
����������
�������

Citation: Dietl, P.; Frick, M. Channels

and Transporters of the Pulmonary

Lamellar Body in Health and Disease.

Cells 2022, 11, 45. https://doi.org/

10.3390/cells11010045

Academic Editor: Christian

M. Grimm

Received: 1 December 2021

Accepted: 22 December 2021

Published: 24 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cells

Review

Channels and Transporters of the Pulmonary Lamellar Body in
Health and Disease

Paul Dietl * and Manfred Frick *

Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
* Correspondence: paul.dietl@uni-ulm.de (P.D.); manfred.frick@uni-ulm.de (M.F.); Tel.: +49-731-500-23230 (P.D.);

+49-731-500-23115 (M.F.)

Abstract: The lamellar body (LB) of the alveolar type II (ATII) cell is a lysosome-related organelle
(LRO) that contains surfactant, a complex mix of mainly lipids and specific surfactant proteins. The
major function of surfactant in the lung is the reduction of surface tension and stabilization of alveoli
during respiration. Its lack or deficiency may cause various forms of respiratory distress syndrome
(RDS). Surfactant is also part of the innate immune system in the lung, defending the organism
against air-borne pathogens. The limiting (organelle) membrane that encloses the LB contains various
transporters that are in part responsible for translocating lipids and other organic material into the
LB. On the other hand, this membrane contains ion transporters and channels that maintain a specific
internal ion composition including the acidic pH of about 5. Furthermore, P2X4 receptors, ligand
gated ion channels of the danger signal ATP, are expressed in the limiting LB membrane. They play a
role in boosting surfactant secretion and fluid clearance. In this review, we discuss the functions of
these transporting pathways of the LB, including possible roles in disease and as therapeutic targets,
including viral infections such as SARS-CoV-2.

Keywords: lysosome related organelle (LRO); surfactant; alveolus; exocytosis; purinergic signaling;
ivermectin; ambroxol

1. Introduction

Lamellar bodies (LBs) are specialized lipid storage and secretory organelles found
in various cells [1]. The most studied LBs are found in keratinocytes of the skin [2,3] and
in alveolar type II (ATII) epithelial cells in the lung [4,5]. Next to lipids, LBs may also
contain cell-type specific proteins and lytic enzymes. Due to their acidic pH and the shared
compositional and physiological features with lysosomes, LBs have also been classified as
lysosome-related organelles (LROs) [6,7].

LBs in ATII cells are storage organelles for pulmonary surfactant. Pulmonary surfac-
tant is a complex mix of >90% lipids (mainly phospholipids) and specialized surfactant
proteins. It is stored as densely packed multilamellar structures within LBs [8–10] and
secreted into the alveolar lumen via exocytosis of LBs [5,11–13]. Secretion of pulmonary
surfactant is essential for lung function. Defects in surfactant biogenesis or function are
linked to a variety of severe diseases, some of which are directly related to perturbance of
LB biogenesis and function [14–17].

The major function of pulmonary surfactant in the lung is the reduction of surface
tension and stabilization of alveoli during respiration [18,19]. The surface tension in the
lung creates a strong retractive force that tends to expel air and cause shrinkage of the
organ. This was first discovered by von Neergaard in 1929 [20]. In the 1950s and early
1960s, a surface-active material (surfactant) that reduces the surface tension in the lungs
was isolated and characterized by Clements [21,22]. By that time, LBs of the ATII cells were
identified as the intracellular storage organelle for surfactant [4,23]. It was also shown that
surfactant deficiency causes IRDS (infant respiratory distress syndrome), the first disease
clearly related to immature LB biosynthesis in neonates that could be treated by surfactant
replacement [24,25].
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The first evidence in favor of an exocytotic release mechanism was provided by
electron microscopy (EM) [26,27]. It has also been found that the phospholipid composition
of LBs was similar to that of whole lung surfactant obtained from broncho–alveolar lavage
(BAL) [28,29] and that LB exocytosis accounts for alveolar phospholipid composition [30].

Surfactant also contains four specific proteins (SP-A, SP-B, SP-C, and SP-D), which
account for about 10% by weight [31]. They differ in their routes of secretion: The small
hydrophobic SP-B and SP-C are localized within LBs and are co-secreted with phospholipids
upon LB exocytosis. They are believed to play a role in enabling the formation of a
highly organized, DPPC (dipalmitoyl phosphatidylcholine)-enriched, surface film [32].
The large, hydrophilic, surfactant proteins SP-A and SP-D, however, are secreted largely
independently of LB contents. They are part of the collagenous family of proteins called
collectins and appear to play an important role in host defense. SP-A and SP-D bind a wide
spectrum of pathogens including viruses, bacteria, fungi, and pneumocystis (reviewed
in [33]) fulfilling a crucial role in the innate pulmonary immune response, in addition to
surfactant providing a physical barrier for pathogens, including severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) [34,35].

Many of the key features of alveolar LBs for surfactant maturation, including loading
of lipids, maintenance of an acidic pH and intraorganellar ion homeostasis, as well as
exocytosis and secretion of surfactant depend on functional ion channels and transport
proteins localized on LBs. Despite this importance of the LB transportosome for LB home-
ostasis and function as well as for maintaining the vital surfactant system in the alveoli, our
understanding thereof is far from completion. Within this review, we aim to summarize
current knowledge on ion channel and transporter expression on LBs and their implication
for LB function (physiology) and potential contribution to lung diseases (pathophysiology).

2. Ion Channels and Transporters on Lamellar Bodies

Historically, interest in ion channels and transporters expressed on LBs in ATII cells
was linked to their main function, the storage of surfactant lipids and proteins. Surfactant
proteins, either freshly synthesized surfactant proteins B (SP-B) and C (SP-C) or surfactant
proteins that are recycled from the alveolar space, reach the LBs through intracellular
vesicle trafficking via multivesicular bodies or the endosomal recycling route, respec-
tively [10,36,37]. Surfactant lipids, however, reach the LBs via non vesicular pathways.
This requires lipid transfer proteins for intracellular lipid trafficking in ATII cells [38]
and subsequently transporters for lipid translocation into LBs [10]. To date, several lipid
translocation proteins have been identified on LBs by either immunofluorescence, immuno-
histochemistry, or Western blot from isolated LBs (Figure 1). These include ATP-binding
cassette sub-family A member 3 (ABCA3) [39–41], lysosomal integral membrane protein-2
(LIMP-2, also known as SCARB2) [42], Niemann–Pick C1 (NPC1) and Niemann–Pick C2
(NPC2) [43], and P4-type ATPase ATP8A1 [44].

Channels and transporters on LBs are required to maintain the intra-organellar proton
and ion concentrations, but also facilitate surfactant secretion following LB exocytosis. Yet,
apart from the identification of various subunits of the vacuolar V-ATPase [45–47] only an
outwardly directed Na+-K+-2Cl- co-transporter (NKCC1 or SLC12A2, [45]), P2X4 purinergic
receptors [41] and vesicular nucleotide transporter (VNUT or SLC17A9 [48]) have so far
been identified on LBs and linked to a physiological function (Figure 1). Investigations
of proton and electrical gradients also postulated the presence of Na+/H+ exchanger [45],
Ca2+/H+ exchange(r), Ca2+-activated K+-channels, and possibly other K+-channels [49,50].
However, these have yet to be confirmed.

In addition, proteomic studies have expanded the repertoire of proteins expressed on
LBs [51–53]. These include additional lipid transporters (ABCA8a), amino acid transporters
(SLC3A2), ion transporters (SLC4A1), or ATPases including Na+/K+ (ATP1A1) or Ca2+-
transporting (ATP2B1, ATP2B4) ATPases. Most of these were exclusively detected in the
limiting membrane fraction of isolated LBs. However, the relevance of these proteins for
LB homeostasis and function is yet to determined. It also needs to be considered that many
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of the ion channels and transporters expressed on LBs are trafficked from the LBs to the
plasma membrane during LB exocytosis and surfactant secretion, and can subsequently be
either recycled back to LBs or sent to lysosomes for degradation [54,55]. For example, we
have recently shown that P2X4 receptors that have been delivered to the cell surface upon
LB exocytosis are recycled from the plasma membered back to LBs. This recycling to acidic
organelles is required for re-sensitization of the receptors [55].
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Figure 1. Schematic representation of transporters and channels identified on LBs and their proposed
function for lipid and pH/ion homeostasis.

Additional ion channels and transporters have also been identified on other species
of LROs [56] and future studies are required to confirm whether these are also present on
LBs. It is not unlikely that LROs share a similar décor of transporter to support common
features amongst LROs, however, some ion channels and transporters may be unique on
individual LROs serving their specific function [53].

3. Physiological Role for Ion Channels and Transporters on Lamellar Bodies

Pulmonary surfactant is predominately composed of lipids (approximately 90%) with
phospholipids being the most abundant ones (80% in mass). Cholesterol is also present
at significant levels (10% in mass) [57]. Lipid loading into LBs depends on specific lipid
transporters expressed on the limiting membrane of LBs.

The best studied transporter is ABCA3 (reviewed in detail in [17]). Structure pre-
diction and homology with other ABC transporters suggests that ABCA3 forms a lipid
conduit channels in the membrane of LBs. The transfer of phospholipid species across the
limiting membrane of LBs during their biogenesis is a highly energy-dependent process,
catalyzed by binding and hydrolysis of ATP at two nucleotide-binding-domains [58–60].
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It has been hypothesized that the energy accumulated during LB biogenesis confers an
energy loaded state to the surfactant complexes, that converts LB particles (LBPs, i.e., the
densely packed surfactant particles inside mature LBs) into a sort of pressurized particles,
that readily transform into the surface-active interfacial film upon release from LBs [61,62]
and contact with the air–liquid interface [63]. The detailed physiological substrates for
ABCA3 are not yet fully characterized, but ample evidence suggests that ABCA3 facili-
tates loading of several phospholipid species into LBs. These include the main surfactant
species phosphatidylcholine and phosphatidylglycerol, but also phosphatidylethanolamine
and phosphatidylserine [60,64–66]. A role of ABCA3 in cholesterol loading is controver-
sial [65,67].

LBs express cholesterol transporting LIMP-2 and the NPC2/NPC1 complex [42,43].
LIMP-2 and NPC1 transport cholesterol across the limiting membrane of lysosomes [68–70].
However, LIMP-2 and NPC1 shuttle cholesterol from the inside of lysosomes into the
cytosol to facilitate cholesterol uptake into the cell. Hence cholesterol loading into LBs
would require reverse orientation of either LIMP-2 or NPC1 in the LB membrane. Evidence
against such inverted orientation of LIPM-2 comes from a recent study that suggested that
LIMP-2 ferries the soluble enzyme peroxiredoxin 6 (PRDX6) to the lumen of LBs. This
study further suggested that PRDX6 remains bound to a helical loop of LIMP-2 inside
LBs. This loop is also localized on the luminal side in lysosomes, arguing against a reverse
orientation of LIMP-2 in LBs [42]. Interestingly, PRDX6 exhibits phospholipase A2 (PLA2)
activity in the acidic environment of the LB and plays a key role in LB phospholipid
homeostasis [71,72]. PRDX6 facilitates the remodeling of unsaturated phosphatidylcholine
(PC) to enrich desaturated phosphatidylcholine (DSPC) in pulmonary surfactant [73] but
may also contribute to degradation of phospholipids [74]. Lack of PRDX6 is associated with
increased LB phospholipid content [74,75]. It has been suggested that trapping PRDX6 to
LIMP-2 in LBs facilitate interaction of PRDX6 with phospholipids that are shuttled through
a hydrophobic tunnel in LIMP-2 [42,76]. The main function of LIMP-2 on LBs may therefore
be linked to regulating LB phospholipid content rather than cholesterol loading into LBs.
Similar results, that is, increases in LB phospholipid content, was observed in NPC1 and
NPC2 mutant mice [77]. Moreover, LB cholesterol content was increased in ATII cells from
these mice, arguing against a role of NPC1/NPC2 in cholesterol loading into LBs. Rather
NPC1 (and LIMP-2) may be involved in extrusion of excess cholesterol from LBs that has
accumulated during LB biogenesis. Accumulation could result from fusion of cholesterol
containing lysosomes with multivesicular bodies (during LB biogenesis) or from cholesterol
that is released by lipases from cholesteryl esters to release fatty acids [78]. In such a model,
cholesterol is enriched and needs to be eliminated from the LB lumen to adjust surfactant
cholesterol levels. Recently, it has also been suggested that increased vesicular cholesterol
levels reduces fusion pore expansion and hence could limit secretion [79].

Whether ATP8A1, which is expressed on LBs, contributes to lipid loading into LBs or
modulating surfactant lipid composition needs to be confirmed. ATP8A1 is a member of the
Class P4 ATPases that flip phospholipids from one side of a membrane to the other using
ATP hydrolysis as an energy source [80,81]. ATP8A1 has a high specificity for flipping
phosphatidyl-serine (PS) across membranes [82]. Again, ATP8A1 normally flips PS from
the luminal to the cytoplasmic leaflet of intracellular organelles [83], arguing against an
active loading mechanism. Extrusion of excess PS accumulated during PB morphogenesis
could be an alternative function, but again, no evidence so far supports such a mechanism.
Recently it’s been discussed that a more likely role of ATP8A1 flippase activity is in
preparation of LBs for exocytosis [44] similar to the observation that PS facilitates fusion of
insulin-containing granules with the PM in pancreatic beta cells β and silencing of flippases
impairs insulin secretion [84,85].

The lumen of LBs is acidic (pH of 5–5.5) [50], contains high concentrations of ion-
ized Ca2+ [86,87], and has been proposed to only contain very little free water [61,88].
Establishing and maintaining such conditions requires transmembrane transport of ions
and water.
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Acidification of isolated LBs depends on ATP and expression of the vacuolar V-ATPase
on the LB membrane [45,46,50]. The acidic pH within LB is crucial for surfactant protein
B and C processing [89–91] and the packaging of surfactant lipids [92]. In particular, the
degradation and the remodeling of surfactant phospholipids by PRDX6, which expresses
PLA2 and lysophosphatidylcholine acyl transferase (LPCAT) activities is strongly increased
at acidic pH [71,93,94].

Besides the importance of intralumenal acidification for surfactant maturation, a shift
in pH also affects intralumenal ion concentrations. It has been suggested that V-ATPase
generates an electropositive LB lumen that ultimately affects the electrochemical gradient
across the LB membrane via secondary active transport mechanisms. It´s been shown that
the H+ influx is neutralized by a Cl- uptake which in turn increases V-ATPase activity in a
positive feedback loop [45]. This probably accounts for the Cl- accumulation in LBs [86].
The entry of Cl- could also reduce the K+-dependent electrical gradient contributing to the
trans LB membrane potential. It´s also been proposed that a Na+/H+ exchanger dissociates
the electrical and chemical H+ gradient exchanging H+ for Na+. The V-ATPase could also
serve as the driving force for the outwardly directed Na+-K+-2Cl- co-transporter [45].

An intimate link exists between acidic pH in LBs and luminal Ca2+ concentrations.
Ca2+ uptake depends on the low pH in LBs [45]. Again, this is likely via secondary active
transport of Ca2+ by a Ca2+/H+ exchanger [49]. Additional mechanism for Ca2+ uptake
into LBs have been discussed [49] but may not be relevant at the very low cytoplasmic Ca2+

concentrations found in ATII cells [95,96]. Alkalinization of LBs, e.g., by inhibition of the
vacuolar V-ATPase by bafilomycin A1 or H+ sequestration by ambroxol results in Ca2+ re-
lease from LBs and stimulates LB exocytosis and surfactant secretion from LBs [46,97]. The
detailed pathways for this pH-dependent Ca2+ release are not yet fully understood. Two
pore channels (TPCs), mucolipin TRP channels (TRPMLs), and P2X purinergic receptors
have been linked to pH-dependent Ca2+ release from lysosomes [98–100]. We have recently
reported that P2X4 receptors are expressed on LBs [41]. Alkalinization induced Ca2+ release
from LBs through P2X4 receptors [48]. Activation of P2X4 receptors also depends on the
presence of its natural ligand ATP. ATP is loaded into LBs by VNUT and present at high con-
centrations (∼1.9 mM) inside LBs [48]. The role for this alkalinization-induced, intracellular
Ca2+ release is not yet clear. In lysosomes P2X4 forms channels activated by luminal ATP in
a pH-dependent manner [101] and P2X4-mediated endolysosomal Ca2+ release promotes
lysosome fusion [98]. Such fusion events have not been observed for mature LBs but may
be relevant during LB biogenesis or in case of cell damage, when alkalization promotes a
massive Ca2+ release from LBs to induce autophagy [102]. The most important function
for P2X4 receptors on LBs, however, is to facilitate secretion and activation of pulmonary
surfactant. Upon exocytosis of LBs and opening of the fusion pore, the intraluminal pH
is rapidly neutralized and luminal ATP may activate the P2X4 receptors. This results in a
fusion-activated cation entry (FACE) via P2X4 at the site of LB exocytosis. The resulting
Ca2+ elevation around the fused LB accelerates the widening of the narrow fusion pore that
restricts efficient release (secretion) of poorly soluble surfactant, i.e., LBPs [103–106]. This
vital function is also supported by the observation that the Ca2+ concentration in exocytotic
LBs is higher than in perinuclear LBs [86]. Moreover, FACE drives a net transepithelial
fluid transport from the alveolar lumen. The resulting reduction of alveolar lining fluid
thickness promotes direct contact between newly released surfactant and the air–liquid
interphase, thus facilitating its adsorption and activation [107,108]. The multiple functions
of FACE have been reviewed and represented in detail, recently [105,107,109].

Studies analyzing the structural organization of LBs propose a continuous intraor-
ganellar dehydration during maturation of LBs as a result of the massive lipid accumulation
by ABCA3 [61,88]. It´s been proposed that phospholipids adopt a particular high-energy
structure as a result of the energy accumulated during continuous packing of lipids into
the limited volume of LBs. The high level of dehydration might be promoted both by the
high packing and as a consequence of osmotic stress induced by the segregation of large
protein complexes out from the tightly packed multilamellar arrays [61]. Whether water
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is predominantly removed from tightly packed LBPs (but still residing inside the LB) or
irrevocably extruded from the LB is yet to be determined. In the latter case water can either
permeate passively across the LB membrane or via water conducting structures [110–113].
However, such entities (e.g., aquaporins) have not yet been described on LBs. A loss of free
water would also affect intraorganellar pH and ion concentrations and raises the question
if and how these are regulated. The observation that mature LBs contain high amounts of
Ca2+ [86] is consistent with the general property of lysosomes as sites of intracellular Ca2+

storage [114] and in addition may result from concentration as a result of water loss.

4. Pathophysiology Linked to Ion Channels and Transporters on Lamellar Bodies

Defects in LB channel or transporter function are linked to a variety of diseases in
the lung, including interstitial lung diseases (e.g., pulmonary fibrosis). Owing to its clas-
sification as a LRO, these channels and transporters are also intrinsically associated with
functions required in host defense, including viral infections. Defects in lipid transporters
affect surfactant maturation and LB homeostasis. This can result in changes in LB size and
phospholipid content that leads to ATII cell injury and ultimately to development of pul-
monary fibrosis. Damaged ATII cells secrete mediators that lead to fibroblast proliferation
and differentiation to highly active myofibroblasts, which deposit excessive amounts of
extracellular matrix (ECM) [115,116]. This results in overall remodeling of the alveolar
structure, formation of scar tissue, thickening of the alveolar septae, and an increase in
tissue stiffness [117,118].

The pathophysiology of the ABCA3 transporter is by far the best studied and has
been outlined in extensive reviews elsewhere [17,119]. Over 200 distinct ABCA3 mutations
have been identified. These constitute the most prevalent group of mutations among
genes associated with surfactant-related lung disorders (excellently summarized in [17]).
Mutations can either affect intracellular trafficking of ABCA3 (type I), ATP hydrolysis (type
II) or both (i.e., heterozygote mutations, type III). Compound heterozygous variants appear
to account for increasing disease severity. Mutations in the ABCA3 gene are associated with
surfactant dysfunction [120,121], familial lung diseases ranging from respiratory failure
in newborns or interstitial lung disease in children [122,123] to idiopathic pulmonary
fibrosis (IPF) or diffuse parenchymal lung disease in adults [124–126]. Most ABCA3
mutations result in an ABCA3 null phenotype and are lethal within the first months
following birth. Ultrastructural examination of lung tissues from these patients revealed
a lack of mature LBs. Instead, numerous smaller vesicles with denser inclusion bodies
were observed [10,65,127]. ABCA3 mutations that result in either partial loss-of-function
or promote a toxic gain-of-function phenotype are less frequent and are associated with a
more chronic disease phenotype.

LBs also contain transporters linked to lysosomal storage diseases [43,128]. Lysosomal
storage diseases (LSDs) are inherited metabolic disorders characterized by the gradual
accumulation of substrates inside lysosomes or LROs (that is, ‘storage’), which ultimately
leads to cell dysfunction and cell death [129,130]. LSDs comprise a group of 70 monogenic
disorders, several of which are associated with a pulmonary phenotype [130], ranging
from the upper airways to the lung parenchyma (reviewed in detail in [131]). In this
review, we consider diseases that are explicitly associated with a transporter found on
LBs–Niemann–Pick disease (NPD) and Hermansky–Pudlak Syndrome (HPS).

NPD consist of autosomal recessive disorders associated with neurologic symptoms,
splenomegaly, and the storage of lipids, including cholesterol. Three subtypes of the
disease are described: Niemann-Pick disease type A, B and C. Niemann-Pick disease type C
(NPC) is caused by mutations of the NPC1 and NPC2 genes that result in impaired cellular
processing and transport of low-density lipoprotein (LDL)-cholesterol. NPC1 and NPC2 are
found on LBs [132]. The majority (95%) of cases of NPC disease are caused by a mutation
in NPC1, while only about 5% are due to mutations in NPC2 [43]. NPC1-mutant type
II cells had uncharacteristically larger LB (mean area 2-fold larger), while NPC2-mutant
cells had predominantly smaller LBs (mean area 50% of normal) than wild type [77]. The
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manifestation of NPD in the lung is an interstitial lung disease which is characterized by
reduced diffusion capacity for carbon monoxide (DLCO) [130]. Pulmonary involvement
in NPC1 was reported to be as well associated with an obstructive and restrictive lung
disease [132]. However, to our knowledge, a causal link between a specific mutation
and defective cholesterol transport in LBs to clinical manifestations (i.e., interstitial lung
disease, fibrosis) has yet to be established. Recently, it has also been hypothesized that
the inherent cellular and biochemical abnormalities of lysosomal storage diseases (LSDs)
in general, and Niemann–Pick disease type C (NPC) in particular, create “unfavorable”
(lysosomal) environments for SARS-CoV-2 infectivity in the host cells, that is ATII cells (see
also below) [133].

HPS is a rare, genetic, multisystem disorder characterized by oculocutaneous albinism,
bleeding diathesis, immunodeficiency, granulomatous colitis, and pulmonary fibrosis
(reviewed in [16]). It represents a family of disorders in which the biogenesis of lysosome-
related organelles (LROs) is compromised [134,135]. The underlying defects of HPS are
mutations in genes that encode proteins which are essential for the synthesis of LROs,
including the Biogenesis of LRO Complexes (BLOC)-1, -2, and -3 and the Adaptor Protein
3 complex (AP-3). Three subtypes of HPS, HPS1, -2, and -4, are associated with giant
LBs, impaired surfactant secretion, ATII cell hyperplasia and fibrosis [136–139]. In ATII
cells, it was recently shown that AP-3 is required to sort LIMP-2 and PRDX6 [42] but
also the P4-type ATPase ATP8A1 from early endosomes to LBs [44]. Impaired trafficking
of the luminal enzyme PRDX6 was associated with increased LB phospholipid content,
that may lead to ATII cell injury and fibrosis [42]. ATP8A1 is a flippase that hydrolysis
ATP to flip phospholipids from one side of a membrane to the other. Disruption of the
AP-3/ATP8A1 interaction causes activation of Yes-activating protein, a transcriptional
coactivator that augments cell migration and ATII cell numbers. It was suggested that this
causes a toxic gain-of-function that results in activation of a repair process associated with
severe, progressive pulmonary disease and fibrosis [44].

Much less is known about functional roles for ion channels or receptors on LBs in the
pathogenesis of pulmonary diseases. Here we speculate whether LBs, and in particular
P2X4 receptors expressed on LBs, may play a role in SARS-CoV-2 induced disease. Viruses
such as SARS-CoV and SARS-CoV-2 are taken up by ATII cells after binding of the viral
spike protein (S protein) to the SARS receptor, the angiotensin converting enzyme-2 (ACE2),
on the host cell [140–144]. Entry of viral mRNA into the cytoplasm occurs by two possible
mechanisms: First, by direct fusion of the viral membrane with the plasma membrane. This
mechanism is mediated by transmembrane protease serine subtype 2 (TMPRSS2)-induced
cleavage of the ACE2-spike protein (ACE2-S) complex [145–147]. ATII cells express both,
ACE2 and TMPRSS2 [140,148–151]. Second, and more importantly, binding of S protein
to ACE2 induces endocytosis of the virion. Cleavage of the viral proteins’ ‘S2′ site’ by
cathepsin in the acidic endo-lysosomal compartment then induces fusion of the viral
envelope with the late endosome/lysosome membrane to release the viral genome into the
cytoplasm [152–156]. This is also referred to as “uncoating” [157,158].

As outlined above, LBs have a vesicular pH of about 5 [50,159,160] and also contain
proteases such as cathepsins and others that belong to the class of lysosomal enzymes
required for the viral uncoating [52,161,162]. During biogenesis LBs derive from late
endosomes (multivesicular bodies) and receive cargo from the trans-Golgi network. In
theory, LBs or fusion products of LBs with other acidic (i.e., endo-lysosomal) compartments
could therefore constitute intracellular hubs for uncoating and processing of SARS-CoV-
2 in the lung. In line, SARS-CoV-2 has been found in LBs of induced pluripotent stem
cell-derived ATII (iATII) cells maintained at air–liquid culture conditions [163]. However,
SARS-CoV and SARS-CoV-2 viral particles were not readily visible in LBs of infected
primary ATII cells investigated by electron microscopy [143,164].

It is tempting to speculate whether LBs contribute to SARS-CoV-2 infection or clear-
ance. There is ample evidence that lysosomotropic drugs and endosomal acidification
inhibitors like (hydroxy)chloroquine, that are weak bases and trapped within acidic com-
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partments, exert anti-viral activities. Through alkalinization of the vesicles, these com-
pounds inhibit the activity of cathepsin, which is required for the viral uncoating pro-
cess, [157,165,166]. We have recently demonstrated that ambroxol, another drug with
anti-viral activities used to ameliorate respiratory infections, accumulates in LBs, and neu-
tralizes LB pH by the same mechanism [97]. It has also been shown that ambroxol prevents
SARS-CoV-2 entry into other epithelial cells by inhibition of acid sphingomyelinase [167].
As noted above, ambroxol also elicits Ca2+ release from LBs via alkalinization-dependent
activation of P2X4 receptors on LBs. This results in LB fusion with the plasma membrane
and surfactant release [97]. Thus, alkalinizing drugs are not only potential inhibitors of viral
uncoating in LBs but could also contribute to viral clearance from ATII cells via stimulation
of LB exocytosis and surfactant (content) secretion.

P2X4 receptors expressed on LB membrane could also play an important role for viral
inactivation and protection of the alveolus from SARS-CoV-2-induced alveolar barrier
damage and acute respiratory distress syndrome (ARDS). ARDS by any cause, including
SARS-CoV-2 infection, is accompanied by a loss of alveolar barrier function, surfactant defi-
ciency or dysfunction, changes of alveolar compliance, hypoxia, and mechanical stress of
alveolar units (reviewed in [168–170]). ARDS-associated cell damage and/or the activation
of the immune response can lead to the release of cytokines, including ATP, from various
cell types. ATP is a danger signal in the lung [171,172]. In healthy conditions, extracellular
ATP within the respiratory lining fluid is continuously hydrolyzed by the action of ectonu-
cleotidases [172] and it is intrinsically difficult to estimate the concentration of ATP in the
alveolar hypophase between the surface layer of secreted surfactant and the apical mem-
brane of ATI and ATII cells, since this liquid layer has an estimated mean thickness of about
200 nm only. However, strong ATP release from epithelial cells has been demonstrated for
various ways of cell stress, including hypoxia or mechanical stress [173,174] and epithelial
cell lysis induced by viral infection will inevitably lead to a strong increase of the ATP
concentration in the adjacent pulmonary lining fluid. Accordingly, significant elevations
of ATP concentrations have been demonstrated in the bronchoalveolar lavage (BAL) fluid
under various pathophysiological conditions including SARS-CoV-2 infection [171,175].
This led to ATP-driven purinergic-inflammasome signaling [175]. In addition, ATP is
released from LBs upon LB exocytosis [48], which can also lead to a (temporal) increase
in extracellular ATP levels. The physiological significance of this last mechanism is not
entirely clear but most likely part of a positive feedback mechanism enabling or facilitating
the release of surfactant by expansion of the fusion pore. Although it is not entirely clear
at which stage of the infection the ATP concentration starts to rise in the alveolar space,
there is overwhelming plausibility that it can reach levels sufficient for activation of P2X4
receptors. P2X4 receptors on LBs are integrated into the apical membrane of ATII cells
upon LB exocytosis and the ATP binding site of the P2X4 receptor is suddenly exposed
to the alveolar lumen [41]. In the absence of ATP, this added apical membrane is quite
“tight”, because even when cell membrane capacitance increases by more than 10%, the cell
membrane conductance is unaltered [160]. When ATP is on the apical side, however, it can
readily bind to the receptor, enabling the entry of cations (mainly Ca2+ and Na+ ions) from
the alveolar hypophase (or edema fluid) into the cytoplasm of type II cells [41]. This has
two consequences:

First, a Ca2+ signal is generated in the ATII cell, which we termed “fusion-activated
Ca2+ entry”, because it follows the fusion of an LB with the plasma membrane (see above).
FACE facilitates surfactant secretion from the fused LB, and activates LB exocytosis. Second,
Na+ entry into the cytoplasm through the P2X4 receptor removes osmotically active Na+

from the alveolar lumen, facilitating alveolar clearance from excess edema fluid by osmo-
sis [107]. Both mechanisms potentially protect the alveolus by restoring surface tension and
alveolar compliance on the one hand, and by reducing fluid accumulation and improving
oxygenation on the other hand. Last but not least, the release of surfactant as part of the
innate immune system facilitates viral clearance in many ways, as reviewed in detail [176].
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Interestingly, fusion-activated Ca2+ entry into type II pneumocytes is potentiated by
ivermectin [41], an allosteric positive potentiator of P2X4 receptors [172,177,178]. Iver-
mectin, an antiparasitic drug used to treat persons or animals infested with helminths and
insects, has gained substantial interest during the COVID-19 crisis, because it was used
as an off-label drug to protect from COVID-19 infection. The issue is heavily debated and
controversially discussed, as exemplified in a recent exchange of letters [179]. The general
believes of a lack of plausibility that ivermectin may help to treat COVID-19 comes from its
action on glutamate-gated chloride channels common to invertebrate nerve and muscle
cells. These channels are not expressed in humans. Interestingly, the P2X4 receptor is never
considered as a potential target of ivermectin in the COVID-19 literature. It should be con-
sidered that ivermectin is quite lipophilic, and lipophilic drugs can accumulate in the lipid
environment of a LB [180]. For this reason, ivermectin may reach high local concentrations
at the site of the P2X4 receptor when LBs are exocytosed. Given this experimental and
theoretical background, ivermectin may be considered as an activator of the P2X4 receptor
for a possible effect against COVID-19.

Apart from these speculative considerations regarding ivermectin, to date no specific
treatment exists for disorders caused by defects in ion channels or transporters on LBs.
This may be related to the fact that still little is known about the exact function of most of
these proteins for LB biogenesis, homeostasis, a possible role in surfactant dysfunction or
lung diseases related to ATII cell dysfunction. Even for ABCA3, which is clearly associ-
ated with development of various lung diseases, no specific treatment exists for disorders
caused ABCA3 mutations [17]. One possible strategy to tackle this need could be a similar
approach that has been very successful in the development of therapeutics for treatment
of cystic fibrosis (CF). CF is caused by mutations of the cystic fibrosis transmembrane
conductance regulator (CFTR) channel. Nearly 2000 cystic fibrosis-causing mutations have
been described, many of which result in trafficking and / or channel conductance de-
fects [181]. Development of small molecule CFTR modulators that either aid the trafficking
(“correctors”) or improve the function (“potentiators”) of mutated CFTR or increase the
amount of CFTR mRNA (and therefor protein, “amplifiers”) have been developed and
are already approved drugs or entered clinical trials [182–186]. Such approaches (e.g.,
exploiting high-throughput screening technologies) may have the potential to identify
novel drugs to correct mistrafficking and/or dysfunction of mutant ABCA3 isoforms.

Alternatively, the future may also bring novel therapeutic options based on gene
therapy to treatment of genetic diseases that are beyond the reach of traditional approaches.
The goal of gene therapy for genetic diseases is to achieve durable expression of the thera-
peutic gene or “transgene” at a level sufficient to ameliorate or cure disease symptoms with
minimal adverse events. Hundreds of gene-therapy programs are in clinical development
and several gene therapy products have already been approved [187].

Last but not least, repurposing of approved drugs could be a swift way to receive au-
thority approval for novel applications. Several drugs have been developed and approved
for clinical use that specifically target some of the channels and transporters expressed on
LBs, e.g., clodronate, an anti-osteoporotic drug that inhibits VNUT [188]. Other approved
drugs have been found to affect some of these proteins rather unexpectedly. Ambroxol,
an over-the-counter mucolytic drug has been found to increase the levels of LIMP-2 in
neurons of mice [189]. Whether this is related to the effects of ambroxol on intra-organellar
pH levels needs to be seen.

Overall, although there are currently no specific treatments available for disorders
related to ion channels and transporters on LBs, the future holds multiple strategic op-
tions for development of such therapeutics. However, in addition to drug development
efforts, success will also depend on a better understanding of the exact physiological
function of the individual transport proteins on LBs and how misfunction contributes to
disease development.
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5. Summary and Outlook

The pulmonary LB was originally discovered as the storage organelle for surfactant,
the vital multi-molecular substance needed for breathing and preventing respiratory dis-
tress of the neonate [4]. Since then, our knowledge about the LB has been continuously
expanding (Table 1), and its equipment as a LRO with a growing number of transporters,
channels, and receptors prompts questions about its involvement in multiple additional
functions/dysfunctions, including its exact role in the pathogenesis of chronic pulmonary
disease such as fibrosis of various origin, and of its possible involvement in the processing
and transmission of viral disease.

Table 1. Channels and transporters that have been identified on LBs and for which a function
and/or a possible relevance in lung disease has been reported. The table does not list channels and
transporters identified on LBs for which no physiological function has been described so far.

Ion Channel
Transporter Detection Physiological Function Role in Lung Disease

ABCA3 Immuno-EM, IF [39] LB biogenesis, lipid uptake
[17,60,64]

Surfactant-related lung disorders
[120,121]

respiratory distress in newborns
[122,123]

interstitial lung diseases (ILDs),
fibrosis [124–126]

ATP8A1 WB, IF [44] Suggested: LB priming for
exocytosis [44]

Possible involvement in fibrosis
[44]

LIMP-2/SCARB2 WB, IF [42]

Possibly role in luminal
localization of PRDX6 for

regulation of LB phospholipid
content [42]

n.d. (possibly fibrosis [42])

NPC1 WB, IF [43] n.d. (possible role in regulating
LB cholesterol content) ILD, fibrosis [132,190]

NPC2 WB, IF [43] n.d. Fibrosis [190]

V-ATPase subunits WB [45–47] IF [46,47] Acidification of LB lumen [45,50] n.d.

P2X4 WB, IF [41]

Ca2+ release/entry (FACE)
facilitates surfactant secretion and

activation, alveolar fluid
resorption [41,107]

n.d.

SLC12A2 WB [45] Na+, K+, 2Cl- efflux [45] n.d.

VNUT WB, IF [48] ATP uptake [48] n.d.

Abbreviations: WB, Western blot of isolated/enriched LBs; IF, immune-fluorescence; immuno-EM, immune-gold
staining in transmission electron microscopy.
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