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Abstract

The bacterial cell wall, which is comprised of a mesh of polysaccharide strands crosslinked via peptide bridges
(peptidoglycan, PG), is critical for maintenance of cell shape and survival. PG assembly is mediated by a variety of Penicillin
Binding Proteins (PBP) whose fundamental activities have been characterized in great detail; however, there is limited
knowledge of the factors that modulate their activities in different environments or growth phases. In Vibrio cholerae, the
cause of cholera, PG synthesis during the transition into stationary phase is primarily mediated by the bifunctional enzyme
PBP1A. Here, we screened an ordered V. cholerae transposon library for mutants that are sensitive to growth inhibition by
non-canonical D-amino acids (DAA), which prevent growth and maintenance of cell shape in PBP1A-deficient V. cholerae. In
addition to PBP1A and its lipoprotein activator LpoA, we found that CsiV, a small periplasmic protein with no previously
described function, is essential for growth in the presence of DAA. Deletion of csiV, like deletion of lpoA or the PBP1A–
encoding gene mrcA, causes cells to lose their rod shape in the presence of DAA or the beta-lactam antibiotic cefsulodin,
and all three mutations are synthetically lethal with deletion of mrcB, which encodes PBP1B, V. cholerae’s second key
bifunctional PBP. CsiV interacts with LpoA and PG but apparently not with PBP1A, supporting the hypothesis that CsiV
promotes LpoA’s role as an activator of PBP1A, and thereby modulates V. cholerae PG biogenesis. Finally, the requirement
for CsiV in PBP1A-mediated growth of V. cholerae can be overcome either by augmenting PG synthesis or by reducing PG
degradation, thereby highlighting the importance of balancing these two processes for bacterial survival.
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Introduction

The bacterial cell wall is a remarkably sturdy, web-like structure

composed mainly of peptidoglycan (PG), a polysaccharide mesh

whose approximately parallel strands are crosslinked via peptide

sidechains [1–3]. It forms a relatively thin layer between the inner

and outer membranes of gram-negative bacteria, and a thicker

layer in gram-positive bacteria, for which it is often the outermost

bacterial structure. PG serves as a bacterial exoskeleton and

promotes maintenance of the shape and size of bacterial cells [4–

6]. The presence of PG allows bacteria to remain viable in

environments where the osmolarity of the extracellular millieu is

markedly lower than intracellular turgor pressure. Owing to PG’s

importance for bacterial survival, PG synthesis pathways are the

target of some of our most commonly used antibiotics, including

the beta lactams, cephalosporins and glycopeptides [7].

Most analyses of gram-negative cell wall biogenesis have been

performed in Escherichia coli. In this model organism, the first

extracytoplasmic step of PG assembly is polymerization of

disaccharide-pentapeptide precursors ([N-acetylglucosamine – N-

acetylmuramic acid]- pentapeptide) into glycan strands (transgly-

cosylation (TG)) [8]. Subsequently, the peptide residues of these

new strands are crosslinked (transpeptidation (TP)) to the existing

PG, enabling expansion of the PG mesh. These TG and TP

reactions are mediated by inner membrane-bound Penicillin

Binding Proteins (PBPs) [9], of which two (PBP1A and PBP1B) are

bifunctional, i.e. are able to catalyze both, TG and TP reactions.

PBP1A and PBP1B are largely functionally redundant and

conditionally essential, i.e., in the absence of one, the other

becomes strictly required for growth [10,11].

Recently, it was discovered that in vivo, the PG synthetic

activities of E. coli PBP1A and PBP1B are dependent upon

cognate outer membrane lipoproteins (LpoA and LpoB, respec-

tively) [12,13]. Some analyses suggest that both Lpo proteins

activate the TP activity of their partners; however, it has also been

suggested that LpoB can promote glycan chain polymerization
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[14]. In either case, the Lpo proteins are thought to play an

essential regulatory role in PG synthesis, rather than a catalytic

role. Despite the distinct localization patterns of PBP1s (inner

membrane) and Lpo proteins (outer membrane), the PBP1/Lpo

pairs were found to interact directly. It has been hypothesized that

the activator proteins permit detection of gaps in the PG mesh,

and thereby induce synthesis of new material where needed (i.e.

where the cell wall has thinned, allowing for interaction between

Lpos and cognate PBP1s) [8].

Enzymes that cleave PG also play an essential role in the

survival and growth of gram-negative bacteria, and they are

required for PG synthesis in vivo. Endopeptidases, which cleave

the peptide bridges that link parallel glycan strands and thereby

reverse the process of transpeptidation, are thought to create space

into which new glycan strands can be inserted [15–17]. In E. coli,
multiple conditionally essential enzymes mediate this process. One

of 3 murein hydrolases must be present in order for incorporation

of new material into the cell wall to occur, and cells lyse in the

absence of all three [17].

V. cholerae, the gram-negative causative agent of the diarrheal

disease cholera, contains a similar repertoire of PG synthetic

enzymes as E. coli, including homologues of the PBP activators

LpoA and LpoB [18]. As seen with the E. coli enzymes, V.
cholerae PBP1A and PBP1B and their lipoprotein activators are

conditionally essential. However, we have observed that V.
cholerae lacking PBP1A or LpoA are more sensitive to a variety

of stressors than are wt bacteria or those lacking PBP1B/LpoB,

suggesting that PBP1A plays the dominant role in V. cholerae PG

synthesis [18]. PBP1A-deficient cells appear to be particularly

impaired in stationary phase, during which they lose their typical

rod shape and adopt a spherical morphology. V. cholerae also

produces functionally redundant endopeptidases that are required

for cell elongation and survival, although their absence does not

result in bacterial lysis [16]. Thus, V. cholerae and E. coli appear

to rely on similar but not identical processes for cell wall synthesis,

expansion, and maintenance.

One notable difference between V. cholerae and E. coli PG

results from V. cholerae’s production of non-canonical D-amino

acids (DAA), i.e., DAA other than D-Ala and D-Glu, which are

typical components of PG peptide side chains [2,19]. As V.
cholerae enters stationary phase, its periplasmic amino acid

racemase BsrV enables it to produce additional DAA, predom-

inantly D-Met and D-Leu, which are incorporated into PG

[20,21]. Mutants unable to produce or incorporate non-canonical

DAA into PG are hypersensitive to osmotic stress, suggesting that

the strength of stationary phase PG is modulated by these DAA.

Interestingly, DAA likely contribute to the altered shape and

survival of stationary phase V. cholerae lacking PBP1A or LpoA,

as these mutants cease growth and assume a spherical shape in the

presence of ,1 mM concentrations of D-Met. In contrast, the

growth and morphology of wild type and PBP1B/LpoB-deficient

cells is unperturbed by exposure to DAA. However, the precise

role of DAA in stationary phase, and the means by which they

modulate V. cholerae PG, remain to be identified.

Here, with the aim of increasing our understanding of the

processes modulated by DAA, we screened an ordered transposon

library of V. cholerae for additional mutants that are sensitive to

growth inhibition by DAA. Besides the expected insertions in the

genes encoding PBP1A and LpoA, the screen was answered by an

insertion in a gene of unknown function (vc1887), which we have

subsequently renamed CsiV (for cell shape integrity Vibrio). A

mutant lacking CsiV shares numerous additional phenotypes with

mutants lacking PBP1A or LpoA, although the three mutants are

not identical in all assays. In particular, only the effect of csiV
disruption could be moderated by deletion of shyA, which encodes

an endopeptidase that hydrolyzes peptide crosslinks between PG

strands. Biochemical analyses revealed that CsiV interacts both

with PG and with LpoA. Collectively, our data suggests that

PBP1A-mediated PG synthesis in V. cholerae is largely dependent

upon the presence of CsiV, which likely modulates the activity of

the PBP1A activator LpoA.

Results

Identification of potential PBP1A pathway mutants by a
chemical synthetic lethal screen

We analyzed the growth of an arrayed V. cholerae transposon

library on agar containing 5 mM D-Methionine (D-Met) (Fig. 1A).

Of the 3,156 mutants in the library, only three were unable to

grow under these conditions: strains with transposon insertions in

mrcA (which encodes PBP1A), in lpoA (vc0581; which encodes a

putative PBP1A activator [18]), and in vc1887, whose putative

product is annotated as a hypothetical protein. In-frame deletions

of vc1887 and lpoA also prevented growth of V. cholerae in the

presence of D-Met, as reported for deletion of mrcA (Fig. 1B;

[19]). Furthermore, growth of each mutant could be restored by

ectopic expression of the deleted gene, thereby demonstrating that

the mutations do not have polar effects and that the observed

growth deficiency is due to the absence of the deleted genes

(Fig. 1B). Collectively, these results indicate that PBP1A, LpoA,

and VC1887 are all required for survival of V. cholerae in the

presence of DAA, and raise the possibility that VC1887, like

LpoA, makes a key contribution to PBP1A-mediated PG synthesis.

Based on our subsequent analyses of VC1887 (detailed below), we

have renamed VC1887 as CsiV (for cell-shape integrity in Vibrio).

The amino terminus of CsiV is predicted to encode a signal

sequence for export to the periplasm (Fig. 2A), and, consistent

with this prediction, a CsiV-mCherry-fusion (Fig. S1) was

targeted to the cell periphery, where it was diffusely distributed

(Fig. 2B). Based on a String Database search for CsiV

homologues, CsiV contains no additional domains with a known

function in any bacterial genome. CsiV is largely restricted

to Vibrionaceae and certain Alteromonadales (especially genus

Author Summary

Bacteria surround themselves with a mesh-like peptido-
glycan (PG) cell wall, which is essential for maintenance of
cell shape and survival. While the enzymes that catalyze
the assembly of the cell wall (aka penicillin-binding
proteins (PBPs)) have been extensively characterized, our
understanding of the factors that modulate the activities
of these enzymes is less developed. Here, using a genetic
screen, we identified a gene of unknown function that
plays a crucial role in PBP1A-mediated cell wall synthesis in
Vibrio cholerae, the bacterium causing cholera. V. cholerae
mutants lacking this gene, whose protein product was re-
named CsiV (for Cell shape integrity Vibrio), share many
phenotypes with PBP1A mutants, including becoming
spherical during stationary phase. We show that CsiV
interacts with LpoA, a lipoprotein activator of PBP1A, as
well as with PG. CsiV, LpoA, or PBP1A are all required for
survival of V. cholerae lacking PBP1B, and mutants lacking
any of these factors show marked changes in PG content
in stationary phase. Collectively, our data suggest that CsiV
acts through LpoA to promote PG biogenesis in V. cholerae
and other vibrio species as well as in the other genera
where this protein is found.
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Shewanella) as well as Pseudomonas sp, with the strongest

homologues only present within the genus Vibrio (Fig. S2).

Structural prediction analysis (Phyre2; http://www.sbg.bio.ic.ac.

uk/phyre2/html/page.cgi?id = index) did not identify high confi-

dence structural homologues for any portion of the CsiV protein

sequence, and the majority of the protein was predicted to be

disordered. Thus, sequence analysis did not provide any clues

regarding CsiV’s function.

Figure 1. Identification and complementation of PBP1A pathway mutants using a chemical genetic screen. (A) For the screen, an
ordered V. cholerae transposon library was pintooled onto LB agar +/25 mM D-Met and scored for growth deficiency in the presence of D-Met. (B)
Growth of V. cholerae PBP1A pathway mutants containing either an empty vector (pHL) or a plasmid enabling inducible expression of the deleted
gene (pHLorf) on plates containing inducer and 5 mM D-Met confirms that their growth deficiencies on D-Met are due to deletion of the indicated
genes.
doi:10.1371/journal.pgen.1004433.g001
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Figure 2. CsiV is a periplasmic protein of unknown function. (A) Domain architecture of CsiV (VC1887). The signal sequence is predicted to be
cleaved off between A30 and R31. DUF2803 is not associated with any function. (B) Fluorescence microscopy analysis of V. cholerae producing
plasmid-encoded CsiV-mCherry, a functional fusion protein that localizes to the cell periphery. Scale bar = 5 mm.
doi:10.1371/journal.pgen.1004433.g002

Figure 3. A csiV mutant phenocopies the growth deficiencies of mrcA and lpoA mutants. The minimum inhibitory concentration (MIC) of
(A) deoxycholate, (B) cefsulodin and (C) DAA are shown for wt V. cholerae and PBP1A pathway mutants. MIC data reflect values obtained with two
biological replicates done in technical quadruplicates for each strain. Absence of error reflects that the same values were obtained for all experiments
(D) Morphological changes induced by DAA. The indicated V. cholerae strains were grown in the absence of DAA until OD600,0.3 and then applied to
0.8% agarose pads containing 4 mM D-Met. Scale bar = 5 mm.
doi:10.1371/journal.pgen.1004433.g003
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A DcsiV mutant is phenotypically similar to PBP1A
pathway mutants

Given the similar responses of the DcsiV, DmrcA, and DlpoA
mutants to D-Met, we tested whether the DcsiV strain shared

other characteristics with PBP1A pathway mutants, such as loss of

rod shape after exposure to DAA, as well as sensitivity to

detergents and beta-lactam antibiotics [19]. These analyses

revealed numerous attributes that are shared among all 3 strains.

The minimum inhibitory concentrations (MIC) of deoxycholate

and cefsulodin were dramatically reduced (.100 fold and ,10

fold, respectively) for all three strains compared with wild type V.
cholerae (Fig. 3A,B), and the MIC for DAA was reduced 5–10

fold (Fig. 3C). Furthermore, all three strains turned spherical in

the presence of D-Met (Fig. 3D), and the process of sphere

formation was comparable for the DcsiV, DmrcA, and DlpoA
strains (Fig. 3D). At first, small blebs were evident protruding

from the cylindrical portion of the cell (the site of cell elongation);

then, within the subsequent ,5–10 min, DAA induced a

catastrophic loss of cell shape. Thus, the three mutants appear

to display similar sensitivities to a range of stresses thought to

target the cell envelope. Finally, perhaps consistent with increased

susceptibility to cell envelope stresses, DcsiV was also similarly

defective in colonization of infant mice as the PBP1A pathway

mutants (Fig. S3).

Comparative analyses of PG from wt and DAA-
susceptible strains

Given PBP1A’s prominent role in PG synthesis, we also

compared PG content and composition for wt V. cholerae and

the three mutants. Based on the abundance of diaminopimelic

acid (a PG constituent) in cell wall material isolated from

exponential phase cultures, 50–90% of wild type PG (normalized

to OD600) could be recovered from all three mutants, suggesting

cells can compensate almost fully for the loss of the PBP1A

pathway and CsiV during exponential phase. In contrast, for

stationary phase cultures, PG recovery from both the DmrcA and

DcsiV mutants was ,90% less than from wild type V. cholerae
(Fig. 4A). The DlpoA mutant also contained markedly less PG

Figure 4. Muropeptide analysis of the csiV, mrcA and lpoA mutants. Cell wall content was estimated by colorimetric quantification of DAP in
PG extracted from (A) exponential phase or (B) stationary phase cultures. (C–F) UPLC analysis of the degree of crosslinking (C,D) and average chain
length (E, F) in cell wall extracted from exponential phase (C,E) and stationary phase (D,F) cultures. Data are averages of two (exponential phase) or
three (stationary phase) biological replicates, error bars indicate standard deviation. ** = p,0.01 (t-test). S481T is a PBP1A transpeptidase mutant
expressed from its native chromosomal locus, where the S residue at position 481 (in the active site) is replaced by a T.
doi:10.1371/journal.pgen.1004433.g004
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than the wild type strain, albeit ,5 fold more than the DmrcA and

DcsiV mutants. These results suggest that PBP1A is responsible for

a high proportion of V. cholerae PG synthesis during the

transition into or in stationary phase, and suggest that this

synthesis may be dependent upon CsiV.

To gain insight into the regulation of PBP1A’s transpeptidase

(TP) and transglycosylase (TG) activities and their connection to

CsiV, we also compared the degree of crosslinking and the length

of glycan chains in PG from the wt and mutant strains. For these

analyses, we included a mrcA mutant (S481T) predicted to

produce PBP1A that lacks TP activity, due to disruption of the

enzymatic active site. We found that crosslinking was slightly and

insignificantly reduced, relative to the wt strain, in exponential

phase-derived PG from all four mutants (DcsiV, DmrcA, DlpoA,

mrcAS481T) (Fig. 4C). In contrast, crosslinking was significantly

reduced in stationary phase PG in all four mutants (Fig. 4D),

although deletion of csiV resulted in less reduction than did

deletion of mrcA. These results, consistent with our analysis of PG

content, suggest that while PBP1A is largely dispensable in

exponential phase, it is linked to a significant fraction of PG

crosslinking in stationary phase, and that CsiV may promote (but

not be required for) PBP1A’s TP activity.

Unexpectedly, the average PG chain length (number of GlcNac-

MurNac subunits/chain) differed markedly between mutants and

growth phases (Fig. 4E,F). While all four mutants had slightly

longer PG chains (though this difference was only significant for

the mrcAS481T mutant) than the wild type in exponential phase

(Fig. 4E), the DlpoA and S481T mutants had significantly longer

Figure 5. Deletion of csiV is synthetically lethal with deletion of mrcB but not lpoB. (A) Growth curves, based on OD600, for the indicated V.
cholerae strains grown in LB. Data represent averages of technical triplicates and are representative of two experiments with similar results. (B) Cells in
which PBP1B’s native promoter was replaced by an arabinose-inducible promoter (PARA) were initially grown in the presence of arabinose (Ara+), then
grown for 1 h in fresh medium without arabinose (Ara2).
doi:10.1371/journal.pgen.1004433.g005
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glycan chains in stationary phase (Fig. 4F), where in contrast

chain length of DcsiV and DmrcA did not differ from the wild

type. The similarity between the DlpoA and mrcAS481T strain in

this assay suggests that LpoA may be particularly important for

augmenting PBP1A’s TP activity (as has also been observed in E.

coli) during the transition into or in stationary phase. However,

our results also suggest a possible interplay between PBP1A’s two

enzymatic activities, such that disruption of its TP activity may

cause deregulation of its TG activity. Additionally, it is noteworthy

that in our analyses of PG, unlike previously described assays, the

absence of the putative non-enzymatic factors (LpoA and CsiV)

does not always have the same consequences as the absence of

PBP1A.

CsiV shares genetic interactions with PBP1A and LpoA
In previous work, we have shown that mutations in V.

cholerae mrcA and lpoA are synthetically lethal with muta-

tions in mrcB and lpoB [18], i.e., that the PBP1B pathway is

essential in the absence of either PBP1A or LpoA. Similarly,

we were unable to generate an in-frame deletion of mrcB in

the DcsiV background, strongly suggesting that PBP1B is also

essential in this mutant, possibly because PBP1A activity in a

Figure 6. V. cholerae PBP1A is partially functional in the absence of CsiV. (A) Morphological changes of V. cholerae strains grown in the
presence of the PBP1B inhibitor cefsulodin. Frames are 5 min apart. (B) Growth (OD600) of DcsiV, DmrcA and DlpoA strains ectopically expressing
mrcA or mrcB and cultured in the presence of cefsulodin. Data are averages of three experiments, error bars represent standard deviation.
doi:10.1371/journal.pgen.1004433.g006
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DcsiV DmrcB mutant is insufficient to sustain growth.

Unexpectedly, we were able to generate a DcsiV DlpoB
mutant, although this strain did have a modest growth

deficiency (e.g., a longer lag phase) (Fig. 5A). Presumably,

either PBP1A or PBP1B (or perhaps both) has reduced activity,

rather than a total loss of function, in this double mutant. This

possibility is explored further below.

By placing mrcB under the control of an arabinose-inducible

promoter in the wt, DmrcA, DlpoA and DcsiV backgrounds,

we were able to observe the consequences of PBP1B depletion

in various genetic backgrounds. When grown in the presence

of arabinose, the majority of cells displayed normal cell

morphology in all 4 strains (Fig. 5B, S4 and not shown).

However, when arabinose was removed (resulting in PBP1B

depletion), almost all of the DmrcA, DlpoA and DcsiV cells

became spherical, as observed following exposure of these

strains to DAA. In contrast, PBP1B depletion had no effect on

the morphology of otherwise wt cells (data not shown). The

similarity between changes in the mutants’ cell shape in

response to DAA and to the absence of PBP1B suggests that a

key effect of DAA in V. cholerae may be to inhibit PBP1B.

PBP1A function is not entirely dependent upon CsiV
We also explored the requirement for CsiV, LpoA, and PBP1A

in PBP1B-deficient cells by treating the panel of mutant strains

with cefsulodin, which specifically inhibits PBP1B in V. cholerae

Figure 7. The absence of the endopeptidase ShyA enables PBP1B-independent growth of CsiV-deficient V. cholerae. (A) Growth
curves, based on OD600, for cultures containing the PBP1B inhibitor cefsulodin. Data are averages of technical quadruplicates and representative of 4
experiments with similar results, error bars represent standard deviation (B) Single-cell dynamics of DcsiV and the DcsiV DshyA double mutant in the
presence of cefsulodin. Cells were grown to OD600,0.3 and then applied to agarose pads containing 100 mg/ml cefsulodin. Arrowheads point to
blebs (C) DcsiV DshyA or DlpoA DshyA cells in which PBP1B’s native promoter was replaced with an arabinose-inducible promoter (PARA) were treated
as described in Fig. 5B.
doi:10.1371/journal.pgen.1004433.g007
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[18]. When all proteins were expressed at endogenous levels, the

strains failed to grow in 100 mg/ml cefulodin, and instead adopted

a spherical morphology (Fig. 6A), as seen in response to PBP1B

depletion. However, when PBP1A was overproduced, CsiV-

deficient cells were able to grow in the presence of cefsulodin

(albeit not as well as when CsiV was exogenously produced)

(Fig. 6B), providing further evidence that PBP1A is not fully

inactive in the absence of CsiV. Alternatively, the observed

phenotype could indicate the rise of a resistant mutant or

degradation of the antibiotic under these conditions; however,

these alternative explanations seem unlikely since we never

observed growth in the control (DcsiV carrying empty

plasmid+cefsulodin). In contrast to DcsiV, neither overexpres-

sion of PBP1A nor of CsiV (data not shown) enabled LpoA-

deficient cells to grow in the presence of the antibiotic,

indicating that, as in E. coli, LpoA is absolutely required for

PBP1A function.

Mutation of an elongation-specific D,D-endopeptidase
prevents sphere formation in the DcsiV mutant

To gain additional insight into the cellular role of CsiV,

including its relationship to PBP1A and LpoA, we screened

transposon insertion libraries generated in the DcsiV, DmrcA, and

DlpoA strains for mutants that had regained the ability to replicate

in the presence of DAA. No suppressor mutations were obtained

for the DmrcA and DlpoA mutations; however, multiple

independent insertions within shyA (vca0079) were found to

enable growth of the DcsiV mutant in the presence of DAA. The

product of shyA, which is one of two functionally redundant

periplasmic hydrolases required for cell elongation in V. cholerae

Figure 8. CsiV interacts with LpoA. (A) Lysates from a csiV::csiV-his lpoA::lpoA-mCherry strain and a DlpoA::lpoA-mCherry strain were affinity
purified on NiNTA resin, then Western blotted with anti His and anti-mCherry antibodies to show copurification of CsiV and LpoA. (B) Purified MalE-
His (10 mM) and either LpoA-His77-653 (2.5 mM) or PBP1A-His (2.5 mM) were mixed with CsiV-His31-266 covalently attached to NHS-activated sepharose.
Protein associations were assessed via western blotting (anti-His) of Input (IN), flowthrough (F), third wash (W3), and eluate from boiled beads (E). (C)
Bacterial two-hybrid analysis of CsiV-LpoA and CsiV-PBP1A interactions. All constructs are truncated downstream of their signal sequences to allow
for cytoplasmic BACTH.
doi:10.1371/journal.pgen.1004433.g008
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([16]), can cleave the majority of peptide crosslinks in V. cholerae
PG. Subsequent analyses revealed that an in-frame deletion in

shyA was also necessary and sufficient to significantly mitigate the

growth and morphology defects of the DcsiV strain in the

presence of DAA (not shown) and cefsulodin (Fig. 7 A,B, S5)

and in response to PBP1B depletion (Fig. 7C), while deletion of

shyA did not enable growth or maintenance of normal cell shape

for PBP1A or LpoA-deficient strains under these conditions

(Fig. 7A,C). A likely explanation for these data is that a small

amount of PBP1A activity is still preserved in the DcsiV mutant

(but not the DmrcA or DlpoA strains), and that deletion of shyA
reduces PG cleavage and thereby lessens the need for PG

synthesis to a level that can be met by residual PBP1A activity.

However, it is also possible that CsiV does not modulate PBP1A

activity at all, but instead restrains the activity of ShyA, i.e., that

the PG-related phenotypes of the DcsiV strain are the

consequences of elevated PG degradation rather than reduced

synthesis. In theory, CsiV might modulate both synthetic and

degradative processes.

To explore whether ShyA deregulation in the absence of CsiV

might account for some of the phenotypes of the DcsiV mutant, we

assessed the effect of ShyA overexpression in the DcsiV, DmrcA,

and DlpoA strains. Notably, ectopic expression of ShyA, which we

have previously shown to be functional [16], had no effect on the

growth rate of the 3 mutants or of wt cells (Fig. S6), and all 4

strains maintained V. cholerae’s normal rod morphology (not

shown). Thus, although ShyA activity is likely to be highly

regulated in vivo ([16]), to date we lack evidence that its activity is

restrained by CsiV or components of the PBP1A pathway.

CsiV interacts with LpoA
Analyses of CsiV interaction partners also suggests that CsiV

probably modulates V. cholerae cell shape and growth predom-

inantly via an effect on PG synthesis rather than degradation. We

performed affinity purification analyses, using His-antibody resin

and 66 His-tagged CsiV expressed from its native chromosomal

location, to identify proteins that interact with CsiV (Fig. S7A).

To stabilize protein complexes, some cells were treated with the

crosslinker DSP (dithiobis succinimidyl propionate, Lomant’s

reagent) prior to lysis. Silver staining of column-purified proteins,

followed by mass spectrometry analysis of bands of interest,

revealed that LpoA copurified with CsiV even in the absence of

crosslinker. Purification of an additional protein complex, which

contained both LpoA and VC2168, a small, predicted periplasmic

protein of unknown function, was found to depend on crosslinking.

Most additional protein bands were found to contain chaperones,

ribosomal proteins, or CsiV. Comparable analyses, using lysates

from +/2 DSP-treated cells expressing LpoA-His6, confirmed the

crosslinker-independent co-purification of LpoA and CsiV and the

crosslinker-dependent co-purification of LpoA and VC2168 (Fig.
S7B). Given the stringency of washing conditions used (500 mM

NaCl), our data suggest that a high affinity interaction occurs

between LpoA and CsiV, consistent with CsiV modulating

PBP1A-mediated PG synthesis. The additional interaction part-

ner, VC2168, has a high degree of phylogenetic co-occurrence

with CsiV (string database, Fig. S2), suggesting it may likewise

play a role in cell envelope biogenesis. However, we have yet to

identify any changes in cell growth or morphology associated with

deletion of vc2168, and its cellular role remains obscure.

Somewhat unexpectedly, our mass spectrometry-based analyses

did not detect any interaction between PBP1A and either CsiV or

LpoA.

The interaction between CsiV and LpoA, but not PBP1A was

evident in a variety of additional assays as well. Western blotting of

affinity-purified proteins expressed from chromosomal loci con-

firmed that purification of LpoA was mediated by an interaction

with CsiV-His6 (Fig. 8A). Furthermore, when His6-tagged

purified LpoA61-433 or PBP1A (as well as a control protein, MalE)

were loaded on a column containing truncated CsiV (CsiV31-266)

covalently linked to NHS-activated Sepharose, only LpoA was

retained by the column (Fig. 8B). Finally, using a split adenylate

cyclase-based bacterial two-hybrid assay, CsiV was found to

interact with LpoA but not PBP1A (Fig. 8C) or ShyA (data not

shown). Thus, although all our interaction assays do not rule out

the possibility of interactions between CsiV and partners other

than LpoA, our observations provide strong support for the

hypothesis that CsiV modulates V. cholerae PG synthesis, and

thereby affects cell shape and growth, via directly interacting with

LpoA and promoting its function as an activator of PBP1A.

CsiV interacts with peptidoglycan
Since periplasmic enzymes involved in cell wall biosynthesis are

necessarily closely associated with the cell wall, we tested whether

Figure 9. CsiV interacts with peptidoglycan. Purified proteins
were incubated with SDS-extracted PG, then ultracentrifuged to pellet
PG and associated proteins. Proteins were visualized by anti-His
Western blot. For the lysozyme control, 1 mg/ml lysozyme was added
simultaneously with the addition of CsiV-His.
doi:10.1371/journal.pgen.1004433.g009
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CsiV directly interacted with peptidoglycan. We incubated

purified CsiV with purified PG and then pelleted PG using

ultracentrifugation. CsiV exclusively associated with the pellet

fraction in the presence of PG, but not when lysozyme was added

to the reaction, suggesting a direct interaction between CsiV and

the cell wall (Fig. 9). Interestingly, purified LpoA did not interact

with PG by itself but was tethered to it by the simultaneous

presence of CsiV. This interaction did not appear to be required

for LpoA-PG interaction in vivo, as PG purified after treatment of

cells with DSP (which can mediate covalent attachment of proteins

to the cell wall as well as crosslinking of protein complexes [22])

retained natively expressed LpoA-His even in the absence of

PBP1A and CsiV (Fig. S8).

Discussion

Here, we discovered CsiV, a new player in cell wall biogenesis

in V. cholerae and presumably in all vibrios as well as the other

genera where strong homologues of this novel peptidoglycan-

binding protein are found. CsiV plays a critical role in PBP1A-

mediated cell wall biogenesis in V. cholerae and was identified by

screening a mapped transposon library for mutants whose growth

was inhibited by D-amino acids (DAA). The screen was inspired

by our work that revealed that D-amino acids are key modulators

of cell wall synthesis, particularly as cells enter stationary phase

[19]. D-amino acids inhibit growth of strains lacking PBP1A or its

putative activator LpoA, and exposure of these mutants to DAA

leads to loss of rod shape and sphere formation through an

unknown mechanism [18]. CsiV-deficient cells, like PBP1A and

LpoA-deficient cells, turn spherical in stationary phase, in the

presence of DAA, and upon depletion of PBP1B. Additionally, V.
cholerae lacking CsiV, LpoA, or PBP1A are hypersensitive to the

bile acid deoxycholate and to cefsulodin, which inhibits V.
cholerae PBP1B, and they all show marked changes in PG content

in stationary phase. CsiV, LpoA and PBP1A are also all required

for survival of V. cholerae lacking PBP1B, although the

requirement for CsiV is diminished in the absence of the

endopeptidase ShyA. CsiV interacts with LpoA as well as with

PG, but does not appear to bind to PBP1A. Collectively, our data

suggest that CsiV acts through LpoA (and thereby through

PBP1A) to promote PG synthesis in V. cholerae, and that V.
cholerae PBP1A is largely inactive in the absence of CsiV.

Despite the extensive similarities of the phenotypes of V.
cholerae csiV, lpoA, and mrcA mutants, there are also notable

differences among these strains. A key difference is that

overexpression of mrcA enables growth of the csiV mutant, but

not the lpoA mutant, in the presence of cefsulodin. In the presence

of this antibiotic, PBP1A-mediated PG synthesis is essential for

growth; consequently, our results suggest that PBP1A retains a

small amount of activity in the absence of csiV, but is completely

inactive when LpoA is not present. Since CsiV interacts with

LpoA, but does not appear to interact with PBP1A, a likely

explanation for these results is that CsiV markedly enhances the

ability of LpoA to activate PBP1A. Western blot analyses of the

abundance of epitope tagged LpoA in the presence and absence of

CsiV (Fig. S8 and data not shown) suggest that CsiV is not

required simply to stabilize LpoA levels, nor is CsiV required to

tether LpoA to PG (Fig. S8). Our path to elucidating the precise

means by which CsiV modulates LpoA’s activity will become

clearer as the molecular bases for LpoA’s enhancement of PBP1A

activity are illuminated.

In related analyses, we observed that disruption of V. cholerae
lpoB is also possible in a csiV mutant, but not in an lpoA or mrcA
mutant, and that disruption of mrcB is not possible in any of the

three mutants. The former results are consistent with our previous

conjecture that only the csiV mutant has residual PBP1A activity.

Additionally, the differential requirement for lpoB and mrcB in

the csiV mutant suggests that PBP1B may likewise have a small

amount of residual activity in the absence of LpoB, and that

PBP1B-mediated PG synthesis is critical for survival of the csiV
lpoB mutant. Consistent with this supposition, we have found that

growth of this strain is blocked by the PBP1B-specific antibiotic

cefsulodin (data not shown).

Our studies have also revealed extensive similarities between the

consequences of PBP1B depletion, exposure to cefsulodin, and

exposure to DAA. All inhibit growth of PBP1A, LpoA, and CsiV-

deficient cells and induce loss of rod shape and adoption of a

spherical morphology. Although they do not provide conclusive

evidence, these results suggest that one effect of DAA is to inhibit

PBP1B activity. DAA might bind directly to PBP1B; alternatively,

PG in which non-canonical DAA have been incorporated might

be a poor substrate for crosslinking by PBP1B. Regardless, if

effective reduction of PBP1B activity in the presence of DAA

occurs, then PBP1A likely accounts for the majority of PG

synthesis in stationary phase cultures, which accumulate high

levels of DAA. Such a role for PBP1A would explain why the

survival and PG content of PBP1A pathway mutants is particularly

reduced during stationary phase.

Since the detrimental effects of csiV deletion in the absence of

PBP1B activity were mitigated by inactivation of the endopepti-

dase ShyA, it is formally possible that CsiV acts as a negative

regulator of PG degradation rather than an indirect activator of

PG synthesis. However, this scenario seems unlikely to account for

all of CsiV’s activity for a variety of reasons. First, CsiV interacted

with LpoA, while we did not detect an interaction between CsiV

and ShyA or any other endopeptidase. Second, overexpression of

ShyA did not impede V. cholerae growth, even in the absence of

CsiV, suggesting that restraint of detrimental PG digestion is not

dependent upon CsiV (Fig. S6). Additionally, the deletion of shyA
promoted but did not completely restore growth of the DcsiV
mutant in cefsulodin, so, at minimum, the role of CsiV cannot be

limited to regulation of ShyA activity. Thus, CsiV’s most probable

role is in promoting PG synthesis, via enhancing LpoA’s activation

of PBP1A.

Finally, our observations have bearing on a central question in

cell wall biogenesis - whether PG synthesis and degradation are co-

ordinately regulated. These key processes may be tightly coupled,

so that one ‘‘degradation unit’’ is always associated with one

‘‘synthesis unit’’ of cell wall material. It is also possible that

degradation and synthesis are independently regulated in response

to one or more cellular stimuli. For example, degradation might

occur in response to elevated turgor pressure in the cell, while

synthesis might be stimulated by detection of gaps within the PG

structure. In either case, our observations suggest that cell survival

depends on proper maintenance of a balance between these two

processes. When CsiV and PBP1B are both absent, and

consequently PG synthesis rests solely on residual PBP1A activity,

cell growth is dependent upon compensatory measures: either

removal of the endopeptidase ShyA or overexpression of PBP1A,

which should reduce PG degradation or increase synthesis,

respectively. In contrast, cell growth is not markedly impaired

when only a single bifunctional PBP (PBP1A or PBP1B) was

absent. While speculative, our findings are therefore consistent

with a scenario in which PG synthesis and degradation are

buffered, rather than precisely calibrated, processes, i.e. that

overall PG synthetic activity can be lowered substantially until a

threshold is reached, below which degradation outweighs synthesis

to a degree that makes it impossible to maintain rod-shape. This is
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in agreement with recent studies of the activity of PBP2, the

transpeptidase essential for cell elongation, in E. coli [23].

Materials and Methods

Media and growth conditions
All strains were routinely grown at 37uC in LB medium

supplemented with 200 mg/ml streptomycin. For growth curves,

overnight cultures were diluted 1:100 into fresh medium and

incubated shaking until OD600,0.1–0.3. Cultures were then

normalized to an OD600 of exactly 0.1 and transferred to 200 mL

volume in 200-well honeycomb plates. Growth curves were then

conducted at 37uC with continuous shaking in a Biotek growth

curve machine.

Plasmid construction
Primers are summarized in Table S1.

Complementation plasmids were constructed by cloning PCR

fragments amplified with primers TDP166/167 (csiV), TDP168/

169 (mrcA) or TDP172/173 (lpoA) digested with Xma1/BamH1

(NEB) into likewise digested and Calf intestinal phosphatase

(CIP,NEB)-treated pHL100.

pHL100shyA was constructed using isothermal assembly [24] of

the product of primers TDP529/530 with Sma1 (NEB)-digested

and CIP-treated pHL100.

pHL100csiV-mCherry was constructed using isothermal assem-

bly of Sma1-digested/CIP-treated pHL100 and the products of

TPD310/311 and TDP238/239.

All deletion plasmids are derivatives of the suicide-vector

pCVD442 [25]. 300–500 bp long upstream and downstream

homologies were amplified using primers TDP138/139+
TDP140/141 (lpoA), TDP205/206+TDP207/208 (mrcA) or

TDP282/283+TDP284/285 (lpoB), purified (Qiagen PCR puri-

fication kit) and fused using SOE PCR with the respective outside

primers (in bold). The resulting product was digested with Xba1

(NEB) and ligated into likewise digested pCVD442.

The csiV deletion plasmid was constructed using isothermal

assembly of the products of TDP360/361+TDP362/362 into

Sma1-digested pCVD442.

Overexpression plasmids for protein purification are derivatives

of pET28b. Open reading frames encoding truncated CsiV and

LpoA were cloned into the Nco1/Xho1 sites using the PCR

products of TDP110/111 and TDP201/88. HisPBP1A was

amplified using primers TDP535/536 and cloned into Nco1-

digested pET28b using isothermal assembly.

Site-directed mutagenesis
Site-directed mutagenesis was performed using the QuikChange

kit (Agilent) following the manufacturer’s recommendations.

Primers TDP160/161 were used to amplify mutated mrcA from

pHL100mrcA. Mutated mrcA was then amplified using primers

TDP212/214 and used as template together with the products of

TDP196/212+213/199 in a SOE PCR reaction with primers

TDP196/199. The resulting product, containing mutated mrcA+
upstream and downstream homology regions was then digested

with Xba1 and ligated into likewise digested pCVD442.

Strain construction
Strains and plasmids are summarized in Table S2. All Vibrio

cholerae strains are derivatives of El Tor N16961.

Deletion and replacement mutants were generated using the

suicide plasmid pCVD442 or the lacZ integration plasmid pJL1

[26] in the donor strain SM10 using published methodology ([25]).

Transposon screen
An ordered transposon library in 96 well format [27] was

transferred to 200 mL LB medium using a 96-Pin Tool, incubated

overnight at 37uC and then spotted on LB agar plates with either

no addition or 5 mM D-methionine (Sigma). After another

overnight incubation, agar plates were visually inspected for

growth. Colonies that grew neither on LB nor on D-Met were

recultured from the library and retested for growth on D-Met

individually. Colonies that grew on LB agar but not on LB were

scored as hits.

PG isolation and HPLC analysis
To isolate murein sacculi, either 1L (stationary phase culture,

OD600,2) or 2L (exponential phase culture, OD600,0.2) of

culture was pelleted, resuspended in 5 ml PBS and slowly added to

10 ml of boiling 10% SDS while stirring. Samples were boiled for

4 h, then stirred overnight at 37uC. Cell wall material was then

pelleted by ultracentrifugation (110.000 rpm, 1 h) and washed 36
in MQ water.

Peptidoglycan (PG) samples were analyzed as described

previously [28]. After washing with MQ water, samples were

digested with pronase E (100 mg/ml) in a TrisHCl 10 mM pH 7.5

buffer for 1 hour at 60uC to remove Braun’s lipoprotein. After

heat-inactivation and washing, the samples were treated with

muramidase (100 mg/ml) for 16 hours at 37uC, in 50 mM

phosphate buffer, pH 4.9. Muramidase digestion was stopped by

boiling, coagulated proteins were removed by centrifugation

(10 min, 14000 rpm) and the supernatants were reduced with

150 ml 0.5 M sodium borate pH 9.5 and sodium borohydride

(10 mg/ml final concentration, 30 min at RT). Finally, samples

(100 ml) were adjusted to pH 3.5 with phosphoric acid.

UPLC analyses of muropeptides were performed on an

ACQUITY UPLC BEH C18 Column, 130Å, 1.7 mm,

2.1 mm6150 mm (Water, USA) and detected at Abs. 204 nm.

Muropeptides were separated using a linear gradient from buffer

A (phosphate buffer 50 mM pH 4.35) to buffer B (phosphate

buffer 50 mM pH 4.95 methanol 15% (v/v)) in a 20 minutes run.

Quantification of relative abundances of muropeptides
Identity of the peaks was assigned by comparison of the

retention times and profiles to other chromatograms in which mass

spectrometry data has been collected. The relative amount of each

muropeptide was calculated by comparison of the relative area of

the peak compared to the total area of the chromatogram.

Representative chromatograms are shown in Fig. S9.

The degree of crosslinking is expressed as the relative amount of

peptide bonds that connect two peptide stems ([dimers+trimers/

2]). The average length is indirectly proportional to the relative

amount of anhydro-muropeptides.

PG quantifcation
Isolated PG sacculi were hydrolysed for 15 hours with HCl 6M

at 100uC, followed by water removal using a centrifugal

concentrator (Speed Vac). Completely dried samples were

resuspended in water and treated with ninhydrin (250 mg of

ninhydrin in 4 ml of phosphoric acid 0.6 M and 6 ml of pure

acetic acid) for 5 minutes at 100uC. Absorbance was measured at

434 nm and concentration of muropeptides was calculated by

comparison to a mDAP standard curve [29].

Protein purification
All proteins were overproduced in E. coli strain RosettaGami

(Invitrogen) as 66His-tagged constructs from a pET28b+ vector.
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Overnight cultures of overexpression strains carrying either

truncated CsiV31-266-His, truncated LpoA61-653 or full-length

His-PBP1A were diluted into 1 L LB broth, grown until

OD600 = 0.5. Flasks were then cooled down at 4uC for 30 min,

followed by addition of 1 mM IPTG and slow shaking at room

temperature for 16 h. Cells were pelleted, washed 16 in PBS

and resuspended in Buffer A (20 mM Tris, pH 7.2, 150 mM

NaCl, 1 mM DTT+protease inhibitor cocktail (Roche) and

stored at 280uC. Following thawing on ice, cells were

disrupted by passaging through a French press twice. Salt

was then adjusted to 300 mM NaCl and 0.1% triton x-100

(reduced, Sigma) as well as 1% CHAPS (Sigma) and 40 mM

Imidazole added. Lysates were then incubated for 1 hour

rotating at 4uC, followed by centrifugation for 1 h

(25.000 rpm, Beckman Coulter Avanti J26-XP centrifuge, JL-

25.50 rotor) at 4uC. Nickel NTA resin (0.5 ml, equilibrated in

buffer A) was then added to the supernatant, followed by

incubation at 4uC, rotating. The lysate was then allowed to

drain from the Ni-resin by flow-through in a filter cartridge

and the resin washed (5610 ml) with Wash buffer (Buffer A

adjusted to 500 mM NaCl, 50 mM imidazole and 0.1%

triton x-100) and eluted with wash buffer containing an

imidazole gradient (60–300 mM). Fractions were subjected to

SDS PAGE and Coomassie Brilliant Blue staining and the

cleanest fractions pooled. Proteins were quantified using

Nanodrop.

Co-affinity purification
For co-affinity purification, strains carrying chromosomal C-

terminal His fusions of the proteins of interest were grown to

OD600,0.5 in LB, pelleted, washed twice in PBS and then

resuspended in PBS and crosslinked for 30 min with 5 mM

DSP (Thermo Scientific). The pellet was then washed 36 in

PBS and resuspended in buffer B (20 mM Tris, 300 mM NaCl,

1 mM DTT, 1% Triton X-100, Roche complete protease

inhibitor) and cells were lysed by passaging three times through

a French Press. Then, 1% CHAPS was added and the lysates

stirred 2 h – overnight at 4uC. Lysates were then cleared by

centrifugation (25.000 rpm, 1 h) and incubated for 2 h with

His-antibody resin (R&D systems) equilibrated in buffer B. The

resin was washed 36with Buffer B adjusted to 500 mM NaCl

and protein complexes eluted with Buffer C (100 mM glycine,

pH 2.5, 300 mM NaCl, 1 mM DTT, 1% Triton X-100).

Proteins were then concentrated ,10fold using Amicon

centrifuge filter units with 10 kDa MW cutoff and subjected

to SDS PAGE followed by silver staining. Bands of interest

were cut out from the gel and proteins identified via Mass

Spectrometry.

Targeted protein-protein interaction assays
CsiV-his was covalently linked to NHS-activated sepharose

resin (Thermo Scientific) using the manufacturer’s protocol.

Purified LpoA-his and His-PBP1A were added to CsiV-Sephar-

ose equilibrated in 20 mM Tris-HCl (pH 7.2), 150 mM NaCl,

1 mM DTT and 0.1% reduced Triton X-100 and incubated at

4uC rotating for 2 h. The resin was then washed 36with buffer

and proteins eluted by boiling the resin in buffer containing 1%

SDS (95uC, 5 min). Proteins were then visualized via Western

Blot.

Bacterial Two Hybrid Analysis (BACTH)
BACTH was conducted using a split adenylate cyclase system as

described previously [30].

PG binding assay
PG binding was assayed as described previously [31]. In short,

purified PG sacculi were incubated with purified proteins in

pulldown buffer (20 mM Tris/maleate pH 6.8, 50 mM NaCl,

10 mM MgCl2 0.1% Triton X-100) for 30 min on ice, then

ultracentrifuged (110.000 rpm). Pellets were washed once in

pulldown buffer and proteins in pellets and supernatant fractions

visualized by Western Blot.

Supporting Information

Figure S1 Western blot of csiV-mCherry. Ectopic expression of

CsiV-mCherry was induced by addition of 200 mM IPTG for 2 h,

followed by lysis and western blotting using anti-mCherry

antibody. The two observed bands are consistent with the

predicted sizes of CsiV-mCherry +/2 signal sequence.

(TIFF)

Figure S2 Co-occurrence patterns of CsiV and VC2168. Data were

extracted from the String database (http://string-db.org/) and repre-

sent the subset of phyla that contain either CsiV, VC2168 or both.

(TIFF)

Figure S3 Comparison of intestinal colonization in infant mice

by wt, csiV and mrcA V. cholerae. Strains were orally inoculated

into suckling mice. Total cfu/mouse in intestinal homogenates was

assessed after 24 h.

(TIFF)

Figure S4 Effect of PBP1B depletion on the morphology of DcsiV
cells. Cells in which PBP1B’s native promoter was replaced by an

arabinose-inducible promoter (PARA) were initially grown in the

presence of arabinose (ARA+), then resuspended in fresh medium

without arabinose (ARA2) and imaged at 1 minute intervals.

(TIFF)

Figure S5 Influence of ShyA expression on the growth of a

cefsulodin treated DcsiV DshyA mutant. Growth curves, based on

OD600, for a DcsiV DshyA derivative which carries a chromo-

somal shyA under IPTG control inserted into a neutral locus

(lacZ) grown in the presence of 100 mg/ml cefsulodin, IPTG

(200 mM), both, or neither. Data are averages of two biological

replicates; error bars represent standard deviation.

(TIFF)

Figure S6 ShyA overproduction in DcsiV is not toxic.

Exponentially growing, uninduced cells carrying an inducible

shyA expression construct (pshyA) were diluted into fresh medium

+/2 500 mM IPTG at 37uC. A representative experiment (of two

repetitions with similar results) is shown; data are averages of

technical quadruplicates.

(TIFF)

Figure S7 CsiV and LpoA are copurified from V. cholerae cell

lysates. (A) Lysates of csiV::csiV-his6 cells +/2 Dithiobis

succinmidyl propionate (DSP) treatment were affinity purified on

His-antibody resin. Purified proteins were visualized via silver

staining of SDS-PAGE gels, and protein bands of interest were

analyzed by mass spectroscopy. (B) Lysates of wt and lpoA::lpoA-
his6 cells +/2 DSP treatment were affinity purified on His-

antibody resin. Purified proteins were identified as in (A).

(TIFF)

Figure S8 The association of LpoA with PG in vivo is

independent of CsiV and PBP1A. Soluble (S) and PG-associated

(P) proteins were isolated from an lpoA::lpoA-his6 strain and

derivatives lacking csiV, mrcA, or both after DSP crosslinking.

Following reversal of crosslinks, the presence of LpoA-His6 in each
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fraction was monitored by western blotting using an anti-His

antibody.

(TIFF)

Figure S9 UPLC chromatograms. Representative chromato-

grams of muramidase-digested PG samples.

(TIF)

Table S1 Oligos used in this study.

(XLS)

Table S2 Strains and plasmids.

(XLS)
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