; Tobolsky, 1944), its appropriate
adaptation to biochemical reaction systems is still lacking.
We have here provided a rigorous derivation to describe
polydisperse reaction mixtures and have shown that enzymes
can be incorporated into this thermodynamic picture by
constraints imposed by their molecular mechanisms. By
establishing the bridge between biochemistry and physics,
we provide a novel way to describe, predict and understand the
behavior of the important class of biological systems involving
enzymatic reactions on polymers. Specifically, the action
patterns of CAZymes can be understood by introducing the
mixing entropy of the polydisperse glycan pool as an important
state variable. Applying the principle of constrained entropy
maximization to systems of ‘entropic’ enzymes allows for

Molecular Systems Biology 2011 7



CAZymes exemplify entropic principles in metabolism
O Kartal et a/

Noisy maltose input

-

SHG buffer

No buffer

DPE2
G,+Gp~—— G, +Gp,y MPho

G,+P G1+G1P

G +P G,_,+GI1P

n n

Pho

Glycolysis

( Metabolism/Growth >

B 500
No SHG buffer (MPho)
& SHG buffer (DPE2 + Pho)
o
©)
2
=
T 250
©
k2]
(23
>
5]
o
>
5000 7000 9000 11000
Time (s)
C 400
Q) No SHG buffer e
o SHG buffer e
e
2
=
£ 200f
&
k2]
(72}
>
o
o
>
O}
0 L N .
0 200 400

Maltose influx (G,/s)

Figure 5 Entropic enzymes induce metabolic robustness. (A) We compare the downstream activity of a system with the entropic enzymes DPE2 (blue) and Pho
(magenta) catalyzing the turnover of an SHG pool with a system which directly converts a fluctuating maltose input into glucose (G1) and glucose-1-phosphate (G1P)
using maltose phosphorylase (MPho, red). (B) The simulated temporally resolved output activity indicates that the higher entropy due to the SHG pool smears out the
large fluctuation of the noisy maltose influx while the MPho system follows the fluctuations rapidly. The difference becomes dramatic in the case of very small maltose
influx, where the downstream activity of the MPho system stops abruptly whereas the SHG buffer system can still provide energy from the pool of larger glucans. (C) The
dependence of the G1P output on the maltose input demonstrates that the SHG pool acts as a buffer and ensures a robust support of downstream metabolism with
carbon even under large and rapid external fluctuations, whereas the MPho system reacts strongly to changes in influx.

correct predictions of equilibrium distributions, which has not
been easily possible with previous approaches, and sheds new
light on regulatory mechanisms.

Knowledge of the equilibrium is useful to determine in which
direction a system will evolve. However, to describe living
systems, which operate far from equilibrium, information
about the kinetics is necessary. To explore the dynamics of
glycan metabolism, we have conducted stochastic simulations.
Exemplified by DPE1, we demonstrated how comparing time-
resolved in vitro data with simulated trajectories could
elucidate molecular mechanisms of CAZymes. Computational
studies of the SHG pool, which is maintained and turned over
by two entropic enzymes, provided a novel explanation of its
biological function. The latter example is illustrative of how
mixing entropy is effectively used to establish a robust
buffering and integrating function. We expect that this example
may serve as a prototype for future interpretations of
structurally similar entropy-driven metabolic systems.

Apparent analogies are, for example, found in the carbohy-
drate metabolism of yeast. Glycogen chains are elongated by
the glycogen synthase (Gsylp/Gsy2p) when yeast is growing
on a fermentable carbon source (Francois and Parrou, 2001).
Glycogen degradation involves the two entropic enzymes
glycogen phosphorylase (Gphlp), which releases GI1P from
glycogen much alike the phosphorylase Pho studied here, and
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the debranching enzyme (Gdblp), which transfers maltosyl
residues between glycogen chains in analogy to the dispro-
portionating enzymes and releases glucose from branch points.
These striking similarities allow us to conjecture that the
concerted enzyme actions generate a polydisperse buffer that
functions according to the same principles as the SHG buffer in
plants. During diauxic shift, when fermentable carbon sources
are depleted, the turnover of this buffer will have an important
role for the temporary provision of glucose for downstream
processes (Lillie and Pringle, 1980). Considering that resulting
changes in gene expression profiles (Chu et al, 1998) depend on
cellular glucose metabolism, our approach forms the basis for a
quantitative and mechanistic description of the connections
between metabolic and genetic responses to varying environ-
mental conditions. This enables new insights into the funda-
mental question as to how environmental factors such as
limitation of nutrients (Parrou et al, 1999) determine the
dynamic phenotypic responses for a given genotype.
Supported by our empirical evidence for CAZymes, we
expect that the entropic viewpoint on biochemical reactions in
general (Wicken, 1978) and the principle of constrained
entropy maximization in particular (Landau and Lifschitz,
1979; Craig, 1992) provide a sound framework applicable to
metabolic reaction networks beyond the examples presented
herein. Our concept offers a shift in perspective by suggesting
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that cellular metabolism is organized as an intricate interplay
of energy- and entropy-driven processes. Apparently, living
cells have evolved to use internal entropy gradients construc-
tively to increase efficiency and robustness.

Materials and methods

Chemicals

ATP was purchased from Roche (product no. 10519979001, Mannheim,
Germany). Maltose (product no. EC 200-716-5), a-glucans, glucose 1-
phosphate (product no. EC 260-154-1) and glycogen (from oyster,
type II) were obtained from Sigma-Aldrich (Taufkirchen, Germany).
Recombinant plastidial a-glucan phosphorylase (Phol) from Oryza
sativa was expressed and purified as described elsewhere (Fettke
et al, 2010).

Cloning procedure

For cloning of dpel (At5g64860) and dpe2 (At2g40840) from
Arabidopsis thaliana, total RNA was isolated from leaves (100 mg
fresh weight each) by using the Nucleo Spin RNA Plant Kit (Machery-
Nagel, Diiren, Germany).

For first-strand cDNA synthesis encoding DPE1, the SuperScript II
Reverse Transcriptase (Invitrogen, Darmstadt, Germany) and a
specific 3’ primer (5'-3") AAGCCGTCCGTACAATGACAAAAGATCTCT
were used following the instructions of the manufacturer. The
resulting cDNA was then amplified by PCR using the EcoRI and Xhol
linked primers (5’ forward primer (5'-3') GAATCCGATGGAGGTCGTT
TCGAGTAATTC and 3’ reverse primer (5'-3') CTCGAGAAGCCGTCCG
TACAATGAACCAAG) that include the complete cDNA except the
predicted transit sequence (135bp from the start). In a final volume
of 50 ul, the PCR mixture contained 2 ul of the reverse transcription
mixture and Phusion Taq Polymerase (Finnzymes, Espoo, Finland).
Subsequently, the 2.2-kb dpel encoding fragment was subcloned into
PGEM-T easy vector (Promega, Mannheim, Germany). Finally, the
dpel fragment was restricted by EcoRI/Xhol and ligated to the expres-
sion vector pET23b (Novagen, Darmstadt, Germany).

For cloning of dpe2, first-strand cDNA was synthesized by using
the 3’ primer (5'-3’) TTATGGGTTTGGCTTAGTCGAGCCATTGGC (see
above) and was then amplified by HF Polymerase (product no.
11732650001, Roche) by use of the following primers: 5 forward
primer (5'-3") ATGATGAATCTAGGATCTCTTTCGTTGAG and 3’ reverse
primer (5'-3') TTATGGGTTTGGCTTAGTCGAGCCATTGGC. Subsequently,
the dpe2 encoding cDNA was ligated to the pGEM-T easy vector.
Subcloning was performed by the Gateway Technology (Invitrogen)
following the instructions of the manufacturer. Subsequently, the
pDONR221 was recombined with the attB1- and attB2-flanked dpe2
cDNA (primers: attB1 (5'-3') AAAAAGCAGGCTTAATGATGAATCTAG
GAT and attB2 (5'-3') AGAAAGCTGGGTATGGGTTTGGCTTAGTCG).
Finally, the PCR product was cloned into pDEST17.

DPE1 and DPE2 were expressed in E. coli BL21 (DE3) harboring the
plasmid pET23b and pDEST17, respectively. Cells were grown in LB
medium containing 100 pgml~' ampicillin at 37°C until the suspen-
sion reached an ODggo 0f ~0.8. Following the addition of IPTG (final
concentration 1 mM), the suspension was cooled to 18°C and incu-
bated overnight. Cells were harvested, washed with 50 mM Tris-HCl
(pH 7.5), resuspended in grinding buffer (20 mM NaH,PO,, 500 mM
NaCl, 2.5 mM DTT, 20 mM imidazole and 1% [v/v] protease inhibitor
cocktail III (Calbiochem, Darmstadt, Germany), pH 7.4) and sonicated
on ice. Following centrifugation (20 min at 20 000 g), the supernatant
was passed through a nitrocellulose filter (pore size 0.45 pm) and the
filtrate was loaded onto a HisTrap-HP column (1 ml; GE Healthcare,
Miinchen, Germany). For elution, a stepwise increasing imidazole
concentration (up to 500 mM, dissolved in grinding buffer) was used.
Fractions containing the desired protein were combined, concentrated
and were then transferred to storage buffer (50 mM Hepes-KOH,
pH 7.5, 1mM EDTA, 2mM DTT), using Amicon Ultra-4 centrifugal
filter-unit concentrator (MWCO 30000, Millipore, Schwalbach am
Taunus, Germany). Finally, glycerol was added (final concentration
of 20% [v/v]) and aliquots were frozen at —80°C.
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Capillary electrophoresis

Glucans were separated from denatured proteins by using a centri-
fugal filter device (YM-30; Microcon, Millipore) and were freeze
dried. Each sample was diluted in 2 ul 0.2M 8-aminopyrene-1,3,6-
trisulfonic acid (APTS) in 15% [v/v] aqueous acetic acid plus 2 pl
1M Na-cyanoborohydride. Following incubation (4h at 37°C) and
250-500-fold dilution with water, the labeled samples were applied
to capillary electrophoresis (CE) using a PA-800 (Beckman Coulter,
Krefeld, Germany).

Protein concentrations

Soluble proteins were quantified using Bio-Rad protein assay
(Bio-Rad, Miinchen, Germany). BSA served as standard (Roth,
Karlsruhe, Germany).

Photometric assay of the activity of recombinant
DPE1 and DPE2 (PA)

Activity was measured using a slightly modified version of the coupled
photometric assay described by Lu et al (2006). For DPE1, malto-
triose (final concentration 2 mM) served as substrate. The assay of
DPE2 contained maltose (2 mM maltose) and glycogen from oyster
(Img ml~?; final concentrations each).

Long-term assay of the recombinant transferases
(LTA)

For LTA, all reaction mixtures containing 0.025% [w/v] sodium azide
were incubated at 30°C for several days. The following reaction
mixtures were used: (a) DPE1 or DPE2 (25mU each; 100pul final
volume) was incubated with 500nmol a-glucans, 2.5mM citrate-
NaOH (pH 7.0). In some experiments, the citrate buffer was replaced
by 25mM Hepes-KOH (pH 7.0). Under these conditions, the same
a-glucan patterns were observed. (b) DPE1/ATP: DPE1 (25 mU DPE1
each; 100pl final volume), 25mM Hepes-KOH (pH 7.0), 6.5mM
MgCl,, 500 nmol maltotriose or maltoheptaose, 0-500 nmol ATP and
500 mU hexokinase (from yeast, Roche). (c) Phol/G1P: Phol (0.5 ug
each; 100 pl final volume), 25 mM Hepes-KOH (pH 7.0), 1 umol G1P,
250 nmol maltotetraose or 250 nmol maltoheptaose. (d) Phol/Pi: Phol
(0.5 pg; 100l final volume), 25 mM Hepes-KOH (pH 7.0), 250 nmol
maltoheptaose, 12.5 pmol orthophosphate.

All enzymes were replaced by a fresh preparation every day. At
intervals, aliquots (equivalent to 50 nmol a-glucans) were withdrawn
and reactions were terminated by heating (95°C for 5 min). Patterns of
a-glucans were monitored by CE following coupling to APTS.

Simulations

We simulate the reaction systems by a Gillespie algorithm (Gillespie,
1977) where we consider the binding of the donor and the acceptor to
the enzyme explicitly. Thus, in each reaction step one of the following
reaction is performed E + G, — EG,, and EG,, + G;, = Gy—q + G g + E,
where E denotes the free enzyme and G, the donor with DP=n, G,, is
the acceptor with DP=m and EG, describes the enzyme-donor
complex. The reaction occurs in dependence on the propensities
defined by the number of molecules times the reaction rate constants.
In case of DPE], the binding reaction rate for the donor k4 depends on
the binding mode, that is, on the number q of glucosyl residues to be
transferred. The time-resolved experiments were simulated with
k4(g=1)=0.00025s~! and kq(g=2,3)=0.2s~! and the constant accep-
tor binding rate k,=0.2 s~ '. For DPE2, kg4 is non-zero for g=1 only and
equals k,=0.1s"'. The phosphorylase was simulated according to the
reversible reaction given by Supplementary Equation S58 where the
phosphorylation occurs with rate k,=0.1s"' and dephosphorylation
with rate kqp,=kp/exp(—Ag/RT), where the difference in bond enthalpy
Ag was fitted from experiments with an extreme 50:1 ratio of Pi:G; (see
Figure 3). For further details on the simulations, see Text S3 in
Supplementary information.
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Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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