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Abstract

Background: Artificial intelligence (AI) technology has been increasingly developed
and studied in cardiac imaging. This systematic review summarizes the latest
progress of image segmentation, quantification, and the clinical application of AI in
evaluating cardiac adipose tissue.

Methods: We exhaustively searched PubMed and the Web of Science for
publications prior to 30 April 2021. The search included eligible studies that used AI
for image analysis of epicardial adipose tissue (EAT) or pericoronary adipose tissue
(PCAT). The risk of bias and concerns regarding applicability were assessed with the
Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool.

Results: Of the 140 initially identified citation records, 19 high-quality studies were
eligible for this systematic review, including 15 (79%) on the image segmentation
and quantification of EAT or PCAT and 4 (21%) on the clinical application of EAT or
PCAT in cardiovascular diseases. All 19 included studies were rated as low risk of bias
in terms of flow and timing, reference standards, and the index test and as having
low concern of applicability in terms of reference standards and patient selection,
but 16 (84%) studies did not conduct external validation.

Conclusion: AI technology can provide accurate and quicker methods to segment
and quantify EAT and PCAT images and shows potential value in the diagnosis and
risk prediction of cardiovascular diseases. AI is expected to expand the value of
cardiac adipose tissue imaging.

Keywords: Artificial intelligence, Epicardial adipose tissue, Pericoronary adipose
tissue, Machine learning, Deep learning, Radiomics

Background
Artificial intelligence (AI) refers to technology in which computers or other machines

simulate human intelligence to enable problem solving (Chartrand et al. 2017). The

progress of AI has gradually permeated the medical field, and its fusion with medical

imaging is constantly deepening (Yu et al. 2018). A large amount of image data col-

lected in clinical practice is a rich resource for AI, which significantly improves AI
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models. In radiology, AI excels at identifying complex image patterns and offers more

quantitative and objective evaluation methods (Hosny et al. 2018b).

Machine learning and deep learning are AI methods. Machine learning refers to

computer-based algorithms that perform tasks without explicitly programming and can

conduct classification or regression tasks through learning patterns from engineered

features (Chartrand et al. 2017). Radiomics is an emerging field widely used to mine

predefined high-throughput features extracted from medical images to support clinical

decision-making, and machine learning is the primary tool for feature selection and ad-

vanced model construction in radiomics (Lambin et al. 2012; Avanzo et al. 2020). Fur-

thermore, the training of deep learning models obtains features and patterns directly

from images rather than through engineered features (Hosny et al. 2018a). Deep learn-

ing is an end-to-end learning method that directly maps the entire learning process

from the original data to the desired output (Chartrand et al. 2017).

Convolutional neural networks (CNNs) are one of the most popular deep learning architec-

tures, which utilize convolution operations that effectively decrease the number of parameters,

thus requiring less training data (Litjens et al. 2019). The application of CNNs in cardiac im-

aging has achieved remarkable results. For example, Betancur et al. exploited a CNN-based

approach to identify obstructive coronary stenosis based on myocardial perfusion imaging

(MPI) in single-photon emission computed tomography (SPECT), and the approach achieved

an area under the curve (AUC) that was higher than that of MPI alone (per patient 0.80 vs.

0.78; per vessel: 0.76 vs. 0.73) (Betancur et al. 2018). With the growing interest in the investi-

gation of epicardial adipose tissue (EAT) and pericoronary adipose tissue (PCAT), AI has

begun to play an active and critical role in image analysis of EAT and PCAT.

EAT is located between the visceral pericardium and the myocardium and is in direct

contact with the myocardium and coronary artery; EAT functions as an endocrine organ

with metabolic and inflammatory activities (Gaborit et al. 2017). It can secrete bioactive

molecules (adipocytokines, proinflammatory cytokines, growth factors, etc.) and affect the

myocardium and coronary artery through vasocrine or paracrine (Iacobellis et al. 2005;

Cherian et al. 2012). Studies have shown that EAT is associated with cardiovascular dis-

eases (CVDs) such as arrhythmia, coronary artery disease, and heart failure (Topuz and

Dogan 2017; Abe et al. 2018; Mancio et al. 2018). In addition, there is evidence that the

PCAT around the coronary artery is the source of adipocytokines, which influences the

development of coronary artery disease (Wang et al. 2013; Opincariu et al. 2020).

With the increasing potential of AI in disease assessment, the role of AI in the assess-

ment of EAT and PCAT has attracted increasingly more attention. Since this field is novel

but rapidly developing, we systematically review the latest progress of image segmenta-

tion, quantification, and the clinical application of AI in EAT and PCAT imaging.

Methods
This study was conducted according to the preferred reporting items for systematic re-

views and meta-analyses (PRISMA) 2020 statement (Page et al. 2021).

Information sources and search strategy

We conducted a systematic literature search of PubMed and the Web of Science prior

to 30 April 2021 using terms related to artificial intelligence and epicardial adipose
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tissue. The reference lists of relevant studies and reviews were checked to find other

possible studies. The language was restricted to English. The detailed search strategies

are listed in the supplement.

Selection process and data collection

After removing duplicate articles, two reviewers (L.Z. and BB.J.) independently reviewed

the titles, abstracts, and full texts to select eligible articles. Articles that did not use AI

or that did not involve EAT or PCAT were excluded. The same two reviewers inde-

pendently extracted the data from the included articles, including the article character-

istics (authors, year of publication, and research purposes), sample sizes, imaging

equipment, AI methods, and main results. In the process, the two reviewers resolved

their disagreement via consensus with the third senior reviewer (XQ.X.).

Study risk of bias assessment

Two reviewers (L.Z. and BB.J.) independently assessed the risk of bias and concerns re-

garding applicability of the included studies using the Quality Assessment of Diagnostic

Accuracy Studies-2 (QUADAS-2) tool (Whiting et al. 2011) and resolved the disagree-

ment by consultation with the third senior reviewer (XQ.X.). QUADAS-2 consists of

four key domains: (1) patient selection, (2) index test, (3) reference standard, and (4)

flow and timing. Considering the concerns regarding applicability in the index test do-

main, the studies with external validation were considered low concern.

Results
Study selection and study characteristics

The initial search identified 140 citation records. Of these, 45 duplicate records were

deleted, and 56 records were removed by browsing the titles and abstracts. After read-

ing the full texts, 22 studies were excluded. Thereafter, 19 studies were finally included

in the systematic review. Figure 1 depicts the flowchart of the selection process.

Figure 2 and Table 1 show the characteristics of the included studies. Of the 19 in-

cluded studies, 15 (79%) used AI technology to segment and quantify EAT or PCAT,

while 4 (21%) explored the clinical value of AI in the diagnosis and risk prediction of

cardiovascular diseases. In terms of imaging equipment, 18 studies (95%) used com-

puted tomography (CT), including 12 (63%) applying non-contrast scans and 6 (32%)

performing coronary CT angiography (CCTA) scans. Only one study (5%) used cardiac

magnetic resonance (CMR) imaging.

Study quality assessment

Figure 3 and Table S1 represent the results of risk of bias and concerns regarding ap-

plicability according to the QUADAS-2 tool. For the assessment of bias risk, all 19

studies were rated as low risk in terms of flow and timing, reference standards, and

index tests. In terms of patient selection, 5 studies (26%) were rated as low risk while

14 (74%) were rated as unclear risk. For the assessment of the concerns of applicability,

all 19 studies were rated as low concern in terms of reference standards and patient se-

lection. However, for the index test, only one study (5%) was rated as low concern be-

cause of the existence of external validation; 16 studies (84%) were considered unclear
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because they only conducted internal validation (cross or leave-one-out validation), and

2 studies (11%) were rated as high concern due to a lack of validation.

Discussion
This systematic review summarized the research progress of AI in EAT and PCAT

image analysis. An exhaustive literature search indicated that AI can improve the image

segmentation and quantification of EAT or PCAT and can also be used as a tool for

Fig. 1 Flow diagram for screening and selection of articles

Fig. 2 Sample size of the studies included in the systematic review by year of publication. The area of circle
represents sample size

Zhang et al. European Journal of Hybrid Imaging            (2021) 5:14 Page 4 of 13



Table 1 Characteristics of studies included in the systematic review

Authors Research purpose Patients,
n

Scan
mode

AI method Performance

(Rodrigues
et al. 2015)

Automated segmentation
of epicardial and
mediastinal fats

20 Non-
contrast CT

ML: Intersubject
registration + RF

DSC = 0.968

(Rodrigues
et al. 2016)

Automatic segmentation
and quantification of
cardiac fats

20 Non-
contrast CT

ML: Atlas-based
+ RF

DSC = 0.977

(Rodrigues
et al. 2017b)

Automated segmentation
of epicardial fat

20 Non-
contrast CT

ML: Genetic
algorithms

The percentage of
epicardial fat
engulfed by the
ellipse was 99.5%

(Norlén et al.
2016)

Automatic segmentation
and quantification

30 CCTA ML: Multi-atlas +
RF + Markov ran-
dom field

CC = 0.99
DSC = 0.91

(Zlokolica et al.
2017)

Semiautomatic EAT
segmentation

10 CCTA ML: Fuzzy c-
means clustering
+ geometric el-
lipse fitting

DSC = 0.69

(Commandeur
et al. 2018)

Segmentation and
quantification of EAT

250 Non-
contrast CT

DL: CNN CC = 0.924
DSC = 0.823

(Commandeur
et al. 2019)

Quantification of EAT 776 Non-
contrast CT

DL: CNN DSC = 0.871

(Li et al. 2019) Automatic pericardium
segmentation

53 Non-
contrast CT

DL: U-Net AUC = 0.87

(Aarthy et al.
2019)

Quantification of EAT 20 Non-
contrast CT

DL: K mean
clustering + CNN

CC = 0.803

(Fulton et al.
2020)

Segmentation of EAT 32 Cardiac
magnetic
resonance
imaging

DL: Neural
network

DSC = 0.56 ± 0.12

(Zhang et al.
2020)

Automatic epicardial fat
segmentation and
quantification

20 Non-
contrast CT

DL: dual U-Nets
+ morphological
processing layer

CC = 0.93
DSC = 0.91

(He et al.
2020a)

Automatic segmentation
and quantification of EAT

200 CCTA DL: 3D deep
attention U-Net

DSC = 0.927

(He et al.
2020b)

Automatic quantification
of myocardium and
pericardial fat

422 CCTA DL: Deep
attention U-Net

ICC = 0.97
DSC = 0.88

(Otaki et al.
2015)

Prediction of impaired
myocardial blood flow
from clinical and imaging
data (EFV)

85 Non-
contrast CT

ML: Ensemble-
boosting logit-
boost algorithms

AUC = 0.73 vs 0.67
(ML vs EFV)

(Rodrigues
et al. 2017a)

Prediction of epicardial
and mediastinal fat

20 Non-
contrast CT

ML: Rotation
forest + multi-
layer perception
regressor

Predicting
mediastinal fat
based on EAT:
CC = 0.986
RAE = 14.4%
Predicting EAT
based on
mediastinal fat:
CC = 0.928
RAE = 32.5%

(Commandeur
et al. 2020)

Predict the long-term risk
of MI and cardiac death
based on clinical risk, CAC,
and EAT

1912 Non-
contrast CT

ML: XGBoost ML-AUC = 0.82
CAC-ACU = 0.77
ASCVD-AUC = 0.77

(Tamarappoo
et al. 2021)

The long-term prediction
of hard cardiac events

1069 Non-
contrast CT

ML: XGBoost ML-AUC = 0.81
CAC-AUC = 0.81
ASCVD-AUC = 0.74
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the diagnosis and risk prediction of coronary artery diseases based on EAT or PCAT.

However, most of the studies have not applied external validation, which suggests that

the generalizability of these studies remains to be improved.

Segmentation of EAT and PCAT

Given the potential clinical value of EAT, the segmentation of EAT images is the cru-

cial step for further quantitative analysis. In the traditional analysis mode, radiologists

have to delineate the boundary of EAT manually. This procedure is user-dependent,

time-consuming, and poorly reproducible, so it is necessary to develop an accurate,

quicker, and reproducible method for EAT segmentation (Norlén et al. 2016; Comman-

deur et al. 2018). Researchers have developed machine learning algorithms to segment EAT.

Rodrigues et al. utilized a genetic algorithm to optimize the parameters of an ellipse that was

used to simulate the pericardium contour (Rodrigues et al. 2017b). After 10, 100, and 200 gen-

erations of genetic algorithm iteration, the percentage of epicardial fat engulfed by the ellipse

was 97.3%, 98.8%, and 99.5%, respectively. Norlén et al. proposed a method to detect the peri-

cardium using the random forest classification algorithm (Norlén et al. 2016). This method

used feature-based multi-atlas regulations for spatial initiation in CCTA images. Finally, the

Table 1 Characteristics of studies included in the systematic review (Continued)

Authors Research purpose Patients,
n

Scan
mode

AI method Performance

(Oikonomou
et al. 2019)

Radiotranscriptomic
signature of perivascular
fat improves cardiac risk
prediction

1575 CCTA ML: Radiomics-RF For MACE
discrimination:
with radiomics
signature-AUC =
0.88
without radiomics
signature-AUC =
0.754

(Lin et al.
2020)

Radiomics analysis of PCAT
to distinguish patients
with MI

177 CCTA ML: XGBoost ML-AUC = 0.87
clinical features +
PCAT attenuation-
AUC = 0.77
clinical features
alone-AUC = 0.76

CCTA Coronary computed tomography angiography, ML Machine learning, DL Deep learning, RF Random forest, CNN
Convolutional neural network, XGBoost Extreme gradient boosting, EAT Epicardial adipose tissue, PCAT Pericoronary
adipose tissue, EFV Epicardial fat volume (the volume of EAT), MI Myocardial infarction, CC Correlation coefficient, DSC
Dice similarity coefficient, AUC Area under the ROC curve, MSE Mean square error, RAE Relative absolute error, ASCVD
Atherosclerotic cardiovascular disease, CAC Coronary artery calcium, MACE Major adverse cardiovascular events

Fig. 3 Assessment of individual risk of bias domains and concerns regarding applicability
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segmentation was completed in global optimization through graph cuts, and the Dice similar-

ity coefficient (DSC) between the proposed method and experts was 0.91. The average seg-

mentation time was 51.9 s. The DSC is a commonly used measurement to evaluate the

similarity between two structures, and its value ranges from 0 to 1. A higher DSC represents a

higher similarity of image segmentation (Andrews and Hamarneh 2015).

Researchers have also explored the utilization of deep learning in EAT segmentation. Zhang

et al. developed a dual U-Net CNN for the automatic segmentation and quantification of

EAT (Zhang et al. 2020). Compared with a single U-Net (DSC = 0.766) and Seg-Net (DSC =

0.767), this method segmented the EAT of 20 patients with a mean DSC of 0.912.

In addition to tracking PCAT manually on axial images, PCAT can also be automatic-

ally segmented in 3D space. PCAT is considered adipose tissue whose radial distance from

the outer wall of the coronary artery is equal to the mean diameter of the artery. A well-

developed software package (Aquarius Workstation, TeraRecon GmbH) automatically

segments PCAT radially outwards from the outer wall of coronary vessels in 3D space

(Antonopoulos et al. 2017). PCAT is then defined by the CT value range (typically from −

190 HU to − 30 HU) of the adipose tissue within the segmented volume of interest.

In short, researchers have developed several AI-based methods for the automatic seg-

mentation of EAT and PCAT. The studies applying AI technology to evaluate EAT

(Hasebe et al. 2020) and PCAT (Oikonomou et al. 2019) showed good interobserver

agreement, and the correlation coefficients were 0.93 and 0.94, respectively. These AI-

based methods have the advantages of high accuracy, short processing time, and good

reproducibility, which lay the foundation for further research.

Quantification of EAT and PCAT

Quantification follows image segmentation. The quantitative parameters for EAT or

PCAT are generally volume, area, and thickness. Commandeur et al. proposed a new

multi-task framework using deep CNNs to quantify epicardial and thoracic adipose tis-

sues (Commandeur et al. 2018). This method showed that the automatic volume quan-

tification of epicardial and thoracic adipose tissue was strongly consistent with the

manual method, and the median DSC was 0.823 and 0.905, respectively. The correl-

ation coefficient between automatic and manual EAT volume quantification was 0.924.

The automatic method for quantifying EAT took 25.63 ± 3.72 s per case, much shorter

than the 10–11 min of the manual method. Figures 4 and 5 represent the image seg-

mentation and quantification of EAT and PCAT, respectively.

Clinical applications of machine learning in EAT

EAT plays an important role in the development of CVD through pathophysiological

mechanisms (Mazurek et al. 2003; Cheng et al. 2008). Evidence suggests that abundant

EAT is a predictor of adverse cardiovascular events (Mahabadi et al. 2013; Goeller et al.

2018). Since machine learning algorithms can maximize the data mining of image fea-

tures and clinical factors, researchers have used them to analyze EAT. In a prospective

study, Commandeur et al. developed a machine learning-derived risk score based on

the extreme gradient boosting (XGBoost) algorithm, which combined clinical risk fac-

tors with the coronary artery calcium (CAC) score and automatically quantified EAT to

predict the long-term risk of myocardial infarction (MI) and cardiac death
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(Commandeur et al. 2020). The machine learning-derived risk score (AUC = 0.82) per-

formed better than the risk factors for atherosclerotic CVD (AUC = 0.77) and CAC

score (AUC = 0.77). Otaki et al. applied the same algorithm (XGBoost) and found that

the epicardial fat volume was an independent predictor of impaired myocardial flow re-

serve (Otaki et al. 2015). Compared with the CAC score (AUC = 0.66) and epicardial

fat volume (AUC = 0.67), the AUC of the combined risk score integrating the CAC

score and epicardial fat volume was 0.73, which improved the prediction ability of im-

paired myocardial flow reserve. In general, the existing evidence suggests that EAT,

with the support of machine learning, can improve the diagnosis and prognostic predic-

tion of CVD.

Fig. 4 Schematic diagram of epicardial adipose tissue. Two 3D volume rendering images (I and II) and an
axial CT image (III) show the heart (red color) and epicardial adipose tissue (yellow)

Fig. 5 Schematic diagram of pericoronary adipose tissue and FAI. (left) 3D volume rendering image of
pericoronary adipose tissue (orange color); (right) the numbers in the lower right corner represent the
values of fat attenuation index. RCA = right coronary artery; LAD = left anterior descending artery; CX =
circumflex artery; HU = Hounsfield unit

Zhang et al. European Journal of Hybrid Imaging            (2021) 5:14 Page 8 of 13



Clinical applications of machine learning in PCAT

PCAT is the adipose tissue enveloping the coronary artery, which involves the evolution

of atherosclerosis (Dey et al. 2010). The pericoronary fat attenuation index (FAI) is a novel

imaging biomarker that maps the spatial changes in PCAT attenuation in CCTA images.

The FAI has been used to identify subclinical coronary artery disease (Antonopoulos et al.

2017) and improve the risk prediction of all-cause cardiac mortality (Oikonomou et al.

2018). In addition to the FAI that simply represents the CT value, radiomics can mine the

high-throughput quantitative information of the PCAT. Oikonomou et al. reported that

the radiomics signature of the PCAT was associated with the fibrosis and vascularity of

the PCAT, and the PCAT represented the adipose tissue remodelling caused by coronary

inflammation (Oikonomou et al. 2019). In addition, they proposed a random forest

method to analyze 1391 radiomic features of the PCAT extracted from 101 patients who

had major adverse cardiac events (MACEs) within 5 years after undergoing CCTA and

101 matched controls. Their machine learning-based model performed better than the

existing clinical risk factor model (Δ[C-statistic] = 0.126, p < 0.001) in predicting the out-

come of MACEs. Lin et al. explored the ability of the radiomics signature of the PCAT in

CCTA images to discriminate patients with MI from those with stable or no coronary ar-

tery disease (Lin et al. 2020). Using an XGBoost that combined clinical factors, PCAT at-

tenuation, and radiomics features, their method significantly improved the discrimination

ability of acute MI (AUC = 0.87) compared with a model with clinical factors and PCAT

attenuation (AUC = 0.77) or clinical factors alone (AUC = 0.76). In brief, the implementa-

tion of machine learning can maximize the information extracted from PCAT and play an

important role in the diagnosis and risk prediction of coronary artery disease.

Multi-modal imaging of cardiac adipose tissue

Multiple types of equipment can be used to evaluate EAT, including CT, CMR, and

echocardiography. CT offers volumetric visualization and quantification of cardiac adi-

pose tissue with high spatial resolution. However, CT has the disadvantage of unavoid-

able radiation exposure. CMR is considered to be the best imaging method for adipose

tissue because of its superb fat signal display (Wong et al. 2017). According to the re-

sults of Mahajan et al., there was a significant correlation between CMR and autopsy

for measuring the mass of adipose tissue with an intraclass correlation coefficient > 0.8

(Mahajan et al. 2013). The main disadvantages of CMR are its limited availability and

high costs. Echocardiography is widely used, but the image quality is poor and not con-

ducive to quantitative analysis. The quantification of EAT by echocardiography was

limited to the thickness of adipose tissue on the right ventricular free wall (related to

EAT thickness on CMR: R = 0.905) (Iacobellis et al. 2003; Gaborit et al. 2017).

Compared with the CT widely used in EAT analysis, research based on echocardiog-

raphy and CMR is limited. In the included studies, only one used deep learning to seg-

ment EAT in CMR images with a low DSC of 0.56. More studies are expected to

investigate EAT using AI and multi-modal imaging.

Future prospects

The segmentation and quantification of EAT is an important basis of EAT research.

Researchers have developed AI-based methods to make this process more accurate,
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quicker, and reproducible. In addition to developments in the experimental environ-

ment, more robust and generalizable AI methods are needed to assist the clinical appli-

cation of EAT analysis.

As a booming field in recent years, radiomics enables the in-depth mining of image

information. Based on EAT and PCAT, scholars have begun to use radiomics to diag-

nose and predict the risk of cardiovascular disease. However, to validate the clinical

value of radiomics-based imaging biomarkers, more well-conducted multi-center stud-

ies are needed. Deep learning has become an auxiliary tool for image segmentation. On

the basis of automatic segmentation of PCAT, an AI algorithm was used to quantita-

tively analyze and model the FAI, which expands the research of cardiac imaging. In

addition to image segmentation, more AI-based research is expected to be launched to

further explore the diagnostic and prognostic value of EAT and PCAT in CVD.

Conclusion
With the recent development of AI, researchers have begun to apply AI to analyze

EAT and PCAT images. AI-based methods provide accurate and quicker image seg-

mentation and quantification. Although the publications are not numerous, the pub-

lished studies have suggested the potential clinical application of EAT and PCAT in the

diagnosis and risk prediction of CVD. Although AI research on cardiac adipose tissue

is still in its infancy, the application of AI technology is expected to expand the clinical

value of cardiac adipose tissue in cardiac imaging.
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