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Abstract
Background

Earlier studies implicated norepinephrine transporter (NET) gene (SLC6A2) polymorphisms

in the etiology of major depressive disorder (MDD). Recently, two single nucleotide

SLC6A2 polymorphisms, G1287A in exon 9 and T-182C in the promoter region, were found

to be associated with MDD in different populations. We investigated the relationship

between the brain volume and these two polymorphisms of the SLC6A2 in MDD patients.

Methods

We obtained 3D high-resolution T1-weighted images of 30 first-episode MDD patients and

48 age- and sex-matched healthy subjects (HS). All were divided into 4 groups based on

polymorphism of either the G1287A or the T-182C genotype. VBM analysis examined the

effects of diagnosis, genotype, and genotype-diagnosis interactions.

Results

Diagnosis effects on the brain morphology were found in the left superior temporal cortex.

No significant genotype effects were found in the T-182C and the G1287A. A significant

genotype (G1287A)–diagnosis interaction was found in the left dorsolateral prefrontal cor-

tex. No significant genotype (T-182C)–diagnosis interaction effects were observed in any

brain region.

Conclusions

In MDD patients there seems to be a relationship between the volume of the dorsolateral

prefrontal cortex and polymorphism of the SLC6A2G1287A gene.
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Introduction
Norepinephrine (NE) is a monoamine neurotransmitter implicated in various behavioral and
psychological functions including learning and memory, anxiety, arousal, and mood, as well as
other disorders such as addiction, depression, and attention deficit/hyperactivity disorder [1,
2]. The norepinephrine transporter (NET), which is also known as solute carrier family 6 mem-
ber 2 (SLC6A2), is responsible for norepinephrine re-uptake by the presynaptic terminal, and
is a target for tricyclic antidepressants, selective norepinephrine re-uptake inhibitors, and sero-
tonin-NE re-uptake inhibitors used to treat major depressive disorder (MDD) [3, 4]. It is also
been suggested that the NET is involved in the pathogenesis of MDD itself [5].

The NET gene (SLC6A2, OMIM �163970; 19 exons in this genomic region spanning 50.589
kb) is located on chromosome 16q12.2. Among the several known SLC6A2 polymorphisms,
most studies on the etiology of MDD have focused on T-182C (rs2242446) in the 5’-flanking
promoter region and G1287A (rs5569) in exon 9. Because the promoter region of SLC6A2 con-
tains several cis-elements that play a critical role in transcription regulation [6, 7], changes in
the DNA structure of this promoter may lead to altered transcriptional activity. Jonsson and
colleagues reported that healthy subjects (HS) with the G/G genotype of the G1287A had
higher cerebrospinal fluid concentration of the NE metabolite 3-methoxy-4-hydroxyphenyl-
glycol (MPHG) compared to other genotypes [8]. Recently, these single nucleotide polymor-
phisms (SNPs) were found to be associated with MDD [9, 10]. Studies on the relationship
between susceptibility to MDD and SLC6A2 polymorphisms suggested that they may confer
differential sensitivity to specific antidepressant treatments [11, 12]. Indeed, different combina-
tions of SLC6A2 polymorphisms may be associated with distinct sub-phenotypes of MDD;
there was a dose relationship between the number of T containing genotypes and the presence
of recurrent depression [13].

Morphological brain abnormalities in MDD patients may be attributable to genetic- and
epigenetic factors that regulate brain development and neurodegeneration. For instance, some
studies in MDD patients have yielded evidence of a relationship between brain volume and
genetic factors, including particularly brain-derived neurotrophic factor (BDNF) and methyle-
netetrahydrofolate reductase (MTHFR)/catechol-O-methyltransferase (COMT) polymor-
phisms[14–18]. However, to the best of our knowledge, no previous studies have examined
neuroimaging changes associated with SLC6A2 polymorphisms in MDD patients. We investi-
gated the relationship between the brain volume and T-182C and G1287A of the SLC6A2 in
MDD.

Materials and Methods

Study Participants
The protocol of this prospective study was approved by the Ethics Committee of the University
of Occupational and Environmental Health. All participants provided prior written informed
consent for participation in this study. We recruited 30 Japanese, right-handed, treatment-
naive first-episode patients with MDD from the in-patient and out-patient services of the Uni-
versity Hospital of Occupational and Environmental Health. A psychiatrist (K.H.) with 7 years’
experience diagnosed the patients using the Structured Clinical Interview for DSM-IV (SCID).
The severity of depression was evaluated using the 17-item Hamilton Rating Scale for Depres-
sion (HAMD17). Only patients with a HAMD17 score� 14 were eligible for the study. Exclu-
sion criteria included any history of neurological or other physical diseases and comorbidities
with other disorders (i.e., there should be no evidence of schizoaffective disorder, bipolar disor-
der, Axis II, personality disorders, or mental retardation). We also recruited 48 Japanese HS
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from nearby communities, who included staff at our institution and also their relatives by
blood or marriage and friends. They were interviewed by the same psychiatrist using the SCID
for DSM-IV, non-patient edition [19].

The 30 MDD patients and the 48 HS were divided into groups based on their G1287A and
their T-182C genotype. With respect to G1287A, there were 12 MDD patients with the G/G-
and 18 with the A/- genotype (G/A n = 13, A/A n = 5); 27 HS had the G/G and 21 the A/- geno-
type (G/A n = 17, or A/A n = 4) (Table 1). The 78 participants were also divided into groups
based on their T-182C genotype; 11 MDD patients had the T/T genotype and 19 the C/- geno-
type (T/C n = 10, C/C n = 9). Of the 48 HS, 27 read the T/T and 21 the C/- genotype (T/C
n = 17, C/C n = 4) (Table 1).

Genotyping
All 78 participants underwent neuroimaging; they also provided a blood sample from which
DNA was extracted according to standard laboratory protocols. DNA was isolated from
peripheral blood mononuclear cells using the QIAamp DNAMini-Kit (QIAGEN, Tokyo,
Japan). Genotyping was carried out with the polymerase chain reaction (PCR) SNP genotyping
system using the BigDye Terminator v3.1 Cycle Sequencing Kit (Life Technologies Japan,
Tokyo, Japan. The DNA was read using a BMG Applied Biosystem 3730xI DNA Analyzer
(Applied Bioststem, Forest City, CA, USA), T-182C in the promoter region was determined
with a modification of the method of Zill et al. [9] and G1287A in exon 9 with the method of

Table 1. Demographic and Clinical Characteristics of Participants.

Age Female number Years of education* Total gray matter volume [ml]* HAMD total score

mean (sd) mean (sd) mean (sd) mean (sd)

ALL HS 41.2 (11.4) 13 16.6 (3.0) 698.9 (61.4) - (-)

(n = 48)

MDD 44.3 (13.0) 13 13.4 (2.5) 669.2 (64.9) 7.7 (5.1)

(n = 30)

G1287A HS G/G (n = 27) 40.3 (9.1) 6 16.7 (2.9) 711.6 (66.3) - (-)

(n = 48)

A/- (n = 21) 42.2 (14.0) 7 16.3 (3.1) 682.5 (51.5) - (-)

G/A = 17, A/A = 4]

MDD G/G (n = 12) 41.0 (11.7) 4 12.8 (1.8) 644.4 (41.8) 7.8 (4.0)

(n = 30)

A/- (n = 18) 47.6 (13.4) 9 13.8 (2.9) 656.6 (72.8) 7.6 (6.0)

[G/A = 13, A/A = 5]

T-182C HS T/T (n = 27) 42.8 (10.3) 4 16.5 (2.2) 713.2 (40.7) - (-)

(n = 48)

C/- (n = 21) 40.3 (12.7) 9 16.5 (3.8) 680.4 (66.9) - (-)

[T/C = 17, C/C = 4]

MDD T/T (n = 11) 46.3 (13.9) 5 13.2 (3.0) 661.1 (73.1) 5.5 (3.4)

(n = 30)

C/- (n = 19) 44.2 (12.7) 8 13.5 (2.3) 673.8 (61.2) 8.9 (5.6)

[T/C = 10, C/C = 9]

Abbreviations: sd = standard deviation; HS = healthy subjects; MDD = Major depression disorders; HAMD = 17-item Hamilton Rating Scale for

Depression; G = Guanine; A = Adenine; T = Thymine; C = Cytosine.

*There was a significant difference between HS and MDD (p < 0.01).

doi:10.1371/journal.pone.0150712.t001

Relationship between NETGene and Brain Volume in MDD

PLOSONE | DOI:10.1371/journal.pone.0150712 March 9, 2016 3 / 12



Jönsson et al. [8]. In brief, the cycling conditions were an initial denaturation at 94°C for 4min-
utes, followed by 35 cycles of 94l denatu5 seconds, 59°9econds5 seconds, 72lowed by5 seconds,
and a final elongation at 72denatur4 minutes. PCR reactions for SNP rs5569 were performed
in a total volume of 20 μL, containing 20 ng of genomic DNA, 200 μM dNTPs, 0.2 μM each
primer, 2.5 μL 10 volume of 2fe Takara Bio, Tokyo, Japan), and 1 unit of Taq DNA polymerase
(Takara Bio, Tokyu, Japan). Forward primer (T-182A): 5-CTCCTGTGGCTGTTGAAGTG
T-3; reverse primer (T-182A): 5 –GCTGGCGAGAGGAACTTTAC-3; forward primer
(G1287A): 5-GACAGGTAGCTGTTGCGTAGG; reverse primer (G1287)A: 5-CCCAGCCTC
TACCTGG-3.

MRI and Image Processing for Voxel-Based Morphometry (VBM)
Magnetic resonance imaging (MRI) data were obtained on a 3T scanner (Signa EXCITE 3T;
GE Healthcare, Milwaukee, WI, USA) using a dedicated eight-channel phased-array coil (USA
Instruments Aurora, OH, USA). For three-dimensional fast-spoiled gradient-recalled acquisi-
tion with steady state (3D-FSPGR) the parameters were: repetition time msec/echo time mse-
c/inversion time, 10/4.1/700; flip angle, 10°; field of view 24 cm; section thickness, 1.2 mm;
resolution, 0.9 x 0.9 x 1.2 mm. All images were corrected for image distortion due to gradient
non-linearity using “GradWarp” [20] and for intensity inhomogeneity using “N3” [21]. Image
processing for VBM [22, 23], a fully automatic technique used for the computational analysis
of differences in regional brain volumes throughout the entire brain, was with SPM8 (Statistical
Parametric Mapping 8; Institute of Neurology, London, UK). The 3D-FSPGR images in native
space were spatially normalized and segmented into gray matter (GM), white matter, and cere-
brospinal fluid (CSF) images, and intensity-modulated using the DARTEL (Diffeomorphic
Anatomical Registration Through Exponential Lie Algebra) toolbox in a high-dimensional
normalization protocol. The DARTEL toolbox has been proposed by Ashburner [24] as an
alternative method for normalization in SPM. In an intensity-modulation step, the voxel values
of the segmented images were multiplied by the measure of the warped and unwarped struc-
tures derived from the nonlinear step of the spatial normalization. This step converted the rela-
tive regional GM density into the absolute GM density expressed as the amount of GM per
unit volume of brain tissue before spatial normalization. The resulting modulated gray and
white matter images were smoothed with an 8-mm Gaussian kernel.

Statistical Analysis
Demographic and clinical characteristics of the two groups were compared using t-tests
(unpaired, two tailed) and chi-squared as appropriate. Total GM volume was also compared
between the groups using an unpaired two tailed t-test.

Genotype deviation from the Hardy-Weinberg equilibrium (HWE) was evaluated by chi-
square test (SAS/Genetics, release 8.2, SAS Japan Inc, Tokyo, Japan).

For VBM analysis, statistical analyses were performed using the SPM8 software program.
Morphological changes in the GM were assessed using a full factorial model with the diagnosis
and genotype status (G1287A: G/G or A/-; T-182C: T/T or C/-) set as independent variables.
Age, sex, total GM volume and years of education were included as covariates of no interest.
The comparisons made within the 2 x 2 factorial design were:

1. Diagnosis effects, MDD vs HS,

2. Genotype effects, G1287A: G/G genotype participants (MDD and HS) vs A/- genotype par-
ticipants, T-182C: T/T genotype participants vs C/- genotype participants,
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3. Genotype—diagnosis interaction, G1287A: diagnosis effects in G/G genotype participants
vs diagnosis effects in A/- genotype participants, T-182C: diagnosis effects in T/T genotype
participants vs diagnosis effects in C/- genotype participants.

The cluster-level threshold was set at familywise error (FWE)-corrected P< 0.05, with a
voxel-level threshold set at uncorrected-P< 0.001.

Results

Demographic and Clinical Data
Genotype frequencies were in Hardy Weinberg equilibrium (G1287A of HS: df = 1,
χ2 = 0.3115, p> 0.05; G1287A of MDD: df = 1, χ2 = 0.209, p> 0.05; T-182C of HS: df = 1,
χ2 = 0.3115, p> 0.05; T-182C of MDD: df = 1, χ2 = 3.274, p> 0.05). While there were no sig-
nificant differences with regard to the distribution of age and sex between the HS and the
MDD patients, there were significant differences in the total GM volume and the years of edu-
cation (p< 0.01) between the groups. (Table 1)

VBM analysis
(a) Diagnosis effects: HS vs MDD. The volume of the left superior temporal cortex was

significantly smaller in MDD patients than the HS (FWE corrected p = 0.02, T value = 4.28,
MNI = [–55, 13, –4]) (Fig 1, Table 1).

(b) Genotype effects. In the G1287A, no brain regions showed any significant differences in
the GM volume between G/G and A/- genotype participants. In the T-182C, no brain regions also
showed significant differences in the GM volume between T/T and C/- genotype participants.

(c) Genotype—diagnosis interaction. For G1287A, we found a significant genotype—
diagnosis interaction in relation to brain morphology. In comparison with A/- genotype partic-
ipants, G/G genotype participants demonstrated significantly larger volume in the left dorsolat-
eral prefrontal cortex (PFC); in other words, the significant volume change in the left
dorsolateral PFC associated with MDD was observed in the G/G genotype participants com-
pared with the A/- genotype participants (FWE corrected p = 0.03, T value = 4.37, MNI = [–15,
18, 56]) (Figs 2 and 3 and Table 2).

For T-182C, there were no significant genotype—diagnosis interactions in relation to brain
morphology.

Fig 1. Results of the analysis of the diagnosis effects (HS versus MDD). The images show statistical parametric maps {SPM (t)}. The volume of the
superior temporal cortex is significantly smaller in the MDD patients than in the HS (FWE corrected p = 0.02).

doi:10.1371/journal.pone.0150712.g001
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Fig 2. Statistical parametric maps of the analysis of the G1287A genotype—diagnosis interaction. The images show statistical parametric maps {SPM
(t)}. Significant volume reduction in the left dorsolateral prefrontal cortex associated with MDD was observed in the G/G genotype participants compared with
the A/- genotype participants (FWE corrected p = 0.03).

doi:10.1371/journal.pone.0150712.g002

Fig 3. Box plots of the analysis of the G1287A genotype—diagnosis interaction. These box plots show the medians, quartiles and ranges of the GM
volumes of the cluster in left dorsolateral prefrontal cortex. The dot at the "MDDwith A/- genotype" represent an outlier.

doi:10.1371/journal.pone.0150712.g003
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Discussion
This study provides, to our knowledge, the first evidence of a relationship between brain vol-
ume and polymorphsisms in the NET gene in MDD patients. Specifically, our analysis of the
genotype—diagnosis interaction for G1287A was significant, with volume in the left dorsolat-
eral PFC being larger in MDD patients with the G/G genotype than in HS participants with
this genotype.

While we did not find that the G1287A polymorphism influenced brain structure in the
patients or the controls (ie there was no main effect of genotype), we did find a significant
genotype x diagnosis interaction. In current study, we found that, for the G1287A, no brain
regions showed any significant differences in the GM volume between G/G- and A/- genotype
participants. In the diagnosis effects, as suggested in the previous VBM [25, 26] and functional
MRI [27] studies, MDD patients showed significant smaller volume in left superior temporal
cortex which plays a crucial role in emotional processing [28]. However, the detected brain
region (left superior temporal cortex) by simple comparison between the MDD and the HS
was different from the detected brain region (PFC) by the genotype-diagnosis interaction.
These results may also support the conclusion that the G1287A was associated with volume
change of the PFC in the MDD patients.

In MDD the PFC, in particular the dorsolateral PFC, has been a focus of imaging studies.
Therefore, our findings are in line with many neuroimaging studies that demonstrated the
presence of abnormalities in the PFC in MDD patients; Koolschijn et al. [29] and Bora et al.
[30] conducted meta-analysis of VBM studies for gray matter abnormalities in MDD and dem-
onstrated smaller PFC volume in MDD patients, although other areas such as the hippocam-
pus, putamen, and caudate have also been found in these meta-analyses. Moreover, Drevets
et al showed decreased cerebral blood flow and glucose metabolism in the orbitofrontal and
medial prefrontal cortex of the PFC by positron emission tomography (PET) [31]. According
to the authors of the PET study, the decrease in activity is explained by the corresponding vol-
ume reduction of the PFC. Further, although it is controversial [32], previous studies with
stroke patients suggest that depression results from left frontal lobe lesions [33–35].

Other studies reported an association between the NET in the PFC and the drug effects to
psychiatric disorders [36–38], although the underlying mechanisms of action are not fully
understood. The effects of methylphenidate, a first-line psychostimulant medication for atten-
tion-deficit/hyperactivity disorder (ADHD) [36], affects extracellular dopamine and

Table 2. Results of VBM analysis.

Anatomical regions FDR corrected p uncorrected p Cluster size T-value Talairach coordinates

(culuster level) (culuster level) (Voxel level) x y z

Diagnosis effects (MDD < HS)

Left temporal pole 0.021 0.007 1737 4.28 -50 23 -23

4.19 -47 16 -10

4.1 -56 17 -24

Genotype (SLC6A2 G1287A)-diagnosis interaction

Left superior frontal gyrus 0.031 0.01 1523 4.37 -15 18 56

4.18 -13 20 66

4.16 -19 26 57

Abbreviations: MDD = Major depression disorders; HS = healthy subjects; NET = Norepinephrine transporter.

doi:10.1371/journal.pone.0150712.t002
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norepinephrine dynamics in the PFC by inhibiting NET. In ADHD patients, methylphenidate
improved PFC-dependent behavioral and cognitive processes including behavioral inhibition,
working memory, and planning [37]. In patients with MDD the antidepressant drug reboxetine
selectively blocked NET and improved their information memory with a positive valence [38].
Interestingly, animal studies revealed that reboxetine increased the level of dopamine, the pre-
cursor of norepinephrine, in the PFC [39, 40]. Therefore, our results also support the level of
dopamine in the PFC as one of the elements involved in the pathophysiology of psychiatric dis-
orders including MDD.

In our study the G1287A but not the T-182C was a susceptibility factor in the brain morphol-
ogy of MDD patients. Several case-control studies have investigated the potential association
between the T-182C andMDD, but the results have been inconsistent and often contradictory.
Inoue et al. demonstrated that there was a significant difference in the genotype distribution
between MDD patients and HS in a Japanese population, and the C/C genotype was associated
with lesser susceptibility to MDD [41]. However, a previous meta-analysis found no association
between the T-182C polymorphism andMDD [42], which may support our negative result for
the T-182C genotype. Furthermore, at the molecular biological level, the functional consequences
of the T-182C remain obscure [9]. On the other hand, the G1287A has been associated with the
CSF concentration of 3-methoxy-4-hydroxyphenylglycol (MHPG), a major norepinephrine
metabolite [8]. They found that CSF MHPG concentrations were higher in HS with the G/G
genotype than with A/- genotypes. Higher concentrations of MHPGmay be attributable to a
more active re-uptake of norepinephrine, resulting in lower norepinephrine levels in the G/G
genotype participants than in the A/- genotype participants. Some studies have reported that the
lower levels of norepinephrine impaired neuronal differentiation [43] because norepinephrine
induces brain-derived neurotropic factor expression, which is the most prevalent growth factor
in the central nervous system [44]. Therefore, we speculate that, in G/G genotype participants,
the lower norepinephrine levels due to the active re-uptake of norepinephrine was related to the
volume reductions in the PFC. Furthermore, the previous case-control study suggests that the G/
G genotype of the G1287Amay be involved in the development of MDD. Their analysis of the
gene—environment interaction between the G1287A and their residency showed that Chinese
rural women with the G/G genotype of the G1287A were susceptible to MDD [45]. These previ-
ous studies may support our findings in the MDD patients, suggesting that the integrity of the
PFC in the G/G genotype participants might be more sensitive to the changes in brain norepi-
nephrine than in the A/- genotype participants.

Some studies suggested that in MDD patients the G1287A may be useful for predicting their
response to NET-targeted antidepressants. Yoshida et al. [46] found that the A/A genotype is
associated with a lower response to serotonin-noradrenalin re-uptake inhibitors (SNRIs) than
the G/A genotype because in patients with the A/A genotype the active re-uptake of norepi-
nephrine is lower. Kim et al. [47] reported that patients with late-life depression who carry the
G/G genotype showed better responses to norepinephrine re-uptake inhibitors (NRIs) com-
pared with the A/- genotype participants, which suggests that NET plays an important role in
pathologic conditions in the MDD patients with G/G genotype. Furthermore, our results indi-
cate that the PFC abnormalities are present even in the early stage of MDD patients with the
G/G genotype. Therefore, our observations suggest that the early intervention may be useful to
prevent the brain changes during or before the first episode MDD with the G/G genotype.

Our study has some limitations. First, the number of participants was small. This made it
impossible to explore potentially relevant interactions with other genotypes that affect the
brain volume and it may have led to a positive bias. Longitudinal studies to explore the dynam-
ics of the evolution of GM volume aberrations and to investigate their role in the disease prog-
nosis and the response to treatment are underway. Second, in VBM analyses, we used the total

Relationship between NETGene and Brain Volume in MDD

PLOSONE | DOI:10.1371/journal.pone.0150712 March 9, 2016 8 / 12



GM volume as a covariate, but not a total intracranial volume (ICV), because we aimed to
investigate the effect of SLC6A2 on GM volume changes in MDD. The GM volume changes,
such as hippocampus, caudate, prefrontal cortex, and posterior cingulate cortex, are well
known to occur in MDD. Furthermore the automated-calculated ICV in SPM8 is less consis-
tent with manual-calculated ICV compared to SPM12 and FreeSurfer [48, 49].

Conclusion
In conclusion, the G1287A was associated with volume change of the PFC in patients
experiencing the first episode and drug-naïve MDD patients. Thus, PFC aberrations may be at
least partially related to the manifestation of MDD. However, it could be argued that the effect
of one polymorphism of the gene fails to explain the morphological changes seen in MDD
patients. We posit that in addition to the effects of the G1287A, other polymorphisms of MDD
susceptibility genes and genotype—diagnosis interactions may affect the individual brain mor-
phology. To elucidate relevant disease mechanisms we are in the process of exploring the
effects of other neuromodulatory gene polymorphisms.
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