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The human pancreas, like almost all organs in the human body, is immunologically

tolerated despite the presence of innate and adaptive immune cells that promptly mediate

protective immune responses against pathogens in situ. The PD-1/PD-L1 inhibitory

pathway seems to play a key role in the maintenance of immune tolerance systemically

and within the pancreatic tissue. Tissue resident memory T cells (TRM), T regulatory

cells (Treg), macrophages and even β cells exhibit PD-1 or PD-L1 expression that

contributes in controlling pancreatic immune homeostasis and tolerance. Dysregulation

of the PD-1/PD-L1 axis as shown by animal studies and our recent experience with

checkpoint inhibitory blockade in humans can lead to immune dysfunctions leading to

chronic inflammatory disease and to type 1 diabetes (T1D) in genetically susceptible

individuals. In this review, we discuss the role of the PD-1/PD-L1 axis in pancreatic

tissue homeostasis and tolerance, speculate how genetic and environmental factors

can regulate the PD-1/PD-L1 pathway, and discuss PD-1/PD-L1-based therapeutic

approaches for pancreatic islet transplantation and T1D treatment.

Keywords: type 1 diabetes (T1D), programmed death 1 (PD-1), programmed death ligand 1 (PD-L1), immune
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INTRODUCTION

Type 1 diabetes (T1D) is an autoimmune disease mediated by T-cell destruction of the insulin-
producing β-cells in the pancreatic islets of Langerhans (1). The critical link between the
Programmed death 1 (PD-1)/PD-L1 pathway and constraint of T1D has been demonstrated in
numerous studies and has paved the way for novel therapeutic approaches. PD-1 is an inhibitory
molecule belonging to the class of co-stimulatory molecules expressed on the surface of T cells
that has been linked to immune tolerance (2). PD-1 is a member of the CD28 and CTLA-4
immunoglobulin superfamily and interacts with two B7 family ligands, PD-L1 (CD274) and PD-L2
(CD273) (3). PD-L1 is widely distributed on leukocytes and non-hematopoietic cells in lymphoid
and non-lymphoid tissues, including pancreatic islets, whereas PD-L2 is expressed exclusively on
dendritic cells (DCs) and monocytes (4, 5).

Upon binding to ligands PD-L1 and PD-L2, PD-1 recruits SHP2 phosphatase, which then
dephosphorylates molecules downstream of the TCR and CD28, leading to a block in T cell
effector function (6). Thus, PD-1 blockade can reinvigorate exhausted T cells, providing enhanced
antiviral and antitumor responses (7, 8). These observations have led to the development of PD-1
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immune checkpoint inhibitors (ICI), which have revolutionized
cancer therapy (9). Interestingly, adverse events such as rapid
autoimmunity including T1D developed following checkpoint
blockade in cancer patients (10–13), possibly due to reversal
of T cell exhaustion in pancreatic islets (14). Those findings
suggested a key role for the PD1-PD-L1 inhibitory pathway in the
maintenance of immune homeostasis and tolerance in pancreatic
tissue and the prevention of T1D. Here, we discuss the role of
PD-1 in pancreas immune homeostasis and tolerance and the
progress made so far in exploiting the PD-1/PD-L1 dyad as a
means to prevent and/or treat T1D.

THE PD-1/PD-L1 AXIS PROMOTES BETA
CELL TOLERANCE AND PREVENTS T1D

Several lines of evidence indicate that the PD-1/PD-L1
axis is fundamental to maintain immune homeostasis and
prevent organ-specific autoimmune diseases such as T1D. The
importance of this inhibitory pathway in the pathophysiology
of T1D has been demonstrated in mice and humans. The
Non-obese Diabetic (NOD) mice develop spontaneous T1D
and represent the most used murine pre-clinical models of
T1D. For example, NOD mice deficient for PD-1 or PD-
L1 develop accelerated T1D (15, 16). Using insulin tetramers,
Pauken et al., quantified insulin-specific CD4T cells in the
secondary lymphoid organs (SLO) and pancreas of NOD.PD-
1−/− mice (17). They observed significantlymore insulin-specific
T cells in the pancreatic LN (pancLN) of prediabetic and
diabetic NOD.PD-1−/−mice compared to WT NOD controls.
Furthermore, the same group observed that selective loss of
PD-1 on islet-reactive CD4T cells enhanced their proliferation
and recruitment in pancreatic islets (18). Antibody blockade
experiments showed that PD-1:PD-L1 interactions, but not
PD-1:PD-L2, were necessary for the maintenance of tolerance
toward pancreatic islets in the NOD mice (19–25). Interestingly,
genetic deletion of PD-1 in C57BL/6 and BALB/c mice led to
spontaneous lupus-like disease or autoimmune cardiomyopathy,
respectively, but no T1D (26, 27), thus implying that a
defective PD-1/PD-L1 inhibitory pathway is not sufficient to
trigger autoimmune diabetes. Even in B6.g7 mice sharing the
MHCII with NOD mice and carrying high genetic risk for
T1D, treatment with anti-PD-1 was not enough to induce
T1D (17).

In humans, a possible role for the PD-1/PD-L1 axis in T1D
pathogenesis is suggested by the observation that recent onset
T1D patients have elevated gene expression levels of CD274
(PD-L1) in whole-blood RNA analysis (25). In addition, both
decreased PD-1 gene expression in peripheral CD4+ T cells
and low frequency of circulating PD-1+ CD4+ T cells were
found in T1D patients (25, 28). More recently, Granados et al.,
demonstrated that peripheral T cells from children with new
onset T1D failed to upregulate PD-1 upon T-cell receptor
stimulation (29). Also, the CD4+ CD25+ Treg cells of T1D
patients are defective in their ability to upregulate PD-1 and
to efficiently use the PD-1/PD-L pathway to mediate their
immunosuppressive function (30).

The importance of the PD-1/PD-L1 pathway in maintenance
of immune tolerance toward pancreatic beta cells in humans
is furtherly highlighted by the observation that 0.4–2.0% of
individuals undergoing treatment with ICI (anti-PD-1 and/or
anti-PD-L1 mAb) develop T1D (11–13). In a recent review of
the literature, 90 clinical cases of T1D induced by ICI were
reported (14). In 51% of cases, T1D onset was associated
with occurrence of one or more autoantibodies against islet
antigens. Genotype associated with T1D susceptibility were
present in 61% of cancer patients who developed T1D upon
ICI treatment (11–13). These findings indicate that the PD-
1/PD-L1 axis plays a key role in maintenance of immune
homeostasis and tolerance to pancreatic antigens. T1D is a
multifaceted disease regulated by genetic and environmental
factors whose pathogenesis could be very diverse in different
T1D patients. In fact, in individuals diagnosed with T1D sharing
common clinical signs of the disease, the triggering pathogenic
events leading to autoimmune destruction of pancreatic islets
maybe very different. Hence, a defect of the PD-1/PD-L1
dyad could lead to T1D in a subgroup of patients as the
anti-PD-1/PD-L1 therapy triggers T1D in a percentage of
individuals and, particularly, on those who carry other T1D
susceptibility genes.

How does the PD-1/PD-L1 axis control β cell autoimmunity?
Expression of PD-1 on T cells controls their activation and
drives them toward exhaustion. T-cell exhaustion is an important
mechanism to maintain immune homeostasis and prevent
autoimmune diseases including T1D (7). In support to this idea,
a recent study demonstrated that slow T1D progression was
associated with an exhaustion-like profile on islet-reactive T
cells, with expression of multiple inhibitory receptors (including
PD-1), limited cytokine production, and reduced proliferative
capacity (31). Along the same line, an increase in circulating
exhausted T cells predicted response to anti-CD3 therapy in
T1D (32). FcR-non-binding anti-CD3 mAb immunotherapy
is effective in delaying T1D occurrence in subjects with
risk to develop the disease (autoantibody-positive) (33–35).
Importantly, Fife et al., identified a critical role for PD-1/PD-
L1 in the response of T1D patients to anti-CD3 immunotherapy
(22), suggesting that PD-1–PD-L1 interactions are part of a
common pathway to selectively maintain tolerance within the
pancreatic tissue and the draining lymph nodes possibly through
induction of T cell exhaustion.

Antigen-specific therapy is another highly promising
therapeutic approach to harness the progression of T1D (36–38)
that could also exploit the PD-1-PD-L1 inhibitory pathway.
Using this approach, we and other groups have demonstrated
disease remission, inhibition of pathogenic T cell proliferation
and anergy, decreased pro-inflammatory cytokine production,
and regulatory cytokine and T cell induction (39–44). Fife
et al., showed that an antigen-specific therapy with insulin-
coupled antigen-presenting cells was able to revert T1D in
NOD mice after disease onset (22). Importantly, robust long-
term tolerance following this treatment was dependent on the
PD-1–PD-L1 pathway (22). Anti–PD-1 and anti–PD-L1, but
not anti–PD-L2, reversed tolerance weeks after tolerogenic
therapy by promoting antigen-specific T cell proliferation
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and inflammatory cytokine production directly in infiltrated
tissues (22), thus suggesting that the PD-1/PD-L1 blockade
at pancreatic tissue level maybe important. Following a
similar approach, administration of the islet antigen peptide
mimic p31 coupled to chemically fixed antigen presenting
cells (APCs) reversed diabetes and induced robust, long-
term inactivation of islet-specific BDC2.5 T-cell receptor
(TCR)–transgenic T cells (23). Here, both PD-1 and CTLA-
4 interactions were critical for the induction of tolerance.
However, long-term maintenance of the anergic T cell state
exclusively depended on PD-1/PD-L1 pathway (23). Additional
experiments indicated that PD-1 acted in a cell-intrinsic manner
to maintain tolerance.

One hallmark of T1D is the presence of islet-specific
autoantibodies (45, 46) whose production depends on cognate
interactions between a specialized subset of CD4T cells known
as T follicular helper (Tfh) and B cells in the germinal centers
(GC) (47, 48). Tfh cells express PD-1, ICOS, CXCR5, and Bcl-
6 and provide IL-4, IL-21, and CD40-ligand stimulation to
developing/maturing B cells, thus promoting antibody affinity
maturation and somatic hypermutation (49, 50). Increases
in the number of circulating Tfh cells, and, importantly,
elevated expression of an activation phenotype i.e., elevation
of ICOS and PD-1 expression, have been reported in patients
with autoimmunity including T1D, suggesting that these cells
may contribute to disease development (51–57). T follicular
regulatory (Tfr) cells are a subset of FOXP3 Treg cells that
also express PD-1, ICOS, CXCR5, CD25, Bcl-6, and Foxp3 and
suppress Tfh–B cell interactions to limit autoimmunity (58, 59).
In children with new-onset T1D, a reduction of PD-1 expression
on Tfr cells was observed in a recent study (60). Additionally,
children with T1D and dysregulated PD-1 expression were
shown to be more susceptible to autoimmune complications of
T1D, such as celiac disease and thyroiditis (29). These studies
highlight that the PD-1 and PD-L1 axis plays an important role
in regulating CD4T cell–B cell crosstalk, the development of
autoantibodies and the severity of T1D.

In recent work, PD-1 blockade was shown to enhance both
the Tfh and Tfr CD4T cells, but their ratio determined
the final outcome of the GC response during foreign
antigen immunization and in experimental autoimmune
encephalomyelitis (61). In the NOD mouse model of T1D,
Martinov et al., demonstrated that PD-1 or PD-L1 deficiency,
as well as PD-1 but not PD-L2 blockade, increased both
insulin-specific Tfh and Tfr cells and increased their survival
(61). Additionally, PD-1 deficiency resulted in an increase in
insulin-specific B cells and insulin autoantibodies (IAAs) in
the mouse sera (61). The increase in insulin-specific Tfh/Tfr
cell ratio after PD-1 blockade possibly accounted for the
increased IAA production, similarly to what has been described
previously for bulk Tfh/Tfr cell ratio (59). Interestingly, using an

antibody that specifically disrupts TCR interactions with insulin

peptide:MHC II complex, reduced the effects of PD-1 blockade

on insulin-reactive B cell expansion but did not impact T1D

incidence (61).

THE PD-1/PD-1L PATHWAY IS
FUNDAMENTAL TO MAINTAIN IMMUNE
HOMEOSTASIS IN THE PANCREATIC
TISSUE

The PD-1/PD-L1 axis is instrumental for maintenance of
immune homeostasis in several organs including the pancreatic
tissue as suggested by the observation that blockade of the
PD-1/PD-L1 pathway in 1.8% of cancer patients treated with
anti-PD-1 antibodies results in acute or chronic pancreatitis
(62). Furthermore, several lines of evidence indicate that
this inhibitory pathway is particularly important to maintain
immune tolerance against insulin-producing pancreatic β cells
for prevention of T1D. Pancreatic β cells express very low levels
of PD-L1 in basal conditions, however inflammation triggers
higher expression mostly through the action of cytokines such
interferons (63, 64). Osum et al., found that IFN-γ and, to a
lesser extent, IFN-α, promoted increased frequency of PD-L1+
β cells, and increased expression of PD-L1 on a per cell basis
(63). The fact that PD-L1 expression is upregulated in inflamed
islets and, specifically, in the presence of CD8+ T-cell infiltration
suggests that this could represent a key mechanism to control
T cell activation and promote T cell exhaustion in pancreatic
tissues (63).

CD8T cells, most likely islet-specific, are found within islets
and the insulitic lesions as well as in the exocrine pancreas of
T1D patients (5, 16, 65–69), hence the PD-1/PD-L1-mediated
control of CD8T cell infiltration may play an important role in
prevention of T1D. In support to this hypothesis, autoantibody
positive patients without clinically overt T1D showed a slight
increase in PD-L1 expression on residual pancreatic islets,
thus suggesting that PD-L1 expression maybe protective (63).
Along the same line, PD-L1 expression was absent from
insulin-deficient islets where β cells had been destroyed by the
autoimmune process (63).

The mechanism through which the PD-1 inhibitory pathway
regulates T1D development within pancreatic tissues was
elegantly addressed in vivo in pre-clinical models of T1D by
multiphoton imaging techniques. Those experiments showed
that PD-1 suppressed TCR-driven stop signals in the pancreatic
islets. Moreover, they showed that blockade of PD-1 or PD-L1
inhibited T cell migration, prolonged T cell–DC engagement,
enhanced T cell cytokine production, boosted TCR signaling and
abrogated peripheral tolerance (23).

Recent studies indicated that the PD-1/PD-L1 dyad could
be important in regulating activation of tissue-resident memory
T cells (TRMs), a subset of T cells residing in the pancreatic
tissue under steady-state conditions (70–72), that play a key
role in pancreas immune surveillance and immunopathology
in health and disease (66, 67, 73, 74). TRM cells exhibit site-
specific functional and transcriptional adaptations in certain
tissues including the pancreas (75, 76), playing an important role
in mediating tissue homeostasis. Functionally, TRM cells rapidly
release interleukin-2 (IL-2) and pro-inflammatory cytokines
to mediate immediate protective responses against multiple
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types of pathogens and they can also participate in tissue
immunopathology (77–79). Importantly, TRM cells normally
express molecules that attenuate their activation such as the
inhibitory molecules PD-1 and CD103 and the regulatory
cytokine IL-10 (80, 81). In the human healthy pancreas TRM
cells express elevated PD-1 levels compared to the intestinal
mucosa (jejunum) and pancreatic draining lymph nodes (82),
thus suggesting that their activation is tightly regulated by the
PD-1/PD-L1 pathway. Pancreas TRM cells exhibited tissue-
specific phenotypes and transcriptional programs controlling
T cell activation and metabolism (82). All together these
findings indicate that in steady-state conditions, PD-1/PD-L1
triggering on TRM cells is fundamental to halt their activation
and maintain immune homeostasis within pancreatic tissues.
Polyclonal TRM cells are present in T1D patients, particularly in
the exocrine pancreas, but their exact role in T1D development
is unknown. Another major immune cell type in the exocrine
pancreas are macrophages that enhance TRM cells’ functions
(82). Interestingly, in studies conducted on pancreatic tissues
of patients with chronic pancreatitis, TRM cells exhibited
reduced PD-1 expression concomitant with a marked decrease
in pancreas macrophages (82). Together, these findings suggest
that TRM cells, macrophages, and the PD-1 pathway contribute
to in situ immune regulation in the pancreas and a dysregulation
of this immune regulatory pathway could contribute to the
pathogenesis of T1D (Figure 1). Multiple factors could lead to
breakage of central or peripheral immune tolerance and onset
of β cell autoimmunity in T1D susceptible individuals. The
expression of PD-1/PD-L1 molecules on β cells and tissue-
resident immune cells could represent the ultimate safety
mechanism to prevent autoimmune destruction of the pancreatic
islets in individuals with β cell autoimmunity whose islet-reactive
T cells are activated and recruited within the pancreatic tissue.
Hence, in some individuals with high genetic risk of T1D and β

cell autoimmunity, a dysregulation of the PD-1/PD-L1 inhibitory
pathway could be an additional mechanism leading to T1D.

GENETIC AND ENVIRONMENTAL
FACTORS CONTROLLING THE
PD-1/PD-L1 PATHWAY

The aforementioned studies suggest that the PD-1/PD-L1
pathway maybe fundamental to control immune activation of
islet-reactive T cells and TRM cells and to maintain immune
homeostasis and tolerance in the pancreas. The onset of T1D
induced in some individuals treated with ICI (i.e., anti-PD-1
mAb) indicates that a failure of these control mechanisms could
be one of the mechanisms leading to β cell autoimmunity also in
patients with “classical” T1D. Altered PD-1 expression on islet-
reactive T cells and/or polyclonal TRM cells as well as defective
PD-L1 expression on pancreatic islets could lead to failure
of PD-1/PD-L1-mediated tolerance and immune homeostasis,
ultimately leading to T1D. How is the PD-1-PD-L1 pathway
regulated and how it contributes to T1D development? Both
genetic and environmental factors modulate the PD-1/PD-L1
pathway and maybe involved in its dysregulation in T1D.

Polymorphisms of the PD-1 gene (PDCD1) have been found in
different autoimmune diseases and confers genetic susceptibility
also to T1D (83). In humans, several studies have been performed
to assess the effects of PD-1 gene polymorphisms on T1D
(84) and few single nucleotide polymorphisms associated with
T1D were identified such as rs2227981 (PD-1.5), rs2227982
(PD-1.9) (85). Importantly, a recent study demonstrated that
rs2227982 had a significant association with clinical signs of
T1D (i.e., hyperglycemia), thus suggesting that the PD-1 gene
polymorphisms participate in increasing T1D risk (85).

Recently, a key role for the microbiota in controlling the PD-
1/PD-L1 pathway expression and function has been identified.
This finding has important implication for disease prevention
as diet, antibiotic assumption and others environmental factors
could affect the PD-1/PD-L1 function indirectly by altering the
microbiota profile. Specifically, it was demonstrated that primary
resistance to anti-PD-1 immune-checkpoint immunotherapy
(ICI) in cancer patients is related to abnormal gut microbiome
composition (86). Importantly, transfer of gut microbiota (fecal
material transfer) from ICI responders into ICI resistant patients,
increased the response to the anti-PD-1 treatment indicating
that the components of the microbial strains could directly or
indirectly act on the PD-1/PD-L1 axis (87). Also, modification
of the microbiota induced by antibiotic treatment reduced the
response to ICI suggesting that antibiotics could affect the
inhibitory PD-1/PD-L1 axis by acting on the microbiota (86).

The mechanism underlying microbiota-induced modulation
of PD-1/PD-L1 was analyzed in a murine model. Strikingly, it
was found that administration of the anti-PD-1 mAb unleashed
activation and recruitment of central memory T cells (TCM)
into draining lymph nodes and within the tumor and increased
the Teff/Treg cell ratio but only if specific bacterial strains
(A. muciniphila and E. hirae) were present in the intestine
of the tumor-bearing mice (86). These bacterial species may
restore gut barrier integrity and reduced bacterial translocation
that could induce immunosuppression of anti-tumor immunity.
Alternatively, some microbiota strains could regulate PD-1
expression on T cells and/or PD-L1 expression on tumor cells
thus increasing the therapeutic response to anti-PD-1.

The interaction between the microbiota and the PD-1-PD-L1
pathway is bi-directional. In fact, important evidence exists that
the PD-1-PD-L1 axis regulate the gut microbiota composition.
Kawamoto et al., (88) demonstrated that PD-1−/− mice have an
altered microbiota profile. Importantly, they showed that PD-
1 modulated the gut bacterial communities through selection
of IgA plasmacell repertoires. PD-1 deficiency generated an
excess number of Tfh cells with altered phenotypes resulting
in dysregulated selection of IgA-secreting B cells in the GCs
of Peyer’s patches. The IgA produced in PD-1−/− mice have
reduced bacteria-binding capacity, which causes alterations of the
gut microbiota composition.

Considering the important role of the gut microbiota in
modulating T1D pathogenesis (89–93), it is possible to speculate
that dysregulation of the PD-1/PD-L1 pathway could affect
diabetogenesis also by modifying the microbiome profiles.
On the other hand, since some commensal bacterial strains
modulate the response to anti-PD-1 therapy, the alteration
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FIGURE 1 | The immunomodulatory role of the PD1/PD-L1 axis on different innate and adaptive immune cell subsets in pancreatic lymph nodes (LN) and tissue.

(A) The PD1/PD-L1 dyad is crucial in the crosstalk between B cells and Tfollicular helper (Tfh) and follicular regulatory (Tfr) cells in the draining LN. This mechanism

favors maturation of B cells and their release of islet-specific autoAbs and could have important implications in T1D pathogenesis. (B) PD-L1 expression on

insulin-secreting 13 cells of the pancreatic islets of Langerhans down-regulates the activation and promotes exhaustion of autoreactive CD8T cells and enhances

suppressive function of FoxP3+ Treg cells. In parallel, PD-L1 expression on tissue resident memory (TRM) cells (and, possibly, Treg cells) regulates macrophage

recruitment and function within pancreatic tissues.

of microbiota composition found in T1D patients could be
directly or indirectly responsible for a defect of the PD-1-PD-
L1 inhibitory pathway leading to reduced islet-reactive T cell
exhaustion, enhanced activation of TRM cells in pancreatic
tissue and β cell damage. This process could be triggered by
components of the gut commensal microbiota translocating
from the intestine to the pancreatic tissue. However, recent
evidence indicates that not only the gut microbiota but also
organ-specific commensal strains, i.e., skin-resident bacteria,
play immunoregulatory function modulating skin graft rejection
(94). Hence, future studies are necessary to clarify whether
tissue-resident microbiota also exists in pancreatic tissues and,
importantly, whether they are involved in maintenance of
immune homeostasis and tolerance toward β cells possibly
through modulation of the inhibitory PD-1/PD-L1 pathway.

HOW COULD THE PD-1/PD-1L PATHWAY
BE THERAPEUTICALLY EXPLOITED IN
T1D?

Considering the important role of the PD-1/PD-L1 pathway in
controlling β cell autoimmunity and in maintaining immune
homeostasis in pancreatic tissues is possible to envision several
therapeutic approaches that target this inhibitory pathway for
T1D prevention and/or treatment (Figure 2). In particular,
Adoptive cell therapy (ACT) with tolerogenic dendritic cells

(DCs) and Tregs is explored as a promising standalone or
combination therapy to counter-regulate β cell autoimmunity
in T1D (95). At this moment, there is one completed (96)
and one ongoing phase I clinical trial led by Dr. Roep with
autologous tolerogenic DCs in patients with new onset T1D (CT
No: NTR5542). Over the years, several protocols of tolerogenic
DCs have been developed, with and without in vitro supplied
antigen [reviewed here (95)]. Tolerogenic DCs are thought to
act via Treg expansion and induction, T-cell deletion, T-cell
anergy and hyporesponsiveness. DCs can also be genetically
modified with viral vectors to acquire stable immunogenic
or tolerogenic properties (97). Li et al., reported genetically
modified DCs expressing T-cell co-inhibitory receptor BTLA that
induced CD8 T-cell tolerance and decreased diabetes in NOD
mice (98). More recently, Gudi et al., showed that DCs can
be efficiently engineered to simultaneously express multiple T
cell repressor receptor-selective ligands (among them PD-L1)
using a lentiviral transduction approach. These engineered DCs
induced profound inhibition of T cell proliferation, modulation
of cytokine response, and Treg cell induction, and prevented
experimental autoimmune thyroiditis (99). Thus, DCs could
be genetically modified to express PD-L1 (Figure 2). These
DCs could in turn give rise to more Treg cells that express
elevated levels of PD-1. Alternatively, Treg cells can be genetically
modified to express PD-1 together with a desired, preferably islet-
specific, antigen-specificity (100) (Figure 2). Further preclinical
development and research will be required to address the
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FIGURE 2 | Therapeutic strategies for exploitation of the PD1/PD-L1 pathway in prevention of Type 1 Diabetes and pancreatic islet transplantation. (A,B) Expression

of PD-1 or PD-L1 on engineered immune cells (DC, Treg cells) and tissues could enhance immune tolerance and therapeutic efficacy of adoptive cell therapy or

antigen-specific therapy in T1D. (C) Modification of the microbiota composition through probiotic or prebiotic administration can modulate T1D pathogenesis acting

on the PD1/PD-L1 axis. (D,E) Induction of PD-L1 expression on engineered 13 cells or HSPCs could enhance transplantation tolerance in T1D patients.

effectiveness of PD-L1-expressing DC and PD-1-expressing Treg
for the treatment of T1D. These approaches could be exploited
to preserve residual β cell mass in newly diagnosed T1D patients
(stage 3 T1D) as well as to prevent occurrence of clinical T1D in
autoantibodies positive individuals (stage 1/2 T1D).

The antigen-specific response that characterizes T1D has been
extensively studied and remains a “hot” area of investigation.
Thus far, the primary antigenic drivers of the autoimmune
damage are antigens which are expressed exclusively in the β

cells. Proinsulin is the major antigen of the immune response and
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often the first adaptive immune response to be detected (insulin
autoantibodies) (101, 102). Other β cell antigens are also targeted
including preproinsulin (PPI), glutamic acid decarboxylase
(GAD), tyrosine phosphatase-like insulinoma antigen (IA2, also
called ICA512), zinc transporter ZnT8, and islet-specific glucose-
6-phosphatase catalytic subunit-related protein (IGRP) (103).
Antigen-specific therapies are tolerogenic approaches that rely on
the administration of islet antigens as peptides, whole proteins
or DNA vaccines (36, 43, 104). Antigen-specific therapies in
general have not been successful so far in inducing durable
protection from T1D in autoantibodies positive individuals
(stage 1/2 T1D), and current studies focus on potentiating
the tolerogenic outcome with combination or more than one
epitopes or combination of epitopes with other tolerogenic
molecules (105). DNA-based antigen-specific therapies present
several unique advantages, as DNA vectors (plasmids) are
easy and cheap to be produced and can guarantee prolonged
expression of the encoded antigens and co-expressing factors. A
possible tolerogenic approach would include the incorporation
in the same DNA vector proinsulin or the major epitopes from
multiple β-cell antigens and PD-L1 (Figure 2). This approach,
although not yet tested, might prove more effective at delaying
T1D in individuals with autoantibodies positivity (stage 1/2 T1D)
but also genetically ‘‘at risk’’ individuals.

Another way to therapeutically exploit the PD-1/PD-
L1 axis for T1D prevention in genetically “at risk” and
autoantibodies positive individuals would be through the
modification of the microbiota. As we previously mentioned,
a key role for the microbiota in controlling the PD-1/PD-
L1 pathway expression and function was recently identified
(85). Thus, modulation of the microbiota composition through
administration of probiotics or dietary approaches could enhance
PD-L1 expression on pancreatic β cells as well as PD-1 on Treg
cells (Figure 2).

So far, we discussed how the PD-1/PD-L1 axis could be
exploited to control β cell autoimmunity and preserve β cell
mass in individuals with newly diagnosed T1D (stage 3 T1D)
or with high genetic risk to develop disease with or without
autoantibodies positivity (stage 0 and stage 1/2 T1D). For
T1D patients with established disease (stage 4 T1D) pancreatic
islet grafts is the main therapeutic option to restore insulin
independence. Importantly, the PD-1/PDL1 pathway can also be
exploited to enhance immune tolerance and promote survival of
transplanted islets. The most significant limitations of clinical
islet transplantation include the paucity of pancreas organ
donors and the adverse effects of chronic immunosuppression.
Thus, significant effort is devoted to the generation of a
replenishable supply of insulin-producing cells, such as porcine
pancreatic islets (106) or β cells derived from stem cells
(107). Regardless of the β cell source, immunomodulatory
approaches that control alloreactivity and the recurrence of
autoimmunity are required. The PD-1 pathway seems to
regulate autoreactive, as we previously discussed, but also
alloreactive immune responses. PD-L1 blockade was shown to
enhance alloreactive T cell responses and accelerated MHC
class II–mismatched skin graft rejection in mice (108). A

dimeric form of PD-L1 and Ig fusion protein (PD-L1.Ig)
in combination with anti-CD154 blockade prevented cardiac,
corneal and pancreatic islet allograft rejection, providing direct
evidence for the potential of this pathway to induce allograft
tolerance (109–111). Recently, a recombinant form of PD-L1
chimeric with core streptavidin (SA) (SA-PD-L1) engineered
islets approach was evaluated in a preclinical model of
allogeneic islet transplantation (112). SA-PDL1–engineered islets
survived indefinitely in allogeneic hosts under a short course of
rapamycin regimen, demonstrating the significant potential of
PD-1 pathway for modulating alloreactive responses to overcome
graft rejection.

Given the importance of the PD-1/PD-L1 pathway in islet-
specific T cell tolerance, some investigators are using techniques
of genetic engineering to generate β cells that would be
immunologically “privileged” to be used for β cell replacement
in T1D patients (113, 114). There are several efforts placed for
generating a replenishable supply of hypoimmunogenic β cells
from human pluripotent stem cells (hPSCs) using state-of the-
art genome editing technologies (115). Among the multiple key
genome edits that are being tried, elimination of HLA Class I and
II as well as inducible overexpression of CTLA4Ig and PD-L1
are included (Figure 2). The successful generation of functional,
immunologically “privileged” β cells would pave the way for a
“universal off-the-shelf ” transplantation platform avoiding the
risks of immunosuppression and/or encapsulation and could be
a “game-changer” in the race to cure T1D (5, 16).

Recently, normoglycemia in patients with recently diagnosed
T1D (stage 3 T1D) was obtained with the Voltarelli trial (35,
116, 117). In this trial (117), autologous hematopoietic stem
and progenitor cell (HSPC) transplantation in combination
with thymoglobulin plus cyclophosphamide as induction therapy
in 65 patients with newly diagnosed T1D showed to achieve
insulin independence in nearly 60% of treated patients (117).
This important finding suggested that HSPCs may be a
therapeutic option for new onset T1D patients. Interestingly,
the immunoregulatory properties of HSPCs in T1D appear
to be linked to the expression of the immune checkpoint
PD-L1. Recently, Ben Nasr et al., evaluated the levels of
PD-L1 expression in HSPCs in both NOD mice and T1D
patients (118). By means of transcriptomic profiling, flow
cytometric analysis, RT-PCR, and direct analysis of bone
marrow, they found a defect in the expression of PD-
L1 expression in HSPCs in both NOD mice and T1D
patients. To overcome the PD-L1 defect, they developed
genetic (generation of PD-L1.Tg HSPC) and pharmacological
approaches (treatment with IFN-β, IFN-γ, and polyinosinic-
polycytidylic acid [poly(I:C)]), which successfully abrogated the
autoimmune response in NOD mice (118). Tracking studies
suggested that PD-L1.Tg HSPCs preferentially homed to the
inflamed pancreas (119). Pharmacologically modulated HSPCs
also markedly abrogated CD4- and CD8-restricted autoimmune
responses and reverted diabetes in nearly 40% of newly
hyperglycemic NODmice (118). Thus, PD-L1-expressing HSPCs
hold great promise for the treatment of T1D in humans
(Figure 2).
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SUMMARY

The PD1/PD-L1 dyad is very important to maintain immune
homeostasis and to promote tolerance in peripheral tissues.
Recent evidence indicates that the PD1/PD-L1 pathway is
fundamental to prevent autoimmune diabetes so that, in some
patients undergoing treatment with ICI, blocking this inhibitory
pathway is sufficient to unleash islet-reactive T cells and trigger
T1D. The PD1-PD-L1 axis could affect islet autoimmunity
through different mechanisms involving innate and adaptive
immune cells and taking place in draining lymph nodes as
well as in the pancreatic tissue. The important therapeutic
implication of those findings is that restoring the PD-1/PD-
L1 function could represent a valid strategy to treat T1D at
different stages: to counter-regulate β cell autoimmunity and
prevent T1D in individuals genetically at-risk or autoantibodies
positive (Stage 1/2), to promote immune tolerance and preserve
residual β cell mass in new onset T1D patients (Stage 3) and,
finally, to reduce alloreactive responses and favor survival of
transplanted islets in T1D patients with established disease (Stage
4). Targeting the PD-1/PD-L1 has been already proven as an

effective approach to promote immune tolerance in T1D and
islet transplantation. Additional knowledge about the factors that
regulate the PD1/PD-L1 pathway will pave the way to more
effective treatments for T1D and islet transplantation.
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