
Research Article
Accelerating Multiple Compound Comparison Using
LINGO-Based Load-Balancing Strategies on Multi-GPUs

Chun-Yuan Lin,1 Chung-Hung Wang,1 Che-Lun Hung,2 and Yu-Shiang Lin3

1Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan 33302, Taiwan
2Department of Computer Science and Communication Engineering, Providence University, Taichung 43301, Taiwan
3Department of Computer Science, National Tsing Hua University, Hsinchu 30013, Taiwan

Correspondence should be addressed to Che-Lun Hung; clhung@pu.edu.tw

Received 19 March 2015; Accepted 2 September 2015

Academic Editor: Hai Jiang

Copyright © 2015 Chun-Yuan Lin et al.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Compound comparison is an important task for the computational chemistry. By the comparison results, potential inhibitors can
be found and then used for the pharmacy experiments.The time complexity of a pairwise compound comparison is𝑂(𝑛

2
), where 𝑛

is the maximal length of compounds. In general, the length of compounds is tens to hundreds, and the computation time is small.
However, more and more compounds have been synthesized and extracted now, even more than tens of millions. Therefore, it still
will be time-consuming when comparing with a large amount of compounds (seen as a multiple compound comparison problem,
abbreviated to MCC). The intrinsic time complexity of MCC problem is 𝑂(𝑘

2
𝑛
2
) with 𝑘 compounds of maximal length 𝑛. In this

paper, we propose a GPU-based algorithm forMCC problem, called CUDA-MCC, on single- andmulti-GPUs. Four LINGO-based
load-balancing strategies are considered in CUDA-MCC in order to accelerate the computation speed among thread blocks on
GPUs. CUDA-MCC was implemented by C+OpenMP+CUDA. CUDA-MCC achieved 45 times and 391 times faster than its CPU
version on a single NVIDIATesla K20mGPU card and a dual-NVIDIATesla K20mGPU card, respectively, under the experimental
results.

1. Introduction

A new drug to market usually costs a lot of time for the
research and the development and invests a huge amount
of money. After decoding the human genome, the molec-
ular biology and the proteomic fields make a remarkable
advance; people understand more clearly the disease gen-
eration and the disease mechanism. Computer-Aided Drug
Design (abbreviated to CADD) [1] becomes an emerging
research field, and it is helpful to improve the efficiencies of
drug design and development. CADD is a kind of approaches,
named rational drug design. Rational drug design is based
on the structure, the property, and the mechanism.There are
twomajor approaches: structure-based approach and ligand-
based approach. Researchers use these two approaches to
develop drugs depending on different drug design strategies.
Structure-based approach mainly uses the techniques of
docking [2, 3] and de novo ligand design [4], and the
ligand-based approach uses the techniques of QSAR [5] and

Pharmacophore [3, 6]mostly. Based on these two approaches,
potential inhibitors can be found for the target genes or
proteins. After that, in general, these potential inhibitors
will be used to compare with the compound databases, such
as ZINC [7], PubChem [8], and GDB-13 [9], in order to
find other compounds with similar structure. These similar
compounds may be helpful for shortening the subsequent
synthesis procedures of potential inhibitors. The potential
inhibitors and similar compounds are then used for the phar-
macy experiments to test the biological activity, toxicity, and
so forth. For well-known drugs, the compound comparison
also can be used to find the generic drugs.

Therefore, compound comparison has been an important
and commonly used task for the computational chemistry.
Many algorithms [10] have been proposed to do the com-
pound comparisons in the past. The Tanimoto coefficient
is one of the most popular measurements between two
molecules (compounds) due to its computational efficiency
and its relevance to biological profile [11, 12]. In most of

Hindawi Publishing Corporation
International Journal of Genomics
Volume 2015, Article ID 950905, 9 pages
http://dx.doi.org/10.1155/2015/950905

http://dx.doi.org/10.1155/2015/950905


2 International Journal of Genomics

the works, molecules can be represented as fingerprints and
SMILES, and then the work of compound comparison can
be seen as the string comparison problem. For example,
the LINGO method [13] proposed by Vidal et al. is a
simple algorithm to compute the chemical similarity between
two SMILES-based molecules, and it has demonstrated the
accuracy comparable to fingerprint methods [14]. For a pair-
wise compound comparison, the time complexity is 𝑂(𝑛

2
),

where 𝑛 is the maximal length of compounds. In general,
the length of compound is short (e.g., tens to hundreds)
and the computation time is small. However, it will be
time-consuming when compared with a large amount of
compounds (denoted by a multiple compound comparison
problem, abbreviated to MCC), such as ZINC database with
more than 60 million compounds and GDB-13 database with
more than 970 million small molecules. The intrinsic time
complexity of MCC problem is 𝑂(𝑘

2
𝑛
2
) with 𝑘 compounds

of maximal length 𝑛. Hence, how to accelerate the MCC
problem is an important issue.

It is a feasible direction to apply parallel technologies
and multicore devices into the above issue. The feasibility
of using massive computational devices to enhance the
performance of many programs has received considerable
attention in recent years, especially for many-core devices,
such as FPGAs [15–17] and Cell/Bes [18–20]. Current high-
end graphics processing units (abbreviated to GPUs) [21,
22], which contain up to thousands of cores per chip, are
widely used in the high performance computing community.
As a massively multithreaded processor, GPU expects the
thousands of concurrent threads to fully utilize its computing
power.The ease of accessing GPUs by using General-Purpose
computing on Graphics Processing Units (abbreviated to
GPGPU) such as Open Computing Language (abbreviated
to OpenCL, https://www.khronos.org/opencl/) and compute
unified device architecture (abbreviated to CUDA [23]),
as opposed to graphic APIs (as OpenGL), has made the
supercomputing available widely. CUDA uses a new com-
puting architecture referred to as single instruction multiple
threads (SIMT), which differs from Flynn’s classification
[24]. Importantly, the computing power and the memory
bandwidth formodernGPUs havemade porting applications
more possible.

For the MCC problem, it can be done to compare a
compound with a set of compounds (denoted by one to all,
abbreviated to O2A) or to compare two sets of compounds
(denoted by all to all, abbreviated to A2A). Several GPU-
based parallel algorithms were proposed in the past. For
example, Haque et al. proposed a GPU-based parallel algo-
rithm, called SIML (full name is Single-InstructionMultiple-
LINGO [25]), to calculate the Tanimoto coefficients between
SMILES-based molecules. The SIML algorithm is designed
based on the LINGO method, and its GPU implementation
is over 30 times faster than its CPU version. Ma et al.
presented a parallel algorithm [26] to calculate the Tan-
imoto coefficients for MCC problem between molecular
fingerprints on GPUs. The experimental results showed that
the implemented program achieved 39 times faster than
Sybyl Database Comparison program that runs on CPUs

and 10 times faster than other GPU-based programs [25,
27]. However, it is unfair to compare their algorithm based
on the fingerprints representation with other algorithms
based on the SMILES representation. The reason is that
the computation is different for these two representations.
Among these works, it is still insufficient for designing a
GPU-based algorithm for MCC problem. At first, most of
these works were focused on single-GPU card. Second, their
tests were based on old GPU cards and CUDA capability.
Third, they did not apply various load-balancing strategies
into theirworks and thendiscuss their effects. A suitable load-
balancing strategy can accelerate the computation speed on
single- and multi-GPU cards.

Hence, in this paper, we propose a GPU-based algorithm
for MCC problem (O2A and A2A) on single- and multi-
GPUs, called CUDA-MCC. As the work [25], CUDA-MCC
is also based on the LINGO method to calculate the Tan-
imoto coefficients between SMILES-based molecules. Four
LINGO-based load-balancing strategies were also applied
into CUDA-MCC by considering the LINGO score, LINGO
number, LINGO length, and LINGOmagnitude, respectively.
CUDA-MCC was implemented by C+OpenMP+CUDA for
single- and multi-GPU cards. The experimental tests were
done on single NVIDIA Tesla K20m GPU card and dual-
NVIDIA Tesla K20m GPU cards, and the experimental
results showed that CUDA-MCC can achieve 45 times and
391 times faster than its CPU version on the above experi-
mental environments, respectively.

2. Background Knowledge

The LINGOmethod is to model a molecule as a collection of
substrings of SMILES representation (seen as a string). Thus,
a SMILES string is fragmented into all substrings with length
of 𝑞 by using the sliding window scheme. These substrings
are stored as a set of 𝑞-Lingos. In addition, the information
of each 𝑞-Lingo is also stored in order to do the following
comparison. For example, as shown in the literature [25],
the score, length, number, and magnitude of each 𝑞-Lingo
are stored. When doing the pairwise compound comparison,
two sets of 𝑞-Lingos from two molecules are used to find
the same Lingos. The number of the same Lingos is then
used to calculate the Tanimoto coefficients. The details of
LINGOmethod can be found in the literature [13].Therefore,
there are four LINGO-based load-balancing strategies by
considering the score, length, number, andmagnitude of each
molecule represented by 𝑞-Lingos.

CUDA is an extension of commonly used programming
languages, such as C/C++, in which users can write scalable
multithreading programs for various applications. In general,
the CUDA program is implemented in two parts: host and
device.The host part is executed on CPU, and the device part
is executed on GPU. The function executed on the device
part is called a kernel. The kernel can be invoked as a set of
concurrently executing threads. These threads are grouped
into a hierarchical organization which can be combined into
thread blocks and grids. A grid is a set of independent thread
blocks, and a thread block contains many threads.The size of



International Journal of Genomics 3

grid is the number of thread blocks per grid, and the size of
thread block is the number of threads per thread block.

Threads in a thread block can communicate and syn-
chronize with each other. Threads within a thread block can
communicate through a per thread block shared memory,
whereas threads in the different thread blocks fail to com-
municate or synchronize directly. Besides shared memory,
five memory types are per grid private local memory, global
memory for data shared by all thread blocks, texturememory,
constant memory, and registers. Of these memory types,
constant memory and texture memory can be regarded as
fast read only caches; the fastest memories are the registers
and shared memory. The global memory, local memory,
texture memory, and constant memory are located on the
GPU’s memory. Besides shared memory accessed by a single
thread block and register only accessed by a single thread,
the other memory types can be used by all of the threads.
The caches of texture memory and constant memory are
limited to 8KB per streaming multiprocessor. The optimum
access strategy for constant memory is all threads reading
the same memory address. The cache of texture memory is
designed for threads to read through the proximity of the
address in order to achieve an improved reading efficiency.
Fermi and Kepler architectures have real configurable L1
per streaming multiprocessor and unified L2 caches among
streaming multiprocessors. Hence, L2 caches can be accessed
by globalmemory and each streamingmultiprocessor can use
the L1 caches and shared memory.

The basic processing unit in NVIDIA’s GPU architecture
is called the streaming processor. In Fermi and Kepler
architectures, the basic processing unit is called CUDA cores.
Many streaming processors perform the computations on
GPU. Several streaming processors can be integrated into a
streaming multiprocessor according to various architectures,
such as 32 and 192 streaming processors per streaming mul-
tiprocessor for Fermi and Kepler architectures, respectively.
While the program runs the kernel, the device schedules
thread blocks for the execution on the streaming multi-
processor. The SIMT scheme refers to threads running on
the streaming multiprocessor in a small group of 32, called
a warp. The warp scheduler simultaneously schedules and
dispatches instructions.

3. Method

In CUDA-MCC, the goal is to compare two sets of com-
pounds (A2A) listed as Query and Database at first and
then find the compounds in Database with more than 0.85
Tanimoto coefficients for each compound in Query. CUDA-
MCC also can be used to do the O2A comparison when
the Query is with only one compound. For each compound
in Query and Database, it should be fragmented into a set
of 𝑞-Lingos mentioned in Section 2, respectively. Grant et
al. [14] have demonstrated that setting 𝑞 = 4 can have the
best performance in various cheminformatics applications.
Hence, in CUDA-MCC, the 𝑞 is set to 4. Since this procedure
is only done once, a preprocessing phase is designed in
CUDA-MCC to do this procedure on CPU. After this phase,

the information of Query and Database is transferred from
CPU to GPU, and then a GPU implementation of comparison
phase is designed in CUDA-MCC in order to accelerate the
computation speed. Finally, the Tanimoto coefficient of each
pair of compounds is stored in a result array onGPU, and then
this result array will be transferred from GPU to CPU. All
the compounds in Database with more than 0.85 Tanimoto
coefficients for each compound in Query are reported in
the output phase on CPU. The flowchart of three phases in
CUDA-MCC is shown in Figure 1. In Figure 1, the first three
processes forQuery andDatabase are the preprocessing phase,
followed by the comparison phase, and output phase which is
the last phase. The details of these three phases are described
below.

3.1. Preprocessing Phase. This phase can be divided into three
parts: reading files, Lingo construction, and Lingo sorting.
In the reading files part, there are two databases Query
and Database, as input files should be read from the disk
to memory space on CPU. For these two databases, the
compounds are stored in two-dimensional string arrays,
𝑄 and 𝐷𝑏, respectively. In 𝑄 and 𝐷𝑏, each compound is
represented as the SMILES code, as shown in Figure 2.

After that, in the Lingo construction part, each SMILES
code (as a string) is fragmented into a set of 4-Lingos (as
substrings) by using the slidingwindow schemewith an offset
1 on CPU. For a 4-Lingo, it will be transformed into a 32-
bit integer (called LINGO score) according to the ASCII
code table in order to accelerate the comparison in the
comparison phase. For a SMILES code with length 𝑙, it can
be fragmented into 𝑙-3 4-Lingos and this value 𝑙 is called
LINGO length. Hence, for a SMILES code, a temporary
one-dimensional integer array and an integer variable are
used to store the LINGO score of each 4-Lingo and LINGO
length, respectively. Since there are possible repeats (for each
4-Lingo) in this array, the number of repeats for each 4-
Lingo is calculated. An integer variable, LINGO number, for
each LINGO score, is used to record the times of a 4-Lingo
appearing in this compound; for example, for a 4-Lingo, 1
represents only once and two or more represents the repeats.
The number of 4-Lingos without repeats is also calculated
and then recorded in an integer variable,LINGOmagnitude.
For a compound, there are four LINGO types: LINGO scores,
LINGO length, LINGOnumbers, andLINGOmagnitude.An
example of a SMILES code in the preprocessing phase is shown
in Figure 2. In order to simplify the figure, the remaining
LINGOscores of nine 4-Lingos are omitted in Figure 2. In this
case, the LINGO number is 1 for each 4-Lingo. The LINGO
length is 13 and the LINGOmagnitude is 10 which is equal to
the number of 4-Lingos.

For a pair of compounds, the Tanimoto coefficient is
calculated according to the number of similar 4-Lingos.
Therefore, in order to accelerate the computation and reduce
the unnecessary comparisons in the comparison phase, for
each compound, its LINGO scores are sorted by using the
quick sort algorithm on CPU in the Lingo sorting part.There-
fore, forQuery andDatabase, a two-dimensional integer array
is used to store the sorted LINGO scores of each compound
(4-Lingos); a two-dimensional integer array is used to store



4 International Journal of Genomics

Preprocessing phase

Comparison phase

Output phase

Query

C(=O)NCCSCNC Query1

Database

C [C@@H]C Db01

C(=O)NCSCNC Db02
SMILES format

Db SMILES Query SMILES

Db LINGO Query LINGO

QueryDb

Tanimoto =

If one finds

Db is similar to query

Db02 Query

SMILE: C(=O)NCSCNC

C(=O)NCSCNC
C(=O)NCSCNC
C(=O)NCSCNC
C(=O)NCSCNC
C(=O)NCSCNC
C(=O)NCSCNC
C(=O)NCSCNC
C(=O)NCSCNC

LINGO.length = 11
LINGO.magnitude = 10

One query LINGO array

All Db LINGO arrays

Grid Block 0
Query versus Db[0] Query versus Db[1] Query versus Db[2]

Query versus Db[3] Query versus Db[4] Query versus Db[5]

Query versus Db[6] Query versus Db[7] Query versus Db[8]

Thread 0 Thread 1 Thread 2

Thread 3 Thread 4 Thread 5

Thread 6 Thread 7 Thread 8

Tanimoto ≥ 0.85,

LINGO[5]:NCSC

LINGO[5].SCORE = 85597

(78 × 10
3
+ 67 × 10

7
+ 83 ∗ 10 + 67 = 85597)

LINGO[5].NUM = 1

Db Query

· · ·
· · ·

Figure 1: The flowchart of three phases in CUDA-MCC.

Decomposition:

LINGO[0] C(=O)NCSCNCC1 
LINGO[1] C(=O)NCSCNCC1 
LINGO[2] C(=O)NCSCNCC1 
LINGO[3] C(=O)NCSCNCC1 
LINGO[4] C(=O)NCSCNCC1 
LINGO[5] C(=O)NCSCNCC1 
LINGO[6] C(=O)NCSCNCC1 
LINGO[7] C(=O)NCSCNCC1 
LINGO[8] C(=O)NCSCNCC1 
LINGO[9] C(=O)NCSCNCC1 

SMILES code: C(=O)NCSCNCC1 

LINGO length: 13
LINGO magnitude: 10

From LINGO[0]: C(=O
LINGO score = 71689

LINGO number = 1
(67 ∗ 10

3
+ 40 ∗ 10

2
+ 61 ∗ 10 + 79 = 71689)

Figure 2: An example of a SMILES code in the preprocessing phase.



International Journal of Genomics 5

LINGO constructor
struct Lingo
{

𝑖𝑛𝑡
∗ Score;

int Length;
int Magnitude;
𝑖𝑛𝑡
∗ Number;

𝑐ℎ𝑎𝑟
∗ index;

int sumOfScore;
int sumOfNum;

}

LINGONumber
for (int 𝑥 = 0; 𝑥 < 𝐷𝑏 𝑇𝑦𝑝𝑒; 𝑥++)

𝐷𝑏[𝑥].𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 = 0;
int 𝑙𝑒𝑛 = 𝐷𝑏[𝑥].Length;
for (int 𝑦 = 0; 𝑦 < 𝑙𝑒𝑛; 𝑦++)

for (int 𝑧 = 0; 𝑧 < 𝑙𝑒𝑛; 𝑧++)
if (Db[x].Score[𝑦] ==𝐷𝑏[𝑥].Score[z])

Db[x].Number[y]++;
LINGO Score

for (int 𝑥 = 0; 𝑥 < 𝐷𝑏 𝑇𝑦𝑝𝑒; 𝑥++)
int 𝑙𝑒𝑛 = 𝐷𝑏[𝑥].Length;
for (int 𝑦 = 0; 𝑦 < 𝑙𝑒𝑛; 𝑦++)
for (int 𝑧 = 0; 𝑧 < 4; 𝑧++)
𝐷𝑏[𝑥].Score[𝑦]+ = (𝑖𝑛𝑡)(((int)Db smile[𝑥][𝑦 + 𝑧] + 128) ∗ pow (10, 𝑧));

LINGOMagnitude
for (int 𝑥 = 0, 𝑡𝑚𝑝 = 0; 𝑥 < 𝐷𝑏 𝑇𝑦𝑝𝑒; 𝑥++)

𝑡𝑚𝑝+ = 𝐷𝑏[𝑥].Length;
for (int 𝑦 = 0; 𝑦 < 𝐷𝑏[𝑥].Length; 𝑦++)
𝐷𝑏[𝑥].𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 = 𝐷𝑏[𝑥].Number[𝑦];

LINGO Length
for (int 𝑥 = 0; 𝑥 < 𝐷𝑏 𝑇𝑦𝑝𝑒; 𝑥++)

int 𝑙𝑒𝑛 = 𝑠𝑡𝑟𝑙𝑒𝑛(𝐷𝑏 𝑠𝑚𝑖𝑙𝑒[𝑥]);
𝐷𝑏[𝑥].𝐿𝑒𝑛𝑔𝑡ℎ = 𝑙𝑒𝑛;

Pseudocode 1: Pseudocodes of LINGO constructor, LINGO number, LINGO score, LINGO magnitude, and LINGO length.

the LINGO numbers of each 4-Lingo; a one-dimensional
integer array is used to store the LINGO lengths of each
compound; a one-dimensional integer array is used to store
the LINGO magnitudes of each compound. These arrays
mentioned above can be packaged in a complex structure
array (LINGO constructor). The information was stored in a
complex structure array forQuery andDatabase, respectively,
as shown in Figure 1.

The pseudocodes of LINGO constructor, LINGO num-
ber, LINGO score, LINGOmagnitude, and LINGO length are
listed in Pseudocode 1.

In this paper, we focused on the comparison phase imple-
mented on GPU.Therefore, the above three parts are all done
on CPU in order to simplify the problem in CUDA-MCC. In
practice, the second and third parts also can be implemented
on GPUs. When the second part is implemented on GPU,
the memory usage should be considered. Since the number
of LINGO magnitudes is unknown after the reading files
part, the fixed (large) memory space of structure array in
each compound should be allocated on GPU at first. By this
way, the memory usage may be large and most memory
space is wasted. Four LINGO types of each compound can

be calculated by a thread; hence, thousands of concurrent
threads can be used to process these compounds quickly.
After that, the wastedmemory space could be removed by the
memory reallocated procedure and the prefix sum algorithm.
It is easy to reallocate the previous structure array into a new
one on GPU by all threads according to the indices, which is
computed by GPU-based prefix sum algorithm published in
the past. For the implementation of the third part on GPU,
many GPU-based sorting algorithms have been proposed
in the past. These GPU-based sorting algorithms can be
modified to sort these LINGO scores quickly on GPU. In
the following experimental tests, the computation time of
preprocessing phase is not included in the time analysis; it only
includes the time of comparison phase and output phase.

3.2. Comparison Phase. Before designing the comparison
phase in CUDA-MCC, how to assign the comparison tasks
on GPUs should be discussed. To compare two sets of
compounds (A2A) can be seen as to compare a compound
with a set of compounds repeatedly (O2A). Therefore, in
CUDA-MCC, a compound in Query will be used to compare



6 International Journal of Genomics

global void siml (const struct 𝐿𝑖𝑛𝑔𝑜∗ 𝑄 𝑑, const struct 𝐿𝑖𝑛𝑔𝑜∗ Db d,
const 𝑖𝑛𝑡∗ 𝑄 𝑃𝑜𝑠, const 𝑖𝑛𝑡∗ Db Pos,
const 𝑖𝑛𝑡∗ 𝑄 𝑆𝑐𝑜𝑟𝑒, const 𝑖𝑛𝑡∗ 𝑄 𝑁𝑢𝑚𝑏𝑒𝑟,
const 𝑖𝑛𝑡∗ 𝐷𝑏 𝑆𝑐𝑜𝑟𝑒, 𝑖𝑛𝑡∗ 𝐷𝑏 𝑁𝑢𝑚𝑏𝑒𝑟,
𝑓𝑙𝑜𝑎𝑡

∗ Tanimoto, int 𝑥)
{

int 𝑖𝑑𝑥 = 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥.𝑥
∗blockDim.𝑥 + 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥.𝑥;

float 𝑠𝑢𝑚 = 0;
int 𝑖𝑛𝑠𝑐𝑡 = 0;
int 𝑖 = 0;
int 𝑗 = 0;
float 𝑡 = 0;
while (𝑖 < 𝑄 𝑑[𝑥].Length && 𝑗 < 𝐷𝑏 𝑑[𝑖𝑑𝑥].Length)

if (𝑄 𝑆𝑐𝑜𝑟𝑒[𝑖 + 𝑄 𝑃𝑜𝑠[𝑥]] ==𝐷𝑏 𝑆𝑐𝑜𝑟𝑒[𝐷𝑏 𝑃𝑜𝑠[𝑖𝑑𝑥] + 𝑗])
if (𝑄 𝑁𝑢𝑚𝑏𝑒𝑟[𝑖 + 𝑄 𝑃𝑜𝑠[𝑥]] < 𝐷𝑏 𝑁𝑢𝑚𝑏𝑒𝑟[𝐷𝑏 𝑃𝑜𝑠[𝑖𝑑𝑥] + 𝑗])

𝑖𝑛𝑠𝑐𝑡+ = 𝑄 𝑁𝑢𝑚𝑏𝑒𝑟[𝑖 + 𝑄 𝑃𝑜𝑠[𝑥]]; 𝑖++; 𝑗++;
else

𝑖𝑛𝑠𝑐𝑡+ = 𝐷𝑏 𝑁𝑢𝑚𝑏𝑒𝑟[𝐷𝑏 𝑃𝑜𝑠[𝑖𝑑𝑥] + 𝑗]; 𝑖++; 𝑗++;
else
if (𝑄 𝑆𝑐𝑜𝑟𝑒[𝑖 + 𝑄 𝑃𝑜𝑠[𝑥]] < 𝐷𝑏 𝑆𝑐𝑜𝑟𝑒[𝐷𝑏 𝑃𝑜𝑠[𝑖𝑑𝑥] + 𝑗]) 𝑖++;
else 𝑗++;

𝑠𝑢𝑚 = 𝑄 𝑑[𝑥].𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 + 𝐷𝑏 𝑑[𝑖𝑑𝑥].Magnitude;
𝑡 = (𝑖𝑛𝑠𝑐𝑡/(𝑠𝑢𝑚 − 𝑖𝑛𝑠𝑐𝑡));
if (𝑡 > 0.85)
Tanimoto[𝑥] = 𝑡;

}

Pseudocode 2: Pseudocode of computing Tanimoto coefficient.

with all compounds in Database by all threads on GPUs
when executing the kernel function once. In a thread block,
each thread is used to compare a compound in Query with
one of the compounds in Database. Hence, the computing
workload of each thread in a thread block should be equal
in order to achieve the high performance. For multi-GPUs,
the computing workload of each GPU card should also be the
same.

A load-balancing strategy can be used to accelerate
the computation speed for single- and multi-GPU cards.
However, how to estimate the computing workload of a
comparison is a problem, since only a compound in Query
is used when executing the kernel function once. The com-
puting workloads only need to consider the compounds
in Database. The LINGO length and LINGO magnitude
can be used directly as the measurements of computing
workloads. The sums of LINGO scores and LINGO num-
bers can be calculated as shown in the pseudocodes of
preprocessing phase, respectively, and then they are used as
other measurements of computing workloads. Four LINGO-
based load-balancing strategies are applied into CUDA-MCC
by considering these four LINGO types. As mentioned in
the preprocessing phase, the list of compounds in Database
(structure array of Database) is sorted on CPU. In the
comparison phase, on single-GPU, the structure arrays of
Query (𝑄) and Database (𝐷𝑏) are transferred from CPU to
GPU by using the following two libraries:

cudaMemcpy(Db d,Db, sizeof(struct Lingo)∗Db Type,
cudaMemcpyHostToDevice);
cudaMemcpy(Q d, Q, sizeof(struct Lingo)∗Q Type,
cudaMemcpyHostToDevice).

These two structure arrays are stored in the global
memory.The time of transferring structure arrays from CPU
to GPU is included in the time of comparison phase. A two-
dimensional floating point array (result array) with a size
of 𝑘 × 𝑟, where 𝑘 and 𝑟 are the number of compounds in
Query and Database, respectively, is created in the global
memory. This array is used to store the computed Tanimoto
coefficient for each comparison. For each comparison, the
sorted LINGO scores of a compound in Query are used to
compare with other sorted LINGO scores of a compound
in Database. It is a simple job to find the same LINGO
scores among these two compounds. By accumulating the
LINGO numbers corresponding to the same LINGO scores,
the Tanimoto coefficient of a comparison can be computed.

The pseudocode of computing Tanimoto coefficient is
listed in Pseudocode 2.

On multi-GPUs, the structure array of Query will be
divided into several parts according to the computing capa-
bilities of GPU cards. Then, these structure subarrays of
Query are transferred from CPU to the global memory of
the corresponding GPU, respectively. The complete structure
array of Database also is transferred from CPU to the global



International Journal of Genomics 7

If (Tanimoto[𝑖𝑑𝑥 + 𝑡ℎ𝑟𝑒𝑎𝑑𝑆ℎ𝑖𝑓𝑡] > 0.85)
device Tanimoto[𝑖𝑑𝑥] = 𝑇𝑎𝑛𝑖𝑚𝑜𝑡𝑜[𝑖𝑑𝑥 + 𝑡ℎ𝑟𝑒𝑎𝑑𝑆ℎ𝑖𝑓𝑡];
cudaMemcpy(Tanimoto, device Tanimoto, sizeof (int)∗𝐷 𝑇𝑦𝑝𝑒

∗
𝑄𝑢𝑒𝑟𝑦 𝑇𝑦𝑝𝑒, cudaMemcpyDeviceToHost);

Pseudocode 3: Pseudocode of output phase.

memory of each GPU, respectively. For each GPU, a two-
dimensional floating point array (partial result array) with a
size of𝑚× 𝑟, where𝑚 is the number of compounds in Query
assigned to this GPU, is created in the global memory to store
the computed Tanimoto coefficient for each comparison.The
job of each comparison is similar to that on a single-GPU.

3.3. Output Phase. After the comparison phase, on single-
GPU, the result array is transferred from GPU to CPU;
on multi-GPUs, the partial result arrays are transferred
from GPUs to CPU, respectively, and then these partial
result arrays are merged into a complete result array. For
each compound in Query, the compounds in Database with
more than 0.85 Tanimoto coefficients are reported on CPU,
respectively. The threshold 0.85 in CUDA-MCC is set up
in order to report the compounds with the most (possible)
similar structure. It can be adjusted to report the results
according to the requirements, even for complete results.

The pseudocode of output phase is listed in Pseudocode 3.

4. Experiment Results

In this work, CUDA-MCC was implemented by
C+OpenMP+CUDA. In order to evaluate CUDA-MCC
on single- and multi-GPUs, two machines are used in
the experimental tests. The first machine has eight CPU
cores; each core is Intel Xeon E5-2670CPU of 2.6GHz and
single NVIDIA Tesla K20m GPU card with 2496 core of
each 0.71 GHz. The second machine has eight CPU cores;
each core is Intel Xeon E5-2650CPU of 2.0GHz and dual-
NVIDIA Tesla K20mGPU card.There are three test sets used
in the following tests: (s1) ten thousand compounds inQuery
and Database, respectively, (s2) thirty thousand compounds
in Query and Database, respectively, and (s3) fifty thousand
compounds in Query and Database, respectively. The test
compounds are randomly selected from the ZINC database.

The first test is to evaluate CUDA-MCC for these three
test sets on singleNVIDIATeslaK20mGPUcard inmachines
1 and 2. Since the number of threads in a thread block will
affect the performance by CUDA-MCC, various numbers of
threads in a thread block are used in the tests. In addition,
four LINGO-based load-balancing strategies are also applied
into these three test sets by considering the LINGO score
(denoted by S), LINGO number (denoted by N), LINGO
length (denoted by L), and LINGO magnitude (denoted by
M). Figure 3(a) shows the speedup ratios of various numbers
of threads in a thread block for these three test sets by CUDA-
MCC on single NVIDIA Tesla K20mGPU card in machine 1.
The speedup ratios by CUDA-MCC for four LINGO-based
load-balancing strategies in these three test sets on single

NVIDIA Tesla K20m GPU card in machine 1 are shown
in Figure 3(b). In Figure 3(a), the speedup ratio increases
when the number of threads in a thread block increases.
Overall, 1024 threads in a thread block have the best speedup
ratios among three test sets, and CUDA-MCC achieves 45
times faster than its CPU version on single NVIDIA Tesla
K20m GPU card in machine 1. In Figure 3(b), CUDA-MCC
achieves more than 35 times faster than its CPU version on
single NVIDIA Tesla K20m GPU card in machine 1 for three
test sets by each load-balancing strategy. The load-balancing
strategies, S and M, outperform strategies L and N; however,
the difference between them is very small. The performance
and observations by CUDA-MCC on single NVIDIA Tesla
K20mGPU card inmachine 2 are similar to those inmachine
1.

The second test is to evaluate CUDA-MCC for these
three test sets on dual-NVIDIA Tesla K20m GPU card in
machine 2. The goals of this test are to demonstrate that
CUDA-MCC is useful for multi-GPUs, and the speedup
ratios can be improved by using multi-GPU cards. Figure 4
shows the comparisons of speedup ratios by CUDA-MCC
on single NVIDIA Tesla K20m GPU card and dual-NVIDIA
Tesla K20m GPU card in machine 2 for three test sets.
From Figure 4, the speedup ratios by CUDA-MCC on dual-
NVIDIATesla K20mGPU card inmachine 2 are significantly
larger than those by CUDA-MCC on single NVIDIA Tesla
K20m GPU card in machine 2. CUDA-MCC achieves 391
times faster than its CPU version on dual-NVIDIA Tesla
K20m GPU card in machine 2. The execution time of
CUDA-MCC includes (𝑡1) the time of transferring structure
arrays (structure subarrays on multi-GPUs) from CPU to
(corresponding) GPU in the comparison phase, (𝑡2) the time
of comparing two sets of compounds in the comparison phase,
(𝑡3) the time of transferring (partial result arrays on multi-
GPUs) result array from (corresponding) GPU to CPU in
the output phase, and (𝑡4) the reporting (and the time to
merge partial result arrays into a complete result array on
multi-GPUs) time to report the compounds with similar
structure. When running CUDA-MCC onmulti-GPUs, both
sizes of structure array in Query and result array, needed to
be transferred betweenCPU and oneGPU, reduce.Therefore,
times 𝑡1 and 𝑡3 reduce greatly and the speedup ratio increases.

5. Conclusion

In this paper, a GPU-based algorithm, CUDA-MCC, was
proposed and implemented to do the MCC problem on
single- and multi-GPUs. Four LINGO-based load-balancing
strategies were applied into CUDA-MCC, and then discuss
the effects by considering the LINGO score, LINGO number,



8 International Journal of Genomics

0
5

10
15
20
25
30
35
40
45
50

32 64 128 256 512 1024

Sp
ee

du
p 

ra
tio

Threads per thread block

1w
3w
5w

(a)

0
5

10
15
20
25
30
35
40
45
50

S N M L

Sp
ee

du
p 

ra
tio

LINGO-based strategies

1w
3w
5w

(b)

Figure 3:The speedup ratios for various numbers of threads in a thread block and four LINGO-based load-balancing strategies on three test
sets and single NVIDIA Tesla K20m GPU card in machine 1.

0
50

100
150
200
250
300
350
400

1 3 5

Sp
ee

du
p 

ra
tio

Test set (w)

S

Single K20m
Dual K20m

0
50

100
150
200
250
300
350
400

Sp
ee

du
p 

ra
tio

N

1 3 5
Test set (w)

0
50

100
150
200
250
300
350
400

Sp
ee

du
p 

ra
tio

M

1 3 5
Test set (w)

0
50

100
150
200
250
300
350
400

Sp
ee

du
p 

ra
tio

L

1 3 5
Test set (w)

Single K20m
Dual K20m

Single K20m
Dual K20m

Single K20m
Dual K20m

Figure 4:The comparisons of speedup ratios by CUDA-MCC on single NVIDIA Tesla K20mGPU card and dual-NVIDIA Tesla K20mGPU
card in machine 2 for three test sets.

LINGO length, and LINGO magnitude, respectively. Two
machines with single NVIDIA Tesla K20m GPU card and
dual-NVIDIA Tesla K20m GPU card were used to evalu-
ate CUDA-MCC, respectively. From experimental results,
CUDA-MCC achieved 45 times and 391 times faster than

its CPU version on single NVIDIA Tesla K20m GPU card
and dual-NVIDIA Tesla K20m GPU card, respectively. Two
observations were summarized in this work: (1) the speedup
ratio increases when the number of threads in a thread block
increases and (2) the LINGO score and LINGO magnitude



International Journal of Genomics 9

strategies outperform other two strategies. However, the
difference between them is very small.There are two possible
reasons. First, the size of test sets is not enough to show the
difference. Second, the benefits of estimating the computing
workload by using these four LINGO types are the same.
CUDA-MCC is useful for O2A and A2A comparisons on
single- and multi-GPUs.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

Part of this work was supported by the Ministry of Science
and Technology under Grants MOST 104-2221-E-182-050,
MOST 104-2221-E-182-051, MOST 103-2221-E-126-013, and
MOST 103-2632-E-126-001-MY3. The authors would like to
thank the anonymous reviewers and experts who discussed
the paper with them.

References

[1] H. V. D. John, “Computer-aided drug design: the next 20 years,”
Journal of Computer-Aided Molecular Design, vol. 21, no. 10-11,
pp. 591–601, 2007.

[2] A. R. Leach, B. K. Shoichet, and C. E. Peishoff, “Prediction of
protein-ligand interactions.Docking and scoring: successes and
gaps,” Journal of Medicinal Chemistry, vol. 49, no. 20, pp. 5851–
5855, 2006.

[3] M. Ravikumar, S. Pavan, S. Bairy et al., “Virtual screening
of cathepsin K inhibitors using docking and pharmacophore
models,” Chemical Biology and Drug Design, vol. 72, no. 1, pp.
79–90, 2008.

[4] W. F. DeGrado, C. M. Summa, V. Pavone, F. Nastri, and A.
Lombardi, “De novo design and structural characterization of
proteins and metalloproteins,” Annual Review of Biochemistry,
vol. 68, pp. 779–819, 1999.

[5] R. R. S. Pissurlenkar, M. S. Shaikh, and E. C. Coutinho, “3D-
QSAR studies of Dipeptidyl peptidase IV inhibitors using a
docking based alignment,” Journal of Molecular Modeling, vol.
13, no. 10, pp. 1047–1071, 2007.

[6] A. Lauria, M. Ippolito, M. Fazzari et al., “IKK-beta inhibitors:
an analysis of drug-receptor interaction by using molecular
docking and pharmacophore 3D-QSAR approaches,” Journal of
Molecular Graphics andModelling, vol. 29, no. 1, pp. 72–81, 2010.

[7] J. J. Irwin and B. K. Shoichet, “ZINC-A free database of com-
mercially available compounds for virtual screening,” Journal of
Chemical Information and Modeling, vol. 45, no. 1, pp. 177–182,
2005.

[8] Y. Wang, J. Xiao, T. O. Suzek, J. Zhang, J. Wang, and S. H.
Bryant, “PubChem: a public information system for analyzing
bioactivities of small molecules,”Nucleic Acids Research, vol. 37,
no. 2, pp. W623–W633, 2009.

[9] L. C. Blum and J.-L. Reymond, “970 Million druglike small
molecules for virtual screening in the chemical universe
database GDB-13,” Journal of the American Chemical Society,
vol. 131, no. 25, pp. 8732–8733, 2009.

[10] N. Nikolova and J. Jaworska, “Approaches toMeasure Chemical
Similarity—aReview,”QSARandCombinatorial Science, vol. 22,
no. 9-10, pp. 1006–1026, 2004.

[11] J. Bajorath, “Integration of virtual and high-throughput screen-
ing,” Nature Reviews Drug Discovery, vol. 1, no. 11, pp. 882–894,
2002.

[12] Y. C.Martin, J. L. Kofron, and L.M. Traphagen, “Do structurally
similar molecules have similar biological activity?” Journal of
Medicinal Chemistry, vol. 45, no. 19, pp. 4350–4358, 2002.

[13] D. Vidal, M. Thormann, and M. Pons, “LINGO, an efficient
holographic text based method to calculate biophysical prop-
erties and intermolecular similarities,” Journal of Chemical
Information and Modeling, vol. 45, no. 2, pp. 386–393, 2005.

[14] J. A. Grant, J. A. Haigh, B. T. Pickup, A. Nicholls, and R. A. Sayle,
“Lingos, finite state machines, and fast similarity searching,”
Journal of Chemical Information and Modeling, vol. 46, no. 5,
pp. 1912–1918, 2006.

[15] T. Oliver, B. Schmidt, D. Nathan, R. Clemens, andD. L.Maskell,
“Using reconfigurable hardware to accelerate multiple sequence
alignment with ClustalW,” Bioinformatics, vol. 21, no. 16, pp.
3431–3432, 2005.

[16] T. F. Oliver, B. Schmidt, and D. L. Maskell, “Reconfigurable
architectures for bio-sequence database scanning on FPGAs,”
IEEE Transactions on Circuits and Systems II: Express Briefs, vol.
52, no. 12, pp. 851–855, 2005.

[17] I. T. S. Li, W. Shum, and K. Truong, “160-fold acceleration of
the Smith-Waterman algorithmusing a field programmable gate
array (FPGA),” BMC Bioinformatics, vol. 8, article 185, 2007.

[18] A. Szalkowski, C. Ledergerber, P. Krähenbühl, andC.Dessimoz,
“SWPS3—fast multi-threaded vectorized Smith-Waterman for
IBMCell/B.E. and×86/SSE2,”BMCResearchNotes, vol. 1, article
107, 2008.

[19] M. S. Farrar, “Optimizing Smith-Waterman for the Cell Broad
Band Engine,” http://cudasw.sourceforge.net/sw-cellbe.pdf.

[20] A. Wirawan, C. K. Kwoh, N. T. Hieu, and B. Schmidt, “CBESW:
sequence alignment on the playstation 3,” BMC Bioinformatics,
vol. 9, article 377, 2008.

[21] Y. Liu,W.Huang, J. Johnson, and S.H.Vaidya, “GPUaccelerated
Smith-waterman,” in Computational Science—ICCS 2006, vol.
3994 of Lecture Notes in Computer Science, part 4, pp. 188–195,
Springer, Berlin, Germany, 2006.

[22] W. Liu, B. Schmidt, G. Voss, A. Schroder, andW.Muller-Wittig,
“Bio-sequence database scanning on a GPU,” in Proceedings
of the 20th International Parallel and Distributed Processing
Symposium (IPDPS ’06), IEEE, Rhodes Island, Greece, April
2006.

[23] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable
parallel programming with CUDA,” ACM Queue, vol. 6, no. 2,
pp. 40–53, 2008.

[24] M. Flynn, “Some computer organizations and their effective-
ness,” IEEE Transactions on Computers, vol. 21, pp. 948–960,
1972.

[25] I. S. Haque, V. S. Pande, and W. P. Walters, “SIML: a fast SIMD
algorithm for calculating LINGOchemical similarities onGPUs
and CPUs,” Journal of Chemical Information and Modeling, vol.
50, no. 4, pp. 560–564, 2010.

[26] C.Ma, L.Wang, and X.-Q. Xie, “GPU accelerated chemical sim-
ilarity calculation for compound library comparison,” Journal of
Chemical Information andModeling, vol. 51, no. 7, pp. 1521–1527,
2011.

[27] Q. Liao, J.Wang, Y.Webster, and I. A.Watson, “GPU accelerated
support vectormachines formining high-throughput screening
data,” Journal of Chemical Information andModeling, vol. 49, no.
12, pp. 2718–2725, 2009.


