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ABSTRACT
Introduction: Diabetic retinopathy (DR) is the leading cause of vision loss in the working age popula-
tion of the developed world. DR encompasses a complex pathology, and one that is reflected in the
variety of currently available treatments, which include laser photocoagulation, glucocorticoids, vitrect-
omy and agents which neutralize vascular endothelial growth factor (VEGF). Whilst these options
demonstrate modest clinical benefits, none is yet to fully attenuate clinical progression or reverse
damage to the retina.

This has led to an interest in developing novel therapies for the condition, such as mediators of
angiopoietin signaling axes, immunosuppressants, nonsteroidal anti-inflammatory drugs (NSAIDs), oxi-
dative stress inhibitors and vitriol viscosity inhibitors. Further, preclinical research suggests that gene
therapy treatment for DR could provide significant benefits over existing treatments options.
Areas covered: Here we review the pathophysiology of DR and provide an overview of currently
available treatments. We then outline recent advances made towards improved patient outcomes and
highlight the potential of the gene therapy paradigm to revolutionize DR management.
Expert opinion: Whilst significant progress has been made towards our understanding of DR, further
research is required to enable the development of a detailed spatiotemporal model of the disease. In
addition, we hope that improvements in our knowledge of the condition facilitate therapeutic innova-
tions that continue to address unmet medical need and improve patient outcomes, with a focus on the
development of targeted medicines.
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1. Introduction

Diabetic retinopathy (DR) is the leading cause of vision loss in
the working age population of the developed world [1].
Clinically, DR is characterized by retinal neovascularization,
the formation of microaneurysms, the presence of protein
exudates in the vitreous, and ultimately a steady decline in
visual acuity in patients, of which around 13 million are
thought to exist in developed countries [1].

The pathophysiology of DR is driven by prolonged hypergly-
cemic episodes (elevated blood glucose concentrations) arising
from suboptimal glycemic control in patients with either type I or
II diabetes mellitus (DM) using dietary modifications, oral drug
therapy (metformin, sulphonylurea, dipeptidyl-peptidase-4 inhi-
bitors, sodium-glucose cotransporter-2 inhibitors), or injected
insulin formulations. In patients, elevated blood glucose levels
drive aberrant regulation of a number of biochemical pathways,
ultimately leading to superoxide production and the burden of
oxidative stress in retinal tissues. Mitochondrial dysfunction,
inflammation, and hypoxia-driven vascular endothelial growth
factor (VEGF) secretion accordingly give rise to vascular and
neuronal apoptosis, and neovascularization and elevated vaso-
permeability, respectively [2–4].

The complex pathology of DR reflects the variety of cur-
rently available treatments, which include laser photocoagula-
tion, glucocorticoids, vitrectomy, and agents that neutralize
VEGF. Whilst these options demonstrate modest clinical ben-
efits, none is yet to fully attenuate clinical progression or
reverse damage to the retina. In addition, many require fre-
quent administration involving intraocular injections, which
may be associated with side effects such as corneal scarring,
not to mention the costs associated with frequent ophthal-
mology clinician visits [3,5].

This has led to an interest in developing novel therapies for
the condition, such as mediators of angiopoietin signaling
axes, immunosuppressants, nonsteroidal anti-inflammatory
drugs (NSAIDs), oxidative stress inhibitors, and vitriol viscosity
inhibitors (VVIs). Further, preclinical research suggests that
gene therapy treatment for DR could provide significant ben-
efits over existing treatments options [6].

Viral vector-based systems have been utilized for a number of
inherited orphan ophthalmic conditions involving single-gene
mutations (e.g. choroideremia, Leber’s congenital amaurosis,
Leber’s hereditary optic neuropathy) and recent research suggest
that gene therapy treatment for DR could translatewell to patients

CONTACT Michael Whitehead mw684@cam.ac.uk John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, E.D. Adrian Building,
University of Cambridge Forvie Site, Robinson Way, Cambridge CB2 0PY, UK

EXPERT OPINION ON BIOLOGICAL THERAPY
2018, VOL. 18, NO. 12, 1257–1270
https://doi.org/10.1080/14712598.2018.1545836

© 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/14712598.2018.1545836&domain=pdf


through a one-time therapeutic drug administration that has the
ability to selectively target diseased areas of the retina [7].

2. Clinical presentation and diagnosis

DR is the commonest cause of vision loss in adults aged 20–-
74 years [1]. An estimated 285 million people suffer from
diabetes, and one-third of these are affected by vision-
threatening DR, which may include diabetic macular edema
(DMO) or proliferative DR (pDR) [8].

In patients with type I diabetes, pDR is the most prevalent
vision-threatening condition. In type II diabetics however,
DMO is more common, and this explains the significant
increase seen with the prevalence of DMO over recent years,
in which everincreasing levels of obesity in the western world
have been implicated [1].

Clinically, pDR and DMO may present with a variety of
symptomatic ailments and variability between patients is com-
mon. During the early stages of the disease, patients are often
asymptomatic but progress over time to develop microaneur-
ysms, hemorrhages, and intraretinal microvascular abnormal-
ities [9]. Upon examination, this can manifest as dark spots
occluding vision, blurred vision, impaired color vision, and
eventually vision loss if treatment is not effective [10]. As DR
progresses, DMO may occur, defined as the presence of retinal
thickening and hard exudates within 500 µm of the center of
the macula [11]. Additionally, some patients demonstrate
severe pDR in which aberrant neovascularization leads to the
formation of highly permeable blood vessels across the retina.

To diagnose DR, ophthalmologists use fluorescein angio-
graphy and optical coherence tomography (OCT) to assess
retinal blood vessel permeability (leakage) and thickness,
respectively [12]. Newer techniques, including OCT angiogra-
phy, are also becoming more widely used.

3. Clinical pathophysiology

In DR, blood–retinal barrier (BRB) dysfunction is common. The
leakage of blood constituents into the retinal neuropile occurs in
conjunctionwith the degradation of the inner BRB, and this often
leads to DMO. VEGF is strongly implicated in the leakage of blood

vessels and acts as a potent vasopermeability agent [2].
Thickening of the vascular basement membrane is also common
in DR and is thought to arise from the upregulation of fibronec-
tin, collagen, and laminin, which in turn leads to changes in the
microenvironmental factors mediating the growth, survival, and
function of pericytes and endothelial cells [13].

Central to the degenerative capillary pathophysiology seen in
DR is the loss of pericyte function. Pericytes play a crucial role in
normal retinal function, facilitating the differentiation, migration,
and proliferation of angiogenic endothelial cells [14]. The loss of
pericytes and the presence of ‘pericyte ghosts’ are therefore
considered a key histopathological hallmark of DR [15].

Microaneurysms are seen early in the development of DR
and are often the first clinically recognizable features. These
present as ‘balloon-like’ protrusions of the capillary wall and
are known to recruit inflammatory cells which further damage
the endothelial lining. Herein, late-stage microaneurysms are
sometimes sclerotic and frequently exist in the absence of an
endothelial lining and are associated with regions of extensive
capillary degeneration [16].

4. Molecular pathophysiology

The biology of DR is hugely complex, and many of the under-
lying mechanisms of the disease are yet to be fully under-
stood. Figure 1 summarizes key diabetic-related factors
implicated in the development of DR. Poor DR management
leads to hyperglycemic episodes which drive metabolic dys-
function, resulting in oxidative stress and the generation of
reactive oxygen species (ROS, e.g. superoxide-free radicals).
Mitochondrial aberrations may induce apoptosis and inflam-
matory factors may elevate hypoxia-mediated VEGF secretion.
Neurovascular dysfunction, vascular hyperpermeability, and/or
neovascularization may follow and give rise to the pathologi-
cal hallmarks of pDR and DMO [7].

4.1. The polyol pathway

Hyperglycemia associated with poor DR management drives
the aberrant regulation of five biochemical pathways in DR
patients, resulting in excess glucose being metabolized via the
polyol pathway through an aldose reductase (AR)-mediated
pathway which produces sorbitol [17]. Because sorbitol is
impermeable to cellular membranes, it accumulates inside
the cell and induces osmotic damage, amongst other harmful
effects [18,19]. Sorbitol can also be metabolized to fructose via
a sorbitol dehydrogenase-mediated pathway, and subse-
quently to fructose-3-phosphate and deoxyglucosone, both
of which are strong glycolyzing agents and lead to the deposi-
tion of advanced glycation endproducts (AGEs) [17].

In addition, upregulation of the polyol pathway results in
a reduction in the availability of NADPH, thereby enhancing the
sensitivity of affected cells to oxidative stress and also depleting
the reduced glutathione pool, itself leading to elevated ROS levels.
Recent evidence also suggests that the sorbitol dehydrogenase-
mediated shift in NADH/NAD+ levels may also be further exacer-
bated by NAD+-depleting NADH oxidase downregulation, itself
leading to increased levels of ROS within cells, and also the
inhibition of NAD+-dependent glyceraldehyde phosphate
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dehydrogenase (GAPDH) enzymatic activity. As discussed later,
reductions in GAPDH activity have been implicated as
a causative biochemical pathway in DR [20,21].

4.2. AGEs formation

The formation and accumulation of AGEs is markedly increased
in diabetic patients in accordance with the enhanced availability
of glucose [22,23]. One key pathological property of AGEs is their
capacity to cross-link proteins, thereby altering their structure
and function, and in diabetes, this includes basement mem-
branes, cellular receptors, and blood vessel wall components.
Moreover, AGEs can activate their cognate receptors to induce
prooxidant and pro-inflammatory events, thus exacerbating oxi-
dative stress and leukocyte adhesion in DR sufferers [24].

These mechanisms have now been linked to the molecular
pathophysiology of DR. The accumulation of AGEs has been cor-
related to pericyte loss, whilst treatment of diabetic rats with
aminoguanidine hydrochloride – an AGE formation inhibitor –
limited microaneurysm and acellular capillary formation [25].
Similarly, treatment with a vitamin B6 derivative and AGE forma-
tion inhibitor, pyridoxamine, protected against capillary dropout
and also downregulated the expression of basement membrane
components [26].

4.3. Protein kinase C activation

Hyperglycemic episodes also lead to increased glucose flux via
the glycolysis pathway. This elevates synthesis of

diacylglycerol (DAG) which in turn activates the protein kinase
C (PKC) pathway [27]. PKC mediates a plethora of biochemical
signaling pathways, and as a result, it impacts a number of
molecular processes when upregulated in DR, including acti-
vation of the mitogen-activated protein kinase (MAPK) factors,
themselves leading to enhanced expression of stress-related
proteins like c-Jun kinases and heat shock proteins, two key
mediators of vascular function [28].

In particular, the PKC-β isoform has been shown to drive VEGF
expression, a key regulator of vascular permeability and angio-
genesis underpinning the molecular pathophysiology of DR [29].

PKC activation also drives overexpression of NADPH oxi-
dase and NFκB in a number of vascular cells – including
endothelial cells, smooth muscle cells, and pericytes – thereby
exacerbating the oxidative stresses and inflammatory patho-
physiological moieties associated with DR [30].

4.4. Hexosamine pathway flux

In the hexosamine pathway, fructose-6-phosphate (F6P) is con-
verted into N-acetylglucosamine-6-phosphate (GlcNAc) by gluta-
mine F6P amidotransferase. GlcNAc is then converted into
uridine-5-diphospho-N-acetylgalactosamine (UDP-GlcNAc), a key
regulator of a huge number of cytoplasmic and nuclear proteins
[31]. In DR, SP1 transcription factor-dependent increases in trans-
forming growth factor beta (TGFβ) and plasminogen activator
inhibitor-1 (PAI-1) expression have been suggested to occur in
smooth muscle cells, glomerular mesangial cells, and aortic
endothelial cells [32–34].

Figure 1. Diabetes leads to hyperglycemic episodes which in turn impacts five key biochemical pathways: – polyol pathway activation; production of advanced
glycation endproducts (AGEs); protein kinase C (PKC) activation; hexosamine pathway activation; and poly (ADP-ribose) polymerase upregulation. This in turn leads
to oxidative stresses, resulting in mitochondrial dysfunction, deregulation of proinflammatory mediators and crucially, hypoxia. These effects cause apoptosis of
vascular and neuronal cells and upregulation of VEGF expression, eventually leading to neurovascular dysregulation, and hyperpermeable blood vessels and/or
neovascularization. Importantly, the generation of ROS and oxidative stress further exacerbates metabolic dysfunction, itself leading to elevated ROS production in
a self-perpetuating positive feedback mechanism. In addition, the renin angiotensin aldosterone system is implicated in driving neurovascular dysfunction.
Reproduced from Pharmacology & Therapeutics, Vol 173, Wang et al., Gene therapy for diabetic retinopathy: Are we ready to make the leap from bench to
bedside?, Copyright 2017, with permission from Elsevier [7].

EXPERT OPINION ON BIOLOGICAL THERAPY 1259



O-GlcNAc transferase (OGT) catalyzes the addition of
GlcNAc to serine and threonine residues at phosphorylation
sites on SP1, thereby upregulating its transcriptional activity
and pathological TGFβ and PAI-1 expression [35]. In addition,
the glycosylation of RNA polymerase-II transcription factors by
OGT and UDP-GlcNAc has been proposed as a more general-
ized mechanism by which glucose-responsive gene transcrip-
tion is regulated, in turn leading to the dysregulation of the
expression of a number of proteins that ultimately lead to DR
pathophysiology [36].

4.5. Poly(ADP-ribose) polymerase activation

Hyperglycemia-induced oxidative stress has been shown to
correlate to increased poly(ADP)-ribose polymerase (PARP)
activation, via a ROS-mediated DNA damage-dependent
mechanism. This in turn leads to NAD+ depletion and con-
comitant inhibition of GAPDH through the depletion of the
enzyme’s catalytic cofactor and PARP-mediated ribosylation. In
conjunction, these molecular mechanisms have been shown
to contribute to endothelial cell dysfunction in diabetic blood
vessels in various diabetic complications including DR.
Moreover, the inhibition of PARP has demonstrated protection
against diabetes-induced retinopathy, thereby substantiating
the role of this pathway in the DR pathology [37,38].

4.6. Renin–angiotensin aldosterone system activation

The renin–angiotensin aldosterone system (RAAS) is an endo-
crine system that regulates systemic blood pressure. Although
the exact mechanism that RAAS plays within DR is yet to be
elucidated, its role as a regulator of vascular hydrodynamics
and findings that purport the upregulation of RAAS compo-
nents in DR patients implicates it in the onset and progression
of the condition.

Activation of the RAAS in DR begins with the local accu-
mulation of glucose and its metabolite, succinate. This in turn
leads to the activation of GPR91, a G-protein-coupled receptor,
that stimulates juxtaglomerular cells to release prorenin and
renin. Further, expression of angiotensin-converting enzyme
(ACE) in the retina has been reported to adversely affect
capillary perfusion and vascular structure. Herein, ACE-
mediated VEGF upregulation has been reported and corre-
lated to elevated progression of DR [39]. These findings have
been corroborated by in-human clinical evidence showing
that lisinopril-mediated ACE inhibition can prevent the forma-
tion of new blood vessels in the diabetic eye [40]. In support
of this, another study has demonstrated that losartan-
mediated inhibition of the angiotensin-II type I receptor pre-
vented neovascularization in diabetic subjects [1,41].

4.7. Oxidative stresses and superoxide production

Throughout this discussion of the pathology of DR, frequent
reference has been made to the role of oxidative stress.
Indeed, oxidative stress (e.g. production of superoxide) has
been proposed as a ‘unifying mechanism’ of DR that acts as
a common element linking all of the hyperglycemia-induced
biochemical and molecular pathways. This has primarily been

driven by evidence that all of the pathogenic mechanisms
outlined above drive the production of superoxide by the
electron transport chain [42,43].

The mediation of these pathways by mitochondrial super-
oxide is dependent on the capacity of superoxide ions to
inhibit GAPDH activity, and 66% superoxide-mediated reduc-
tions in GAPDH activity have been measured [42]. As
described previously, ROS-mediated GAPDH inhibition is likely
an indirect effect and involves the activation of PARP and
concomitant depletion of NAD+ and GAPDH ribosylation, as
opposed to the direct inhibition of GAPDH by ROS [44].

As outlined in Figure 2, superoxide causes an elevation in the
levels of glyceraldehyde-3-phosphate (G3P) by inhibiting its
NAD+-dependent conversion to 1,3-diphosphoglycerate via
the inhibition of GAPDH activity. G3P in turn upregulates the
formation and deposition of AGEs by accelerating the addition
of triose phosphates to methyl-glyoxal, the main AGE precursor.
This hypothesis is supported by data stating that the antisense
oligonucleotide-mediated inhibition of GAPDH enhances the
rate of addition of triose phosphates and AGE formation [42].

G3P also upregulates the PKC pathway by enhancing the
conversion of dihydrooxyacetone phosphate to DAG, a key
activator of PKC, and this effect has been corroborated by
data showing that the inhibition of GAPDH by antisense oli-
gonucleotides has a similar effect [45]. G3P upregulation
increases the availability of F6P which in turn drives flux
through the hexosamine pathway through the enhancement
of glucosamine-6-phosphate and ultimately UDP-GlcNAc
levels. Finally, G3P upregulation enhances the flux through
the polyol pathway by increasing the availability of glucose
[45]. Therefore, the role of ROS in mediating the four meta-
bolic pathways described here constitutes a self-amplifying
cycle in which the generation of superoxide drives metabolic
dysfunction, which in turn drives more ROS production via
a self-perpetuating positive feedback mechanism.

4.8. Inflammation

The role of inflammation and leukostasis in DR is now well
documented and is a key driver of capillary occlusion and
hypoxia that ultimately drives VEGF expression and conco-
mitant hallmark vascular abnormalities that characterize DR.
In DR patients, a significant increase in systemic pro-
inflammatory cytokine expression is seen and the elevation
of chemokine synthesis in the retina is also present. Several
studies have also reported that the relative expression of
these factors is correlated to the rate of progression of DR
and recent evidence has also implicated the activation of
various immune cells with the onset of the condition
[46–48].

The central role of inflammation in driving VEGF secretion and
thereby the pathology of DR is demonstrated by a number of
studies on the effects of inflammation inhibition preclinically and
in human clinical trials [49,50]. The use of anti-inflammatory drugs
such as intravitreal triamcinolone acetonide (IVTA) and NSAIDs
like nepafenac has been shown to reduce VEGF expression,
reduce vascular permeability, inhibit retinal cell death, diminish
leukostasis, and ultimately improve visual acuity [49–51].
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4.9. Hypoxia and VEGF

Perhaps the best-characterized growth factor involved in
the development of DR is VEGF. The role of VEGF in pro-
moting angiogenesis, the breakdown of the BRB, and vas-
cular hyperpermeability are now well described in the
development and progression of both pDR and DMO [52–
54]. VEGF can exist as one of four isoforms, VEGF-121, -165,
-189, or -206, and of these VEGF-165 has been the most
heavily implicated in the DR pathology [55,56]. VEGF exerts
its function on cells through its binding to and activation
of two membrane-bound tyrosine kinase receptors, VEGF-
R1 (FLT1) and VEGF-R2 (FLK1), on endothelial cells, of
which VEGF-R2 appears to be the primary mediator of
VEGF activity. VEGF binding to its cognate receptor acti-
vates calcium influx channels or MAPK signaling pathways
in order to mediate its physiological effect [57,58].

4.10. Mitochondrial dysfunction

In contrast to that of inflammation and VEGF upregulation, the
role of mitochondrial dysfunction in DR is poorly understood.
A number of hypotheses have been suggested, however, to
explain how superoxide ions and other ROS lead to aberra-
tions in mitochondrial function. One paradigm is that the
hyperglycemia-derived ROS and concomitant oxidative stres-
ses detailed above lead to compromised function of the elec-
tron transport chain, itself leading to damages to
mitochondrial DNA [3,4,59,60].

4.11. Vascular and neural cell apoptosis

The loss of vascular cells, visualized as acellular capillaries, is
also well characterized in DR. Terminal dUTP nick-end labeling
(TUNEL) has been applied to human and animal model sam-
ples and demonstrated the elevation of this apoptotic marker
in DR retinas compared to normal controls [61]. In particular,
the appearance of ‘pericyte ghosts’ has been related to apop-
totic casualties, in which upregulation of the BCL2 family
member BAX has been implicated.

The onset of neural cell apoptosis, however, is less well
documented but has still been proposed by some to represent
a novel paradigm in our understanding of the pathology and
treatment of DR [62,63]. In the inner retinal layer in particular,
TUNEL analysis has demonstrated elevated apoptosis of retinal
ganglion cells (RGCs). The onset of neuronal apoptosis has also
been shown to proceed vascular apoptosis, perhaps highlight-
ing the sensitivity of neuronal cell types to the apoptotic
stresses outlined earlier, those principally being oxidative
stress and concomitant mitochondrial dysfunction [64–66].

4.12. The neurovascular unit

The term ‘neurovascular unit’ (NVU) refers to the coupling of
neuronal and vascular cell types in the retina and incorporates
RGCs, bipolar cells, horizontal cells, astrocytes, Muller cells,
microglia, pericytes, and endothelial cells. The NVU regulates
the flow of blood throughout the inner retina via an auto-
nomic innervation-independent mechanism, and instead, it

Figure 2. The relationship between superoxide and ROS production and the key pathologic pathways of DR. This model demonstrates the centrality of oxidative
stress to DR and has led some to purport superoxide production to be the ‘unifying mechanism’ in the complex pathology of DR. G6P = glucose-6-phosphate,
F6P = fructose-6-phosphate, GA3P = glyceraldehyde-3-phosphate, 1,3-DPG = 1,3,-diphosphoglycerate, GS6P = glucosamine-6-phosphate, a-GP = alpha-glycerol-
phosphate. Reproduced with permission from Springer Nature, Copyright 2001 [45].
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responds to neural and circulatory cues in order to regulate
blood flow [67,68].

In DR, normal retinal blood flow is disrupted and there are
now substantial amounts of evidence to suggest that the func-
tion of the NVU is also affected by the condition. In particular,
responses to hyperemia are diminished and this can be demon-
strated in a clinical setting using flicker-evoked vasodilation in
patients asymptomatic for DR, suggesting that NVU uncoupling
may be a key causative factor in the disease [69].

5. Current treatment paradigms

5.1. Glycemic control

A number of large clinical trials (DCCT, UKPDS, and ACCORD)
have demonstrated that the onset and severity of DR can be
prevented using insulin injections. Typically, this involves
reducing blood-glucose levels as much as possible whilst
avoiding the onset of severe side effects. This has proven to
be a largely effective technique with one trial, the
Epidemiology of Diabetes Interventions and Complications
study, demonstrating that the positive effects of glycemic
control can extend up to 10 years. However, these benefits
can reduce slightly over time and the ‘metabolic memory’
phenomenon can also mitigate the impact of insulin in
patients [70–72].

5.2. Laser photocoagulation

In a US-based, large-scale, randomized clinical trial, macular
laser treatment has been shown to reduce the risk of visual
loss in DMO patients from 28% to 11%. Further, studies seek-
ing to compare the benefits of photocoagulation and scatter
laser treatment have demonstrated superiority of the focal
photocoagulation technique at inhibiting moderate vision
loss with no deleterious effects on visual fields [73,74].

5.3. RAAS blockade

One study sought to compare the effects of the ACE inhibitor
enalapril with the angiotensin-II receptor type I inhibitor losar-
tan on the progression of DR. No statistically significant effect
was found, suggesting that either mechanism of inhibiting the
RAAS pathway was equally effective. In addition, the use of
candesartan cilexetil, an angiotensin-II receptor inhibitor, in
DR-naive and mild DR resulting from DM type I was shown
to inhibit the progression of the condition [75–77].

5.4. Glucocorticoid therapy

The use of systemic and ocular glucocorticoid treatments,
including IVTA (a long-acting nonsoluble hormone), for
a number of eye treatments, has been part of clinical practice
for over 50 years. IVTA has been shown to reduce macular
edema in DMO and wet age-related macular degeneration
(wAMD). IVTA injections demonstrated reductions in retinal
thickness and concomitantly improvement in 56% of eyes by
five lines in the Snellen eye chart in a 2003 clinical trial [54,78,79].

5.5. PKC inhibitors

Ruboxistaurin, a PKC-beta-specific inhibitor, has been shown
to inhibit diabetic BRB breakdown and retinal neuropathy in
animal models of DR. In human clinical trials however, modest
reductions in vision loss were seen in the study group, and the
effect of the drug was only significant when combined with
laser photocoagulation [80].

5.6. Fenofibrate

Fenofibrate is a peroxisome proliferator-activated receptor
alpha activator that increases lipolysis and the elimination of
triglycerides from the blood plasma via the upregulation of
lipoprotein lipase and the downregulation of apoprotein C III
synthesis. Whilst recent evidence suggests that the risk of DR
onset and development is mitigated with fenofibrate treat-
ment in patients with DM type II, the mechanism by which
this occurs appears to act independently of the lowering of
systemic high-density lipid and mean triglyceride levels in the
FIELD and ACCORD clinical trials [81,82].

5.7. Anti-VEGF therapeutics

The inhibition of VEGF has been a cornerstone of the treat-
ment of DMO and wAMD for over 10 years, and the benefits of
anti-VEGF therapy have been well documented in a number of
phase III clinical trials for retinal diseases. The first FDA
approval of a monoclonal antibody therapeutic for DMO was
Lucentis (ranibizumab, Roche Genentech) in 2006, and since
then, the molecular principles of antibody-based target inhibi-
tion in DMO have been built upon through the development
of single chain variable fragments and other derivatives of the
monoclonal antibody paradigm.

More recently, a new generation of anti-VEGF molecules
have been developed by Regeneron Inc. Aflibercept, a so-
called VEGF trap, is a 115-kDa fusion protein exhibiting high
affinity for VEGF-RI and -RII antagonists. In phase III clinical
development, aflibercept has demonstrated potent antitumor
neovascularization capabilities in colorectal cancer patients,
a finding corroborated by recent reports of efficacy in phase
III trials for retinal vein occlusion-induced macular edema and
DMO [83].

5.8. Limitations and drawbacks to current therapies

Whilst a number of therapeutic strategies are available to
clinicians for the treatment of DR, no treatment is yet to fully
attenuate clinical progression to reverse damage to the retina.
Further, a large number of patients do not respond to certain
treatments at all, and patient outcomes are often limited in
many cases. A summary of the limitations and drawbacks to
existing therapies is given in Table 1.

6. Recent therapeutic developments

As detailed above, although a number of treatments are now
approved for DR, each is beset with its own limitations and
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drawbacks. Therefore, a number of alternative pathways have
been considered as novel therapeutic options for the condition.

6.1. Angiopoietin and Tie2 ligand/receptor interactions

The angiopoietin family is involved in the regulation of vascular
maturation and neovascularization. Angiopoietin-1 and -2 (Ang1
and 2) are known to have opposing effects when binding to
their cognate receptor, the receptor tyrosine kinase Tie2. Ang1
induces Tie2 activation and phosphorylation, thereby promoting
vessel stabilization and maturation. In addition, Ang1 has
demonstrated anti-inflammatory effects and the ability to inhibit
leukocyte adhesion to endothelial cells in animal models [92,93].
By contrast, Ang2 is a context-dependent mediator of the Tie2
pathway and can act as a mild agonist or an antagonist of the
receptor. To dephosphorylate and thereby deactivate the Tie2
receptor, Ang2 activates protein tyrosine phosphatase beta or
vascular endothelial PTP, which in turn leads to blood vessel
destabilization. This destabilization is essential for the normal
process of angiogenesis but can lead to endothelial cell apop-
tosis in the absence of VEGF signaling [94,95].

The role of the angiopoietin family in DR has led to the
instigation of a number of drug-development projects. Akebia
Therapeutics have developed a number of Ang2 inhibitors with
the aim of restoring Tie2 signaling, and Amgen has developed
trebananib, a peptibody (peptide fused to an antibody Fc
domain) targeting Ang1 and 2 proteins [96]. A similar approach
has demonstrated clinical efficacy in phase II testing. Most
recent attention has focused on RG7716, a bispecific antibody
which can neutralize both VEGF and Ang2, and demonstrated
superior efficacy against low-dose (0.3 mg) ranibizumab in
recent US phase II clinical trials, perhaps highlighting the advan-
tages of a combination-based approach to treating DR [97].

6.2. NSAIDs

As discussed above, the role of inflammation in driving the
development of DR is now well characterized, and accordingly,

clinical assessment of the use of NSAIDs has shown a positive
effect at attenuating DR symptoms. One such NSAID is ketorolac,
a prostaglandin synthesis inhibitor that targets the cyclooxygen-
ase (COX) family of enzymes. In the clinic, intravitreal and topical
administration of ketorolac has been shown to increase visual
acuity via a reduction in inflammatory cytokine production [98–
100]. In other assessments however, nepafenic, another COX
inhibitor, was administered topically but failed to show any
meaningful clinical benefit. On the whole, COX inhibitors are
well tolerated in ophthalmic applications, although some serious
side effects have been reported with ketorolac. In summary,
NSAIDs represent a promising new therapeutic avenue for
attenuating the impact of inflammation in the diabetic eye, whilst
reducing the risk of cataracts and elevated intraocular pressure
associated with the corticosteroids mentioned above [101–103].

6.3. Antibiotics and immunosuppressants

Several antibiotics have been shown to reduce the impact of
inflammation in the diabetic eye in animal models and in-
human clinical studies. Minocycline treatment, for example,
has demonstrated reductions in cytokine levels in the retina
in diabetic rats, a finding corroborated by clinical evidence
showing decreased retinal thickness and vasopermeability and
increased visual acuity following oral minocycline administra-
tion [104,105]. Interestingly, recent evidence purports that
minocycline may in part function via the attenuation of the
upregulation of PARP, thereby mitigating the impact of oxida-
tive stresses and apoptotic stimuli in retinal tissues [106].
Another antibiotic and mediator of angiogenesis, squalamine,
has demonstrated the capacity to reduce neovascularization in
the diabetic eyes of multiple animal models of DR, and
a clinical trial investigating the use of this drug in DM type
I and type II has now been instigated in accordance [107,108].

Immunosuppressant drugs have achieved similar results in
animal model and clinical studies. Sirolimus (also known as
rapamycin) is known to have anti-angiogenic and antineoplas-
tic attributes and decreases in VEGF synthesis and retinal cell

Table 1. An overview of the limitations and drawbacks associated with the treatment strategies currently utilized for DR management.

Treatment Pathway Limitations and drawbacks

Glycemic control Insulin signaling ● Worsening of symptoms seen in patients over time
● Side effects can include headaches, weight gain, rashes, and inflammation at the site of injection [84]
● Metabolic memory phenomenon limits efficacy in poorly managed cases of DM [85]

Laser photocoagulation Macular edema ● Can result in scarring of the retina and apoptosis of retinal pigment epithelium and other retinal cell
types, reducing visual acuity

● Choroidal neovascular membranes can develop if the laser scar affects the Bruch’s membrane [86]

Enalapril, losartan RAAS ● Significant renal and cardiovascular side effects seen in some patients, including hyperkalemia and
worsening renal function [87]

Triamcinolone acetonide Glucocorticoid
signaling

● Secondary ocular hypertension (40%), elevated intraocular pressure (2%), and nuclear cataracts (20%) are
common side effects [88]

Ruboxistaurin PKCβ signaling ● Modest clinical benefits and only statistically significant improvements seen when combined with laser
photocoagulation [89]

Fenofibrate PPARɑ activator ● Substantial side effect profile which includes stomach pain, nausea and vomiting, and muscle pain
● 20-h half-life necessitates daily-dosing regimen [90]

Bevacizumab, ranibizumab,
aflibercept

VEGF signaling ● High prevalence of nonresponders
● Resistance to therapy seen with repeated administration
● Repeated intravitreal injections has detrimental impact, including corneal scarring [91]

RAAS: Renin–angiotensin aldosterone system; PKC: protein kinase C; PPAR: Peroxisome proliferator activator protein; VEGF: vascular endothelial growth factor.
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proliferation that have been reported in sirolimus-treated cells
from streptozotocin-challenged rat models of DR [109]. Both
sirolimus and a similar immunosuppressant, everolimus, have
demonstrated a reduction in neovascularization in mouse
models of DR, a finding corroborated by clinical evidence
reporting that bimonthly sirolimus injections decreased retinal
thickness and improved visual acuity concomitantly in
patients with DM type I and type II [110,111].
Mechanistically, these immunosuppressants are thought to
exert their physiological effect via the inhibition of mamma-
lian target of rapamycin kinase, an enzyme whose activity
initiates pro-inflammatory and pro-angiogenic signaling cas-
cades [112]. In summary, the promising results seen so far in
the use of antibiotics and immunosuppressant drugs warrant
further investigations, both preclinical and clinical, to further
elucidate the potential of these classes of drugs for treat-
ing DR.

6.4. Targeting oxidative stresses

As outlined above, oxidative stress is thought to represent
a ‘unifying mechanism’ in DR, wherein changes in the NADH/
NAD+ ratio drive aberrant regulation of a number of biochem-
ical pathways, mitochondrial dysfunction, and hypoxia-driven
VEGF synthesis. In spite of the centrality of oxidative stress to
the pathology of DR, conflicting evidence has arisen describ-
ing potential benefits that antioxidant use infers in patients.
Whilst no association has been found between antioxidant
usage and the incidence of DR in retrospective meta-
analyses, one trial investigating DM type I and type II reported
a preservation of visual function in the study group who
consumed an antioxidant cocktail for six months [113,114].

One limitation of using conventional antioxidants is that
they neutralize ROS with poor efficiency, whilst hyperglyce-
mia-induced superoxide production occurs continuously.
Superoxide dismutase (SOD) catalase mimetics demonstrate
much greater ROS ablation efficiency, and treatment of DR
animal models with these enzymes has been shown to abolish
hyperglycemia-induced eNOS and prostacyclin synthase
downregulation and concomitantly normalizes all five of the
DR pathology-associated biochemical pathways [115,116].

Alternative approaches to targeting oxidative stress have
seen more promising results however. Overexpression of
uncoupling protein-1 (UCP-1) and manganese SOD (MnSOD)
have been shown to reverse hyperglycemia-induced pheno-
types in multiple cell types. In glomerular mesangial cells,
MnSOD expression has been shown to attenuate hyperglyce-
mia-induced collagen synthesis, and in dorsal root ganglion
neurons (DRGs), MnSOD expression demonstrated a reduction
in apoptosis. Further, overexpression of UCP-1 has been
shown to inhibit apoptotic caspase cleavage and activation
in rat DRGs, a finding corroborated by recent data purporting
that UCP-1 or MnSOD expression in aortic endothelial cells
inhibits macrophage adhesion and inflammatory activity, per-
oxisome proliferator-activated receptor gamma activation, and
hyperglycemia-associated eNOS activity [45].

Similarly, the use of benfotiamine, a transketolase activator,
has demonstrated the ability to attenuate hyperglycemia-

mediated toxicity in endothelial cells, both in vitro and
in vivo [117]. Mechanistically, benfotiamine functions by
increasing the activity of the transketolase enzyme, thereby
increasing the flux of F6P and G3P into pentose phosphates
and diverting these metabolites away from the pathological
biochemical pathways, outlined earlier in this article [118].
Clinically, benfotiamine has demonstrated the capacity to
downregulate the damaging biochemical DR pathways in
patients with DM type I, and further validation of the transke-
tolase hypothesis has arisen from evidence reporting reduced
albuminuria in DM type II treated with high doses of thiamine,
the cofactor for transketolase enzymes [117,119,120].

PARP inhibitors have demonstrated the potential to reduce
oxidative stresses in in vitro and in vivo models. In arterial
endothelial cellular cultures, PARP inhibition was shown to
attenuate concomitant activation of the PKC, AGE, and hexo-
samine pathways, and in animal models, PARP inhibition abol-
ished vascular endothelial cell apoptosis [37,121].

Overall, these results warrant further investigation of oxida-
tive stress inhibitors with the aim of developing clinical-stage
candidates for the prevention and treatment of DR.

6.5. VVIs

Recent evidence has come to suggest that DMO patients with
posterior vitreous detachment (PVD) exhibited lower rates of
disease progression than patients without PVD. This suggests
that intentional induction of PVD could be a viable therapeutic
strategy, and several VVIs have been developed as a result.
One such VVI is ocriplasmin (Thrombogenics), a protease deliv-
ered into the vitreous with a demonstrated capacity to reduce
vitreal viscosity and vitreoretinal separation in animal models
[122]. A recent phase III study investigating the impact of
ocriplasmin in humans showed beneficial effects, leading to
the FDA approval of the drug for vitreomacular adhesion
[123,124]. These data suggest that the use of ocriplasmin
could elicit positive effects in DR patients and warrants further
investigation in diabetic models [123,124].

Similarly, luminate, an anti-integrin peptide, is another VVI
currently in phase III clinical development for DMO. Integrins
are well-characterized mediators of vitreoretinal adhesion and
also regulate VEGF interactions with its cognate receptor,
VEGF-RII (FLK1), and several integrin inhibitors have demon-
strated the ability to reduce neovascularization in several DR
animal models [125,126]. In accordance, luminate has been
shown to target both vitreoretinal adhesion and angiogenesis,
suggesting that it might be more effective than ocriplasmin
when progressed into clinical-stage development [96].

6.6. Topical inhibitors of retinal neurodegeneration

Recent evidence has suggested that the topical administration
of factors mediating the levels of glucagon-like peptide 1
(GLP1) in the diabetic retina may be a novel and promising
therapeutic strategy for the condition. In a recent paper, topi-
cal administration of dipeptidyl peptidase IV inhibitors in
mouse and human samples was able to prevent neurodegen-
eration and vascular leakage through a mechanism that
involved the upregulation of GLP1 levels [127].
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Further, the topical administration of a GLP1 receptor ago-
nist in a diabetic mouse inhibited glial activation, neural apop-
tosis, and electroretinographical abnormalities, thereby
preventing retinal neurodegeneration. This was shown to
occur via the reduction in the levels of extracellular glutamate
and concomitant elevation of pro-survival signaling pathway
activation [127].

Taken in conjunction, these results suggest that mediation
of the GLP1 signaling axis is a promising means of treating DR
and also demonstrate the effectiveness of topical administra-
tion of therapeutic modalities for the condition.

7. Gene therapy for DR: challenges and
opportunities

7.1. Gene therapy for ocular disorders

A number of pathways are being targeted as a means of
developing novel therapeutic strategies for DR. Although no
gene therapy clinical trials for DR have been undertaken to
date, the eye is at the forefront of gene therapy research.
Herein, the eye is relatively immune-privileged and only
a few inflammatory events are associated with the introduc-
tion of viral particles. Various routes of administration are
available, and this permits access to all tissue compartments
that one could wish to target. Further, the anatomy of the eye
is highly favorable, wherein the small size enables the use of
low doses of vector for gene delivery and the use of fundus
examination to enable ongoing assessment of treatment effi-
cacy [7,128].

7.2. Targeting vasopermeability and neovascularization

As outlined earlier, a key mediator of neovascularization in DR is
VEGF, and a number of VEGF-inhibiting gene therapies have
now been described. These include attempts to ablate intrao-
cular VEGF using sFLT1, a soluble splicing isoform of the VEGF-
RI which acts as a decoy receptor for VEGF, thereby neutralizing
the protein, and several reports have demonstrated the efficacy
of this approach [129–132]. An overview of preclinical research

seeking to target the vasopermeability and angiogenesis
aspects of DR is given in Table 2. Across these therapeutic
paradigms, the preference for the AAV2 vehicle is evident, as
is the focus on the regulation of VEGF signaling.

7.3. Preventing vascular and neuronal apoptosis

One attempt demonstrated that the introduction of soluble
CD59, an inhibitor of the membrane attack complex known to
contribute to apoptotic stimuli in DR [143], prevented disruption
to the BRB and protected against damage to retinal neurons. In
this study, the AAV-mediated delivery system was used in strep-
tozotocin-induced diabetic models of DR, and a 60% reduction in
vascular leakage from the retina was reported. Further, soluble
CD59 was shown to activate retinal glial cells which are thought
to protect RGCs from apoptotic stimuli [144].

An overview of preclinical research attempts seeking to
address vascular and neuronal apoptosis in DR is given in Table
3. Again, AAV2 is the preferential vector serotype for retinal
delivery, and a breadth of therapeutic targets is evident.

Overall, the gene therapy paradigm has shown promise as
an alternative therapeutic strategy for the treatment of DR.
The multitude of successes seen in preclinical animal model
testing warrants further exploration of these treatments in in-
human clinical testing. Ultimately, gene therapy could offer
a one-off treatment for DR, which would mitigate the risk of
corneal scarring associated with repeated intravitreal injec-
tions, and provide superior efficacy to the current standard-
of-care, due to the constant therapeutic coverage that gene
therapy-mediated drug delivery can offer.

8. Conclusion

The pathophysiology of DR is complex, with a large number of
biochemical and molecular signaling pathways implicating in
the onset and development of symptoms in patients. Here, the
role of oxidative stress appears to be central, wherein the
dysregulation of several biochemical pathways in DR induces
superoxide production, itself driving further dysregulation of
the molecular signaling pathways underpinning DR, in turn

Table 2. An overview of preclinical research seeking to address the vasopermeability and angiogenesis aspects of DR.

Reference Vector type Promoter Transgene Target

Tu et al. [133] scAAV2 CMV CAD180 and CAD112 Calrectulin signaling
Wu et al. [134] AAV5 ICAM2 SpCas9 for VEGF-RII VEGF signaling
Huang et al. [135] AAV1 ICAM2 SpCas9 for VEGF-RII VEGF signaling
Díaz-Lezama et al. [136] AAV2 CMV Vasoinhibin and sFlt-1 VEGF signaling
Biswal et al. [137] scAAV2 GFAP Endostatin Endothelium
Haurigot et al. [138] AAV2 CAG PEDF VEGF signaling
Pechan et al. [130] AAV2 CMV sFLT-1 VEGF signaling
Jiang et al. [139] Lipofectamine n/a HIF1a and VEGF siRNA HIF1a and VEGF signaling
Lamartina et al. [131] Adenovirus CMV/IRES-M2 sFLT-1 VEGF signaling
Ideno et al. [132] AAV2/5 CMV sFLT-1 VEGF signaling
Le Gat et al. [140] Adenovirus CMV ATF, endostatin uPA/uPAR signaling
Igarashi et al. [141] Lentivirus CAG Angiostatin Endothelium
Gehlbach et al. [129] Adenovirus CMV sFLT-1 VEGF signaling
Auricchio et al. [142] AAV1/2 CMV PEDF, TIMP3, endostatin Endothelium

ICAM2: Intracellular adhesion molecule 2; SpCas9: Streptococcus pyogenes Cas9 CRISPR system; scAAV2: self-complementary AAV2; GFAP: glial fibrillary acidic protein;
sFLT-1: soluble FLT-1 (aflibercept); ATF: amino terminal fragment; uPA/uPAR: urokinase receptor; TIMP3: inhibitors of metalloproteinases; CAG: promoter sequence
incorporating cytomegalovirus (CMV) enhancer elements and chicken β-actin promoter sequences; PEDF: pigment epithelium-derived factor; HIF1ɑ: hypoxia
inducible factor alpha; ATF: activating transcription factor; IRES-M2: internal ribosome entry site. Adapted from Pharmacology & Therapeutics, Vol 173, Wang et al.,
Gene therapy for diabetic retinopathy: Are we ready to make the leap from bench to bedside?, Copyright 2017, with permission from Elsevier [7].
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leading to more superoxide production. Also evident is the
important role of vascular and neuronal apoptosis in the con-
dition. Here, retinal degeneration in DR encompasses most of
the cells found in the retinal microenvironment and suggests
that future therapeutic strategies should target vascular and
neuronal apoptotic pathways.

DR is a treatable condition, and a number of therapeutic
options are available to ophthalmologists. Whilst these demon-
stratemodest clinical benefits, none is yet to fully attenuatedisease
progression or reverse damage to the retina. In accordance,
a number of novel targets are being investigated for their feasi-
bility as DR treatments, including the angiopoietin family of pro-
teins, NSAIDs, immunosuppressants, and oxidative stress
inhibitors. Further, a multitude of preclinical research suggests
that gene therapy could be a promising therapeutic strategy for
the future and negate the need for frequent administration and
short-lasting therapeutic effect that currently hinders clinical
practice.

9. Expert opinion

Although great strides have been made in diagnosing and
treating DR, further progress is needed. Future strategies
will center on personalized risk stratification, more timely
and cost-effective detection of retinopathy through popula-
tion-based screening and enhanced treatment options,
including anti-angiogenic and anti-inflammatory therapies,
as well as the development of retino-protective therapies to
prevent or delay retinopathy progression and regenerative
therapies to repair or replace damaged retinal vessels and
retinal neurons.

The clinical significance of each of the biochemical and mole-
cular pathways inDRpatients is still unclear. For instance, attempts
to inhibit the AGE and polyol pathways in humans have proven
unsuccessful, suggesting that their importance in the pathophy-
siology of DR may be limited. Furthermore, our understanding of
the importance of vascular and neuronal cell degeneration needs
further refinement given the lack of consensus in our explanation
of the relationship between the vascular pathophysiology of DR
(hyperpermeability and angiogenesis) and retinal degeneration. In
particular, we feel that more research is required to determine
whether vascular deterioration potentiates neuronal dysfunction
or vice versa; however, we are hopeful that this question will be

answered over the next decade or so with multiple groups now
using fundus photography and electroretinograms to address the
issue.

We are excited by recent findings that suggest the tradi-
tional type I and type II DM model is overly simplistic, and
there are in fact five subtypes of the condition. Over the
coming years, we hope that our field seeks to understand
the relevance of this finding to DR, and efforts are made to
identify similar subgroups of DR patients. We feel the field has
been slow to realize the potential of personalized medicine,
and we hope that the identification and characterization of
specific genotypic and phenotypic biomarkers facilitates the
introduction of targeted therapeutics.

Regarding DR therapeutic paradigms, a number of thera-
pies are now available to clinicians and these have demon-
strated modest benefits in patients. While VEGF plays a central
role in retinal neovascularization and vascular hyperpermeabil-
ity in diabetes, it is only one of many angiogenic factors that
are upregulated in DR. Future anti-angiogenic therapies for DR
are likely to be individualized and will typically target more
than one factor. An example is the bispecific monoclonal anti-
body against Ang-2 and VEGF that is currently undergoing
clinical evaluation in Phase III trials (Genentech/Roche). In
addition, increasing awareness of retinal neuronal injury in
diabetes and the interplay between neurons, glia, and blood
vessels (the NVU) has focused attention on neuroprotective
therapies. The administration of therapies to minimize gluta-
mate-induced excitotoxicity and neuronal apoptosis as well as
regulation of RGC apoptosis are currently under evaluation in
DR and may be used in future.

Improvements in the treatment of DR and DME will go
hand-in-hand with improved treatment of diabetes. The
importance of this cannot be understated given the profound
influence of glycemic control on the risk or DR and the rate of
its progression. Finally, regenerative therapies may have a role
to play in DR. Endothelial progenitor cells are endogenous
stem-like cells that ordinarily serve roles in vascular repair,
including in the retina. Work is underway to identify the
most appropriate endothelial cell type for retinal vascular
repair and to refine methods for the production of clinical-
grade progenitor cells at scale.

In particular, we are excited by recent reports detailing the
efficacy of gene therapies for DR. These drugs represent an

Table 3. An overview of preclinical research targeting vasodegeneration and neurodegeneration in DR.

Reference Vector type Promoter Transgene Target Vascular protection Neuronal protection

Dominguez et al. [145] AAV CBA ACE2 RAAS system Yes n/a
Vacca et al. [146] ShH10 CAG Dp71 Muller cells Yes n/a
Zhang et al. [147] AAV2 CAG MnSOD Superoxide Yes n/a
Xu et al. [148] AAV2 CMV EPO EPO receptor Yes Yes
Hu et al. [149] TransIT-TKO U6 CTGF shRNA CTGF Yes n/a
Adhi et al. [144] AAV2/8 CAG sCD59 MAC Yes Yes
Verma et al. [41] AAV2 CAG ACE2 or Ang(1–7) RAAS Yes n/a
Gong et al. [150] AAV CBA BDNF Neuronal cells n/a Yes
Ramirez et al. [151] AAV2 CAG Vasoinhibin, PRL, sFLT-1 VEGF signaling Yes n/a
Shyong et al. [152] AAV CMV Angiostatin Endothelium Yes n/a

CAD180: Calrectulin anti-angiogenic domain; CAD112: CAD-like peptide 112; ShH10: a Muller cell-specific variant of the AAV vector; ACE2: angiotensin-converting
enzyme 2; EPO: erythropoietin; CTGF: connective tissue growth factor; CAG: cytomegalovirus early enhancer; CBA: chicken-β actin promoter; MnSOD: manganese
superoxide dismutase; U6: human RNA polymerase III promoter; MAC: membrane attack complex; BDNF: brain-derived neurotrophic factor; PRL: proteolytic
cleavages of prolactin; ACE2: angiotensin-converting enzyme 2; sFLT-1: soluble FLT1 receptor (aflibercept). Adapted from Pharmacology & Therapeutics, Vol 173,
Wang et al., Gene therapy for diabetic retinopathy: Are we ready to make the leap from bench to bedside?, Copyright 2017, with permission from Elsevier [7].
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opportunity to improve patient outcomes in terms of reducing the
need for frequent ocular injections and providing superior efficacy
through constant therapeutic coverage and targeted delivery to
the disease site. No clinical outcomes have been reported almost
15 years since the first studies demonstrating the promise of gene
therapy for DR were published however. Therefore, in order to
facilitate the translation of these innovations from ‘bench to bed-
side,’ improvements in regulatory frameworks and scale-up man-
ufacturing processes are needed; yet, we are confident that these
developments will occur over the coming years.

In summary, significant progress has been made toward
our understanding of DR over the past few decades. In the
future, we hope that improvements in our knowledge of the
condition facilitate therapeutic innovations that continue to
address unmet medical need and improve patient outcomes,
with a focus on the development of targeted medicines.
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