
Journal of

Clinical Medicine

Article

Assessing the Physiological Relevance of Cough
Simulators for Respiratory Droplet Dispersion

Shiv H. Patel 1,2,† , Wonjun Yim 3,†, Anupam K. Garg 4, Sahil H. Shah 4 , Jesse V. Jokerst 3,5,6

and Daniel L. Chao 7,*
1 Simulation Training Center, University of California, San Diego, La Jolla, CA 92093, USA; shp093@ucsd.edu
2 Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive,

La Jolla, CA 92093, USA
3 Department of Material Science and Engineering, University of California,

San Diego, La Jolla, CA 92093, USA; woyim@eng.ucsd.edu (W.Y.); jjokerst@eng.ucsd.edu (J.V.J.)
4 School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA;

akgarg@health.ucsd.edu (A.K.G.); sas032@health.ucsd.edu (S.H.S.)
5 Department of Radiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
6 Department of Nanoengineering, University of California, San Diego, La Jolla, CA 92093, USA
7 Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California,

San Diego, La Jolla, CA 92093, USA
* Correspondence: d6chao@ucsd.edu; Tel.: +1-858-534-6290
† Authors contributed equally to this work.

Received: 18 August 2020; Accepted: 14 September 2020; Published: 17 September 2020
����������
�������

Abstract: Various breathing and cough simulators have been used to model respiratory droplet
dispersion and viral droplets, in particular for SARS-CoV-2 modeling. However, limited data are
available comparing these cough simulations to physiological breathing and coughing. In this
study, three different cough simulators (Teleflex Mucosal Atomization Device Nasal (MAD Nasal),
a spray gun, and GloGermTM MIST) that have been used in the literature were studied to assess their
physiologic relevance. Droplet size, velocity, dispersion, and force generated by the simulators were
measured. Droplet size was measured with scanning electron microscopy (SEM). Slow-motion
videography was used to 3D reconstruct and measure the velocity of each simulated cough.
A force-sensitive resistor was used to measure the force of each simulated cough. The average
size of droplets from each cough simulator was 176 to 220 µm. MAD Nasal, the spray gun,
and GloGermTM MIST traveled 0.38 m, 0.89 m, and 1.62 m respectively. The average velocities for the
MAD Nasal, spray gun, and GloGermTM MIST were 1.57 m/s, 2.60 m/s, and 9.27 m/s respectively,
and all yielded a force of <0.5 Newtons. GloGermTM MIST and the spray gun most closely resemble
physiological coughs and breathing respectively. In conclusion, none of the simulators tested
accurately modeled all physiologic characteristics (droplet size, 3-D dispersion velocity, and force) of
a cough, while there were various strengths and weaknesses of each method. One should take this
into account when performing simulations with these devices.

Keywords: simulation; COVID-19; viral surrogates; infectious droplets; respiratory droplets;
dispersion modeling; cough; breath; GloGerm; atomizer

1. Introduction

The COVID-19 global pandemic, caused by the spread of SARS-CoV-2, has exposed fundamental
gaps in our knowledge of viral spread. It is reported that two of the primary modes of spread are
via respiratory droplets of >5–10 µm and aerosolized matter of <5 µm, however, there are many
numerical studies emphasizing transmission via respiratory droplets to develop and inform best
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practices for personal protective equipment [1–6]. Therefore, here we focus on respiratory droplet
spread rather than aerosol matter. We do note, however, that aerosol spread is an important aspect
of transmission, and can spread over large areas over time as displayed by larger scale studies that
analyze atmospheric aerosol behavior [7,8]. In order to develop and inform best practices for personal
protective equipment, various simulations of respiratory and aerosolized droplet dispersion have
been conducted. However, it is unclear which of these methods of simulation, if any, approximate
physiologic breathing or coughing [9–21]. This is an important issue as data from these experiments
are often used to inform guidelines for personal protective equipment (PPE) in the COVID-19 era.
In order to validate cough and breathing simulators intended to measure respiratory droplet spread,
we evaluated several easily accessible and low-cost cough simulators (Teleflex Mucosal Atomization
Device Nasal (MAD Nasal), spray gun, and GloGermTM MIST pressurized canister) that have been
used in the literature that utilize UV-visible surrogates for their physiologic relevance by assessing
respiratory droplet size, velocity, spread, and force. MAD Nasal is a commonly used atomization
device that has a 5 mL syringe attached to a cone consisting of a filter that turns the liquid into a mist
as it flows through. The spray gun is a conventional spray bottle, such as those that hold glass cleaners,
with a trigger to spray a mist of liquid. GloGermTM MIST is a pressurized aerosol canister that contains
a solution of UV visible GloGermTM that turns into a mist upon exiting the nozzle (Figure 1A).
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Figure 1. Overview of Experimental Strategy. (A) Images of the three cough simulators: MAD Nasal,
GloGermTM MIST, and the spray gun (left to right). (B) A conductive mounting tab with 8 mm carbon
tape is shown before and after collecting droplets. (C) Still frames from the video used to quantify
simulated cough velocity for MAD Nasal before and after a simulated cough. (D) The 2D reconstruction
for a MAD Nasal simulated cough and a profile of the resulting 3D reconstruction on Fusion 360.
(E) A photograph of the force-sensing resistor used for the force measurement experiment.
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Several studies have used complex setups that require the use of cell culture media, a micropump
nebulizer, or optical particle counter [10,11]. However, given their complexity, low-cost setups with
a UV-visible surrogate have been widely utilized [9,12–21]. One procedure that was investigated
was direct laryngoscopy intubation with and without an “intubation box” for protection against viral
droplets and aerosol [12]. The simulation was done using an explosive balloon filled with fluorescent
dye. However, the authors noted that there was no analysis done behind the physiological accuracy of
their simulation. Numerous studies have utilized the Teleflex MAD Nasal atomizer (referred to as
MAD Nasal hereafter), which is commonly used clinically to deliver drugs trans-nasal in an atomized
form, to create viral droplets [13]. For example, in a recent study, MAD Nasal and GloGermTM were
used to produce simulated coughs onto emergency department personnel dressed in various forms of
PPE [14]. Another study that evaluated the use of a modified mask during endonasal procedures used
a variant of the MAD Nasal and fluorescein to evaluate the protective power of their technology [15].
However, neither of these studies evaluated the 3D spread of the droplets from their cough simulator,
nor did they evaluate the velocity of each cough or breath produced in their experiments. Another
cough simulator that has been used is a pump-based spray gun attached to a conventional spray bottle
to track viral droplet spread and deposition on a protective slit lamp shield during an ophthalmic
clinical examination [9].

Similar techniques have also been used before the COVID-19 pandemic in order to track the
spread of infectious diseases, and thus have importance and relevance beyond the scope of COVID-19.
An example includes the use of GloGermTM MIST in an experiment to track the spread of droplets
during donning and doffing of PPE in order to make an informed protocol to safely don and doff PPE
without spreading or contracting pathogens [16]. Within the numerous studies that have used some
mechanism to simulate breathing or coughing in order to track droplet spread, many are expensive,
complex, and require technology not easily available to all clinicians.

Given the complexity and wide range of fidelity in cough simulators, here we investigated
the physiological relevance of three widely used cough simulators. These simulators are accessible
for wide use and allow analysis of droplet spread by humans after contacting a surface with viral
droplets from a simulated cough. In particular, we analyze the surrogate respiratory droplet sizes,
simulated cough velocity, 3D spread of each simulated cough, and the force produced by each simulated
cough, and compare them to physiological conditions to define which simulators are appropriate for
clinical simulation.

2. Experimental Section

2.1. Evaluation of Droplet Sizes

A solution of GloGermTM (Marlatek Inc., Brockville, ON, Canada) was used as the surrogate
respiratory droplet solution for each of the simulators analyzed. In addition to the MAD Nasal (Teleflex,
Wayne, PA, USA), spray gun (Whitmore, San Francisco, CA, USA) and GloGermTM MIST canister,
a Phillips nebulizer was also used to evaluate droplet sizes. Simulated cough samples from each cough
simulator were captured on strips of 8 mm carbon tape (TedPella, Redding, CA, USA) squares that
were fixed onto conductive mounting tabs (Figure 1B). Droplet samples from each simulator were
viewed under an FEI Apreo scanning electron microscope (SEM; Fisher Scientific, Waltham, MA, USA)
at 70–80× magnification. SEM was then used to calibrate the size and examine the morphology of
droplets at an acceleration voltage of 1kV and a current of 0.1 nA. The caliper function on the SEM
interface was used to measure the diameter of each droplet seen in the 70–80×magnification frame
and subsequently calculate the average droplet size for each cough simulator based on the number
of droplets visible under the SEM. By reporting the droplet size ranges for each cough simulator,
we aim to be consistent with how droplet size distribution analysis is reported in the literature [22,23].
The Phillips nebulizer was not used for any further tests since the droplets were not easily visible.
The droplet size measurements were done independent of the velocity and force measurements.
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2.2. Velocity Measurements

For each cough simulator, a simulated cough was delivered in front of a measuring tape under UV
light. All videos were taken using a tripod-mounted Nikon D5200 digital camera. The blacklight was
placed in a stationary position and video was recorded at 120 fps at 1080 p resolution. All post-capture
editing was done on Adobe Premiere Pro 2020 and calibration changes of brightness and contrast
were identical in all trials. Using Adobe Premiere Pro 2020, the velocity of each simulated cough was
determined by following several different particles from all the replicate coughs over time and creating
an average velocity for each cough simulator. The contrast and brightness were left identical in all trials.
Two still frames were exported for representative images in Figure 1C. The velocity measurements
were done independent of the droplet size and force measurements.

2.3. 3D Reconstruction of Simulated Coughs

Using the videos and photos taken during the velocity measurement experiment, each simulated
cough was reconstructed in 3D by inferring data from 2D measurements. The farthest distance traveled
by each simulated cough was recorded, and by adding scaled lines to stills from the video we captured,
a spline was created on Fusion 360 (Autodesk, San Rafael, CA, USA). The spline was created by drawing
lines orthogonal to the flow of the cough and then connecting the lines with a spline (Figure 1D).
The spline was then rotated in order to create a 3D object. Using the rotation, scaled lines, and the
distance traveled by the simulated cough, multiple 2D data points were used to recreate a 3D cloud or
envelope. The same process was repeated for each cough simulator. Each 3D cough reconstruction
was stopped at the farthest distance from the cough simulator where any visible particle was found.
Using the 3D reconstruction, droplet spread and the maximum detectable 2D projected area were
derived on Fusion 360. Since each simulated cough was triggered manually and there is hand motion
generated between each cough for all the simulations, the 3D reconstructions were adjusted based
on three trials of five spray repetitions to account for the hand motion’s influence on the simulated
coughs’ 3D spread.

2.4. Force Measurements

A force-sensing resistor (Interlink Electronics, Camarillo, CA, USA) was connected to a myDAQ
system (Texas Instruments, Dallas, TX, USA) that relayed information onto a computer where a
time-dependent voltage graph was generated on Matlab (Figure 1E). When a force was added to the
force-sensing resistor, the voltage within the circuit dropped and the computer recorded the voltage
change on Matlab. The voltage was calibrated to force in Newtons with the addition of 100 g weights
to the force-sensing resistor up to 500 g. We delivered five replicates of simulated coughs from each
simulator on the force-sensing resistor along with five replicates of human breaths and five replicates
of human coughs from a single individual. These activities were done in the first 25 s of the experiment
and at 30 s, a 1 Newton standard weight was added to the force-sensing resistor to visualize a contrast
in voltage change over time. Since there was human coughing and breathing involved, these tests
were performed in isolation and all equipment and surroundings were sanitized after the experiment.
The force measurements were done independent of the velocity and droplet size measurements.

3. Results

3.1. Evaluation of Droplet Sizes and Velocity

Our droplet size analysis revealed that the MAD Nasal, spray gun, GloGermTM MIST, and Phillips
nebulizer produce droplets with 176.50 ± 51.58 µm, 219.80 ± 29.87 µm, 183.32 ± 43.01 µm,
and 177.93 ± 36.88 µm (mean ± standard deviation) respectively (Figure 2A,B). Respectively, the range
for the droplet sizes are 107.9 µm to 297.0 µm, 168.6 µm to 256.5 µm, 97.03 µm to 246.3 µm, and 121.4 µm
to 246.2 µm. None of these droplets are within the 5–10 µm small respiratory droplet range listed in
the literature, however, they are >60 µm, which is a reported threshold for large respiratory droplets
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in the literature. [24]. Based on prior studies, it is reported that there are two main distributions of
droplets that are relevant, 1–10 µm and 100–1000 µm, and human respiratory droplets can be found
to be between 1 to 2000 µm [5,25]. The mean and range for the droplets measured are distributed
within the larger distribution of 100–1000 µm. The velocities of the simulated coughs from the MAD
Nasal, spray gun, and GloGermTM MIST were 1.57 ± 0.66 m/s, 2.60 ± 0.93 m/s, and 9.27 ± 2.44 m/s,
respectively (Figure 2C). In comparison to physiological breathing velocity, MAD Nasal and the spray
gun were below the average measured breathing velocity of 5.66± 1.57 m/s (mean± standard deviation),
while the GloGermTM MIST velocity was above, however, the average velocities of GloGermTM MIST
and the spray gun fall into the reported 2.2 m/s to 9.9 m/s range for breathing velocity [26]. In the
context of cough simulation, the reported physiological cough velocity range is 6 m/s to 28 m/s and
only GloGermTM MIST can produce a simulated cough within this range [27–29].
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Figure 2. Droplet size and velocity measurements. (A) SEM images of droplets produced from simulated
coughs produced by MAD Nasal, a spray gun, GloGermTM MIST, and a nebulizer. (B) A categorical
plot showing the droplet sizes (µm) produced by each cough simulator. The thickness of the red line
indicates the range for small respiratory droplets (5–10 µm), and error bars indicate one standard
deviation. (C) Categorical plot showing the average measured velocity (m/s) of each cough simulator.
Error bars indicate one standard deviation and brackets on the side indicate physiological coughing
and breathing velocity ranges.
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3.2. Analysis of Simulated Cough Dispersion Using 3D Reconstruction

In order to analyze the distance spread of each cough simulator, the 0.8 m and > 2 m were used as
markers for how far a physiologic breath or cough travels respectively [30]. Both the spray gun (0.89 m)
and GloGermTM MIST (1.62 m) meet or surpass the 0.8 m threshold for how far the droplets spread
away from the cough simulator, however the MAD Nasal (0.38 m) does not reach 0.8 m. None of
the simulators reach 2 m or even the CDC recommended social distancing length of 1.82 m (6 feet)
with the closest simulator being GloGermTM MIST (Figure 3A). Although these thresholds have been
created by the CDC and data from the literature, there is variability in the distance a simulated cough
or physiological cough can travel, and the actual spread of a cough can be farther based on the duration
of the cough. For example, a study that used computational fluid dynamics to analyze SARS-CoV-2
spread shows that over time, SARS-CoV-2 can spread up to 6.5 m [5]. Therefore, the spread of
respiratory droplets can also occur beyond 1.82 m and 2 m depending on the scenario. During analysis
of the maximum detectable 2D projected area, a reported range of 0.01 m2 to 0.14 m2 range was used
for comparison [30]. Analyzing the maximum detectable 2D projected areas—or in other words the
maximum area that can be covered by a cough—GloGermTM MIST (0.11 m2) and MAD Nasal (0.02 m2)
are the only simulators that fall in the reported range, while the spray gun produces a maximum
detectable 2D projected area (0.19 m2) outside the upper limit of the reported range (Figure 3C).
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Figure 3. 3D reconstruction of simulated coughs. (A) A side view of all three simulated cough 3D
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(B) Multiple profiles of the 3D reconstructions are shown to capture visualizations from all three
dimensions. (C) Cross sections of each reconstructed cough on Fusion 360 is shown along with the
respective maximum detectable 2D projected area.
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3.3. Simulated Cough Force Analysis

Our force analysis revealed that the force produced by each simulator, a human breath, and a
human cough was <0.5 N, which is the threshold force needed to detect a change in voltage for our
force-sensing resistor. No changes in voltage were recorded from the force-sensing resistor during
these activities (Figure 4). A standard weight of 1 N is shown to contrast with the steady voltage of
10.688 V in the circuit.
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using MATLAB during the force measuring experiment as all three simulated coughs, a human breath,
and a human cough, were applied to the force-sensing resistor in the first 25 s with no voltage change
and a contrast 1 N standard weight applied at 30 s.

4. Discussion

In this study, we characterized various properties of commonly utilized cough simulators that
are used to study how respiratory droplets can spread in clinical encounters. These cough simulators
have been used in a number of recent reports, in particular to model SARS-CoV-2 viral droplet
dispersion [10,12–15,17,20]. Since these simulations are used to inform clinical guidelines for PPE,
it is important to understand the physiological accuracy of these simulators. Here we show that the
droplet sizes produced by MAD Nasal, a spray gun, GloGermTM MIST, and a Phillips nebulizer are all
>100 µm and fall into the large respiratory droplet category and not into the small respiratory droplet
category of 5–10 µm. The average simulated cough velocity of the spray gun and GloGermTM MIST
fall in the range for human breathing velocity, and GloGermTM MIST is the only simulator to fall in the
velocity range for human coughing. Likely explanations of this deviance in droplet size distribution
include the differences in viscosity of the surrogate droplets compared to physiological droplets and
the inherent limitations of the devices used to create the droplets, such as the nozzle sizes which will
influence the liquid film fragmentation, aggregation of droplets on the carbon tape, and the distance at
which the simulated cough was delivered to the carbon tape. Deviances in the droplet size also help to
explain the difference between simulated cough velocity and physiological cough velocity, but a more
chemo-physical investigation is needed to provide a solid explanation.

3D analysis shows that MAD Nasal and GloGermTM MIST can cover an area with droplets within
the reported range for human coughing, but MAD Nasal cannot produce droplets that travel far
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enough to be comparable to human breathing or coughing. In fact, while GloGermTM MIST and a
spray gun can eject droplets as far as human breathing, none of the simulators can eject droplets as far
as a human cough with GloGermTM MIST producing the farthest traveling particles. Lastly, our force
analysis shows that all of the simulators produce coughs with forces less than 0.5 N, however the exact
force was not determined.

From all the experiments and modeling performed, it is clear that none of the abovementioned
simulators accurately model all the properties of physiologic coughing or breathing found in the
literature. The GloGermTM MIST canister, however, produces simulated coughs most close to
physiological coughs with the largest discrepancy being that the droplets do not travel as far as
physiologically ejected respiratory droplets during coughing (Table 1). Although this discrepancy
exists, GloGermTM MIST produces droplets that travel the farthest and covers a larger spectrum of
human cough dispersion distance than MAD Nasal and the spray gun. Furthermore, GloGermTM

MIST is the only simulator that produces droplets with velocities comparable to human coughing
and captures >80% of the detectable 2D projected area range for human coughing. If GloGermTM

MIST is used for simulating respiratory droplet spread via human coughing in clinical settings, it is
important to understand the abovementioned limitations and note the said limitations while drawing
conclusions from experiments using GloGermTM MIST.

Table 1. Cough simulator comparison. Each cough simulator is given a + or − for each parameter,
indicating that the simulator either meets the physiological criteria or does not. A +/− is given if the
cough simulator meets some but not all of the criteria.

Cough Simulator Droplet Size Velocity 3D Spread Force

MAD Nasal +/− − − +

GloGermTM MIST +/− + +/− +
Spray Gun +/− − +/− +

While MAD Nasal and a spray gun are less realistic in their simulations, they can still be used for
certain scenarios. For example, MAD Nasal could be ideal to track droplet spread from a neonatal or
weak cough, but further evaluation would need to be done in order to confirm this. Studies that have
used MAD Nasal as a cough simulator to determine how droplets will spread, need to be re-evaluated
or considered as an underestimation when they are used to make the best clinical models. Moreover,
the spray gun is the only cough simulator with an average velocity within the velocity range of
physiological breathing and has an overlap with the reported average physiological breathing velocity
within 1.5 standard deviations. In addition, the distance traveled by spray gun droplets is the closest
to the reported distance traveled by physiologically expelled respiratory droplets during breathing.
Overall, a spray gun is the closest in exhibiting properties similar to human breathing, but if it is used
in experiments, the conclusions from those experiments need to take into account the discrepancies
between a spray gun and human breathing properties.

The standards used in this study to compare simulated coughs to physiological coughs were
created by doing a literature search. However, there are studies that have concluded that physiological
coughs can have a different spread compared with the standards used in this study. For example,
a recent publication that used computational fluid dynamics specifically to analyze the respiratory
droplet and aerosol ejection for SARS-CoV-2 shows that over time a cough can spread up to 6.5 m
within three seconds. None of the cough simulators examined spread close to 6.5 m, with GloGermTM

MIST having the closest resemblance [5]. Therefore, while using GloGermTM MIST researchers
should account for this discrepancy and can evaluate their findings based on a mild intensity cough,
their analysis also shows the ejection velocity to be around 10 m/s, which is consistent with the
standards used in this paper.

While we report several properties of simulated coughs and breaths and compare them to their
physiological equivalents, it is important to note that some of the parameters in the experiment will
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vary. For example, spray guns can be adjusted to change where the droplets are concentrated, and the
pressure within the GloGermTM MIST canister will drop after several sprays, meaning the canister will
need to be repressured between simulations. Both of these variances can cause the droplet sizes and
velocities to vary, but our mean and standard deviation capture a comprehensive range of data that
should provide representative measurements. Our analysis could use further considerations, such as
a more precise evaluation of the forces generated by the simulated coughs and the quantification
of flow rate to provide more information regarding the physiological accuracy of such simulators.
Furthermore, since the 3D reconstructions are approximations, it must also be assumed that droplets
can still exist below the 3D reconstruction due to the force of gravity.

More control over physiological parameters can be attained using more expensive equipment.
For example, one study used a nebulizer connected to an AMBU bag in order to create physiological
tidal volume and flow rate, however, an expensive and not readily available optical particle counter was
used in their study [10]. Another cough simulator that was developed in 2013 utilized a micropump
nebulizer to aerosolize cell culture media and deliver a fixed flow of aerosol per unit time [11]. Although
both these systems are very physiologically accurate, they are expensive, not readily accessible, and do
not allow visualization of particle spread like the three simulators we evaluated.

5. Conclusions

We can state that based on our results, GloGermTM MIST is the most physiologically relevant cough
simulator based on droplet size, 3D spread, velocity, and force of the three low-cost simulators that
were studied. However, since there are dissimilarities between all three low-cost cough simulators and
physiological coughing, all studies using any of the cough simulators studied here should take caution
when drawing conclusions from these cough simulators. As physicians explore more effective PPE
strategies, cough simulations will be used to evaluate and refine their PPE. Therefore, it is important
that they can access quantitative data to determine how much these simulators physiologically resemble
coughing and breathing. Moreover, the 3D reconstructions we have provided in the Supplementary
Materials allow scientists to replace the use of physical cough simulations with augmented reality
visualizations or quick approximations of respiratory droplet spread based on the 3D reconstruction
dimensions. As each simulation can only approximate these physiologic processes, clinicians and
scientists should consider these caveats when interpreting data from cough simulators.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0383/9/9/3002/s1,
Figure S1: Droplet Size Analysis with Caliper Measurements, Figure S2: Reconstructed Cough for MAD Nasal,
Figure S3: Reconstructed Cough for GloGermTM MIST, Figure S4. Reconstructed Cough for the Spray Gun,
Movie S1. Simulated Coughs Used for Velocity and 3D Analysis.
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5. Shafaghi, A.H.; Rokhsar Talabazar, F.; Koşar, A.; Ghorbani, M. On the Effect of the Respiratory Droplet
Generation Condition on COVID-19 Transmission. Fluids 2020, 5, 113. [CrossRef]

6. Sahu, K.K.; Mishra, A.K.; Lal, A. Comprehensive Update on Current Outbreak of Novel Coronavirus Infection
(2019-NCoV). Ann. Transl. Med. 2020, 8, 393. [CrossRef] [PubMed]

7. Lolli, S.; Khor, W.Y.; Matjafri, M.Z.; Lim, H.S. Monsoon Season Quantitative Assessment of Biomass Burning
Clear-Sky Aerosol Radiative Effect at Surface by Ground-Based Lidar Observations in Pulau Pinang, Malaysia
in 2014. Remote Sens. 2019, 11, 2660. [CrossRef]

8. Reid, J.S.; Lagrosas, N.D.; Jonsson, H.H.; Reid, E.A.; Atwood, S.A.; Boyd, T.J.; Ghate, V.P.; Xian, P.;
Posselt, D.J.; Simpas, J.B.; et al. Aerosol Meteorology of Maritime Continent for the 2012 7SEAS
Southwest Monsoon Intensive Study—Part 2: Philippine Receptor Observations of Fine-Scale Aerosol
Behavior. Atmos. Chem. Phys. 2016, 16, 14057–14078. [CrossRef]

9. Liu, J.; Wang, A.Y.; Ing, E.B. Efficacy of Slit Lamp Breath Shields. Am. J. Ophthalmol. 2020, 218, 120–127.
[CrossRef]

10. Poostchi, A.; Kuet, M.-L.; Pegg, K.; Wilde, C.; Richardson, P.S.; Patel, M.K. Efficacy of Slit Lamp Breath
Shields. Eye 2020, 34, 1185–1186. [CrossRef] [PubMed]

11. Lindsley, W.G.; Reynolds, J.S.; Szalajda, J.V.; Noti, J.D.; Beezhold, D.H. A Cough Aerosol Simulator for the
Study of Disease Transmission by Human Cough-Generated Aerosols. Aerosol Sci. Technol. 2013, 47, 937–944.
[CrossRef]

12. Canelli, R.; Connor, C.W.; Gonzalez, M.; Nozari, A.; Ortega, R. Barrier Enclosure during Endotracheal
Intubation. N. Engl. J. Med. 2020, 382, 1957–1958. [CrossRef] [PubMed]

13. Lockhart, S.L.; Naidu, J.J.; Badh, C.S.; Duggan, L.V. Simulation as a Tool for Assessing and Evolving Your
Current Personal Protective Equipment: Lessons Learned during the Coronavirus Disease (COVID-19)
Pandemic. Can. J. Anesth. Can. Anesth. 2020, 67, 895–896. [CrossRef] [PubMed]

14. Feldman, O.; Meir, M.; Shavit, D.; Idelman, R.; Shavit, I. Exposure to a Surrogate Measure of Contamination
from Simulated Patients by Emergency Department Personnel Wearing Personal Protective Equipment.
JAMA 2020, 323, 2091–2093. [CrossRef] [PubMed]

15. Workman, A.D.; Welling, D.B.; Carter, B.S.; Curry, W.T.; Holbrook, E.H.; Gray, S.T.; Scangas, G.A.; Bleier, B.S.
Endonasal Instrumentation and Aerosolization Risk in the Era of COVID-19: Simulation, Literature Review,
and Proposed Mitigation Strategies. Int. Forum Allergy Rhinol. 2020, 10, 798–805. [CrossRef] [PubMed]

16. Kwon, J.H.; Burnham, C.-A.D.; Reske, K.A.; Liang, S.Y.; Hink, T.; Wallace, M.A.; Shupe, A.; Seiler, S.; Cass, C.;
Fraser, V.J.; et al. Assessment of Healthcare Worker Protocol Deviations and Self-Contamination During
Personal Protective Equipment Donning and Doffing. Infect. Control Hosp. Epidemiol. 2017, 38, 1077–1083.
[CrossRef]

17. Chua, H.; Lim, W.Y.; Mok, M.; Wong, P. “Closed” Supraglottic Airway-Guided Intubation During the
COVID-19 Pandemic: A Glo Germ Follow-Up. Anesth. Analg. 2020, 131, e168–e169. [CrossRef]

18. Osei-Bonsu, K.; Masroor, N.; Cooper, K.; Doern, C.; Jefferson, K.K.; Major, Y.; Adamson, S.; Thomas, J.;
Lovern, I.; Albert, H.; et al. Alternative Doffing Strategies of Personal Protective Equipment to Prevent
Self-Contamination in the Health Care Setting. Am. J. Infect. Control 2019, 47, 534–539. [CrossRef]

19. Schirmer, A.; Swan, C.; Hughes, S.J.; Vasilopoulos, T.; Oli, M.; Chaudhry, S.; Gravenstein, N.; Giordano, C.
Break Scrub to Take That Phone Call? J. Am. Coll. Surg. 2018, 226, 1117–1121. [CrossRef]

20. Anon, J.B.; Denne, C.; Rees, D. Patient-Worn Enhanced Protection Face Shield for Flexible Endoscopy.
Otolaryngol. Neck Surg. 2020, 163, 280–283. [CrossRef]

21. Brady, T.M.; Strauch, A.L.; Almaguer, C.M.; Niezgoda, G.; Shafer, R.E.; Yorio, P.L.; Fisher, E.M. Transfer of
Bacteriophage MS2 and Fluorescein from N95 Filtering Facepiece Respirators to Hands: Measuring Fomite
Potential. J. Occup. Environ. Hyg. 2017, 14, 898–906. [CrossRef]

http://dx.doi.org/10.1016/j.envres.2020.109819
http://www.ncbi.nlm.nih.gov/pubmed/32569870
http://dx.doi.org/10.1038/s41586-020-2271-3
https://www.who.int/news-room/commentaries/detail/transmission-of-sars-cov-2-implications-for-infection-prevention-precautions
https://www.who.int/news-room/commentaries/detail/transmission-of-sars-cov-2-implications-for-infection-prevention-precautions
http://dx.doi.org/10.3390/fluids5030113
http://dx.doi.org/10.21037/atm.2020.02.92
http://www.ncbi.nlm.nih.gov/pubmed/32355837
http://dx.doi.org/10.3390/rs11222660
http://dx.doi.org/10.5194/acp-16-14057-2016
http://dx.doi.org/10.1016/j.ajo.2020.05.005
http://dx.doi.org/10.1038/s41433-020-0940-y
http://www.ncbi.nlm.nih.gov/pubmed/32398843
http://dx.doi.org/10.1080/02786826.2013.803019
http://dx.doi.org/10.1056/NEJMc2007589
http://www.ncbi.nlm.nih.gov/pubmed/32243118
http://dx.doi.org/10.1007/s12630-020-01638-z
http://www.ncbi.nlm.nih.gov/pubmed/32221852
http://dx.doi.org/10.1001/jama.2020.6633
http://www.ncbi.nlm.nih.gov/pubmed/32338711
http://dx.doi.org/10.1002/alr.22577
http://www.ncbi.nlm.nih.gov/pubmed/32243678
http://dx.doi.org/10.1017/ice.2017.121
http://dx.doi.org/10.1213/ANE.0000000000005032
http://dx.doi.org/10.1016/j.ajic.2018.11.003
http://dx.doi.org/10.1016/j.jamcollsurg.2018.03.002
http://dx.doi.org/10.1177/0194599820934777
http://dx.doi.org/10.1080/15459624.2017.1346799


J. Clin. Med. 2020, 9, 3002 11 of 11

22. Loudon, R.G.; Roberts, R.M. Relation between the Airborne Diameters of Respiratory Droplets and the
Diameter of the Stains Left after Recovery. Nature 1967, 213, 95–96. [CrossRef]

23. Scharfman, B.E.; Techet, A.H.; Bush, J.W.M.; Bourouiba, L. Visualization of Sneeze Ejecta: Steps of Fluid
Fragmentation Leading to Respiratory Droplets. Exp. Fluids 2016, 57, 24. [CrossRef] [PubMed]

24. Xie, X.; Li, Y.; Chwang, A.T.Y.; Ho, P.L.; Seto, W.H. How Far Droplets Can Move in Indoor
Environments–Revisiting the Wells Evaporation-Falling Curve. Indoor Air 2007, 17, 211–225. [CrossRef]
[PubMed]

25. Somsen, G.A.; van Rijn, C.; Kooij, S.; Bem, R.A.; Bonn, D. Small Droplet Aerosols in Poorly Ventilated Spaces
and SARS-CoV-2 Transmission. Lancet Respir. Med. 2020, 8, 658–659. [CrossRef] [PubMed]

26. Mhetre, M.R.; Abhyankar, H.K. Human Exhaled Air Energy Harvesting with Specific Reference to PVDF
Film. Eng. Sci. Technol. Int. J. 2017, 20, 332–339. [CrossRef]

27. Wei, J.; Li, Y. Human Cough as a Two-Stage Jet and Its Role in Particle Transport. PLoS ONE 2017, 12, e0169235.
[CrossRef]

28. VanSciver, M.; Miller, S.; Hertzberg, J. Particle Image Velocimetry of Human Cough. Aerosol Sci. Technol.
2011, 45, 415–422. [CrossRef]

29. Gupta, J.K.; Lin, C.-H.; Chen, Q. Flow Dynamics and Characterization of a Cough. Indoor Air 2009, 19,
517–525. [CrossRef] [PubMed]

30. Tang, J.W.; Nicolle, A.D.; Klettner, C.A.; Pantelic, J.; Wang, L.; Suhaimi, A.B.; Tan, A.Y.L.; Ong, G.W.X.; Su, R.;
Sekhar, C.; et al. Airflow Dynamics of Human Jets: Sneezing and Breathing—Potential Sources of Infectious
Aerosols. PLoS ONE 2013, 8, e59970. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/213095a0
http://dx.doi.org/10.1007/s00348-015-2078-4
http://www.ncbi.nlm.nih.gov/pubmed/32214638
http://dx.doi.org/10.1111/j.1600-0668.2007.00469.x
http://www.ncbi.nlm.nih.gov/pubmed/17542834
http://dx.doi.org/10.1016/S2213-2600(20)30245-9
http://www.ncbi.nlm.nih.gov/pubmed/32473123
http://dx.doi.org/10.1016/j.jestch.2016.06.012
http://dx.doi.org/10.1371/journal.pone.0169235
http://dx.doi.org/10.1080/02786826.2010.542785
http://dx.doi.org/10.1111/j.1600-0668.2009.00619.x
http://www.ncbi.nlm.nih.gov/pubmed/19840145
http://dx.doi.org/10.1371/journal.pone.0059970
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Experimental Section 
	Evaluation of Droplet Sizes 
	Velocity Measurements 
	3D Reconstruction of Simulated Coughs 
	Force Measurements 

	Results 
	Evaluation of Droplet Sizes and Velocity 
	Analysis of Simulated Cough Dispersion Using 3D Reconstruction 
	Simulated Cough Force Analysis 

	Discussion 
	Conclusions 
	References

