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Halophilic archaea are known to produce a diverse array of pigments for phototrophy
and photoprotection. The aim of this paper was to determine the role of a Halobacterium
gene encoding the predicted cytochrome P450 monooxygenase (CYP174A1) in
pigment synthesis through a combined genetic, phenotypic, and transcriptomic
approach. We report on the observed phenotype changes [increased bacterioruberin
levels and the loss of purple membrane (PM)] between the Halobacterium salinarum
R1 and its CYP174A1-deletion mutant. In addition, we report on the whole-genome
DNA microarray analysis, which supports the phenotype of PM loss. This work expands
our understanding of the bop-gene regulon, and its relation to carotenoid biosynthesis,
and sheds light on our broader understanding of the role (s) of CYP174A1 in archaeal
pigment synthesis. To date, this is the first study in which the physiological role of any
cytochrome P450 monooxygenase (CYP450) in extremely halophilic archaea has been
reported.
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INTRODUCTION

Members of the Halobacteriaceae and Haloferacaceae families are extremely halophilic archaea
that flourish not only in environments saturated with NaCl but also manage to circumvent harsh
environmental factors and survive despite constant exposure to UV- and ionizing radiation and
fluctuating levels of desiccation (DasSarma et al., 2006, 2012; Gupta et al., 2015; Rodrigo-Baños
et al., 2015). These coping mechanisms, coupled with the fact that these organisms can mostly
be cultured with great ease in the laboratory, have sparked much interest due to their potential
biotechnological uses (Rodrigo-Baños et al., 2015). The Halobacterium and Haloferax (Cline et al.,
1989; Patenge et al., 2000; Bitan-Banin et al., 2003; Hartman et al., 2010) genera are probably the
best studied and most genetically tractable of the Halobacteriaceae and Haloferacaceae families,
respectively – most notable of these is Halobacterium salinarum (Sumper and Herrmann, 1976;
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Oesterhelt and Krippahl, 1983; Ng et al., 2000; Peck et al.,
2000, 2001; Berquist et al., 2006). An outstanding feature of
H. salinarum and many other members of the Halobacteriaceae
family is their red pigmentation that can be attributed to
bacterioruberin which is the main carotenoid component in
these organisms (Rodrigo-Baños et al., 2015). This red pigment
protects H. salinarum against photo damage due to high light
intensities and also aids in photoreactivation and cell membrane
reinforcement (Dundas and Larsen, 1963; Shahmohammadi
et al., 1998). H. salinarum also uses light to its advantage
by utilizing bacteriorhodopsin (BR) as a light-driven proton
pump to generate cellular energy. BR is a simple protein-
cofactor complex comprising bacterioopsin (BO) protein and a
covalently bound all-trans-retinal co-factor. Under microaerobic
conditions, BR formation is induced (Krebs et al., 1991) and
accumulates to high levels to form a two-dimensional crystal
known as the purple membrane (PM) (Peck et al., 2001; Dummer
et al., 2011).

Cytochrome P450 monooxygenases (CYP450s) are of special
interest due to their versatile biocatalytic repertoire: they
can perform an array of reactions including hydroxylation,
epoxidation, dealkylation and dehalogenation. (McLean et al.,
2005; Bernhardt, 2006). Archaeal CYP450s have received less
scrutiny than Bacterial and Eukaryal enzymes and the only two
well studied archaeal CYP450s to date are from the hyperthermo-
acidophiles Sulfolobus acidocaldarius and Sulfolobus tokodaii
(Koo et al., 2000; Yano et al., 2000; Oku et al., 2004) and
the thermo-acidophile Picrophilus torridus (Futterer et al., 2004;
Ho et al., 2008). Due to the genetic tractability and ease of
culturing, we investigated the role of CYP450s in extremely
halophilic archaea using the model archaeaon H. salinarum.
A simple DELTA-BLAST, using the CYP174A1 amino acid
sequence from H. salinarum R1 as query against the non-
redundant database, produced positive hits of more than 460
putative CYP450s spanning 34 genera in total from both the
Halobacteriaceae and Haloferacaceae families. Surprisingly there
is no literature available on this specific CYP450 in H. salinarum
or any other CYP450s from extremely halophilic archaea for that
matter.

Currently the physiological function of CYP174A1 in
H. salinarum and CYP450s in other extremely halophilic
archaea is unknown. Our results provide a possible first clue:
the CYP174A1 from H. salinarum appears to play a role
in pigment metabolism. The role of CYP450s in pigment
metabolism is not a novel one and has been well documented
in the cheese ripening bacterium Brevibacterium lines (Dufossé
and de Echanove, 2005), the green algae Haematococcus
pluvialis (Schoefs et al., 2001), the thermophilic, yellow-
pigmented bacterium Thermus thermophilus HB27 and the
heterobasidiomycetous yeast Xanthophyllomyces dendrorhous. In
the two aforementioned organisms, their CYP450 encodes for a
β-carotene hydroxylase (Blasco et al., 2004; Mandai et al., 2009)
and astaxanthin synthase (Ojima et al., 2006; Barredo et al., 2017)
respectively.

In this paper we present the very first data that could
provide a clue in elucidating the role of CYP450 in the
Halobacterium genus and specifically H. salinarum. The sole and

putative CYP450 gene from H. salinarum named CYP174A1, was
deleted from the chromosome of H. salinarum and the effect
of this deletion was evaluated with inter alia DNA-microarray
analyses.

EXPERIMENTAL PROCEDURES

Culturing Conditions
Propagation of pGEM-T R© Easy in TOP10 Escherichia coli
(Invitrogen) was performed in Luria-Bertani (LB) broth
(Sambrook et al., 1989) at 37◦C with agitation at 160 rpm.
Selective pressure was maintained by supplementing the LB
broth with ampicillin (final concentration100 µg/mL). Solid
media cultivations were performed by supplementing the growth
media with 15 g/L bacteriological agar and selective pressure was
maintained with 60 µg/mL ampicillin (final concentration).

Halobacterium salinarum R1 (Stoeckenius and Kunau, 1968;
Strahl and Greie, 2008; DasSarma et al., 2018) was cultured
in complete medium described by Oesterhelt and Krippahl
(1983) that contained (per 1 L): 20 g MgSO4 7H2O, 3 g
tri-sodium citrate, 250 g NaCl, 2 g KCl and 10 g peptone.
Strains were cultured at 40◦C at a shaking speed of 200 rpm.
Solid media cultivations were performed by supplementing the
broth with 15 g/L bacteriological agar and selective pressure
was maintained with a final concentration of 10 µg/mL
mevinolin (lovastatin) dissolved in dimethyl sulfoxide (DMSO)
(final DMSO concentration in medium was 0.1% v/v). For
blue/red selection experiments, plates were spread with 40 µL of
20 mg/mL X-gal (5-bromo-4-chloro-3-indolyl-beta-D-galacto-
pyranoside; 40 mg/mL dissolved in dimethyl formamide and
diluted with water).

Deletion Construction
Halobacterium salinarum R1 (Table 1) was cultured in liquid
medium until late stationary phase (OD600 = 1.2) and genomic
DNA extraction was performed as described by Labuschagne
and Albertyn (2007). Sequence specific oligonucleotide primer
sets (US_Hind_F and Prom_R) and (Term_F and DS_Bam_R)
(Supplementary Table S1) and Expand Long Template
Polymerase (Roche Molecular Biochemicals) were used to
amplify ca. 1kb directly upstream (US) and directly downstream

TABLE 1 | Strains and plasmids used in this study.

Strain or plasmid Characteristics Source (reference)

TOP 10 Escherichia coli Plasmid propagation Invitrogen

Halobacterium salinarum R1 Laboratory strain Gas
vesicle deficient

Stoeckenius and
Kunau, 1968; Strahl
and Greie, 2008

pGEM-T R© Easy Blue/White selection,
TA-cloning, AmpR

Promega

pMKK100 Blue/Red selection,
shuttle and suicide
vector, bgaH, AmpR,
MevR

Koch and Oesterhelt,
2005; del Rosario et al.,
2007
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(DS) of the open reading frame of the CYP174A1 gene. Sub-
cloning of the individual US and DS regions and ultimately
the US/DS fusion (deletion cassette) were performed in
pGEM-T R© Easy (Promega). All sub-cloned plasmids were
extracted as described by Sambrook et al. (1989) The final
US/DS deletion cassette was liberated from pGEM-T R© Easy
with HindIII and BamHI endonucleases and directionally
cloned into the suicide vector pMKK100 (Koch and Oesterhelt,
2005). The resulting pMKK100 construct was transformed into
competent H. salinarum cells to perform blue/red clone selection
(Supplementary Figure S1).

Competent H. salinarum R1 cells were prepared as
described by Cline and Doolittle (1987) with some minor
modifications as described by Koch and Oesterhelt (2005). After
transformation cultures were streaked on plates containing
mevinolin and X-gal and incubated at 40◦C for 5–7 days or
until colonies appeared. Successfully transformed cells i.e.,
cells harboring the integrated pMKK100 plasmid containing
the bgaH gene (halophilic β-galactosidase) formed bright
blue colonies on X-gal containing plates (Patenge et al.,
2000).

When the single colonies became large enough, four
blue colonies were picked and transferred to four test tubes
containing 5 mL complete medium devoid of mevinolin.
Cultures were incubated at 40◦C at 100 rpm and after
the cultures reached an OD600 = 0.3–0.4, they were
diluted 200-fold in 35 mL complete medium in 100 mL
Erlenmeyer flasks without any mevinolin. Cells were cultured
3 consecutive times to a cell density of OD600 = 0.3–0.4
and then finally cultured to a density of OD600 = 0.5–
0.8 at a shaking speed of 100 rpm. After the final round
of culturing, the cell suspensions were diluted 10−5 and
10−6 fold with complete medium to a final volume of
100 µL. The entire 100 µL was plated out onto complete
medium containing X-gal and no mevinolin. Plates were
then incubated at 40◦C for 5–7 days or until colonies
became visible. Plates typically yielded 40–50 colonies and
at least 10 red colonies from each plate were picked for the
deletion screening experiment and all blue colonies were
excluded.

1CYP174A1 Screening
Red colonies were inoculated in 5 mL complete medium
without selective pressure at 40◦C until OD600 = 0.4. Genomic
DNA was extracted as described above. To assess if (i)
successful CYP174A1 deletion and (ii) deletion occurred
at the correct locus, two separate PCR reactions were
performed. Oligonucleotides (421-F and 424-R) based on
gene sequences adjacent to CYP174A1 were used for the first
round of PCR using Taq DNA Polymerase (New England
Biolabs). Clones that displayed the correct deletion genotype
were then subjected to a second round of PCR using locus
specific oligonucleotide primers (Int-F and DS-Bam-R)
(Supplementary Table S1) and Expand Long Template
polymerase (Roche Molecular Biochemicals). Clones that
displayed the correct amplicon size were then finally designated
as 1CYP174A1.

Pigment Extraction
Halobacterium salinarum R1 and 1CYP174A1 strains were
cultured in 35 ml complete medium as described previously.
Five milliliter samples were taken during late stationary phase
at 86 h (OD600 = 1.4) and 96 h (OD600 = 1.5) and
centrifuged at 17 000 × g for 10 min at ambient temperature.
Supernatants were removed and the wet weights of the pellets
were normalized. Pellets were extracted with ice cold acetone
for 1 h at 4◦C with agitation. After each extraction, the pellet
was collected by centrifugation at 20 000 × g and the red
supernatant was collected. The extraction was repeated until
the pellets appeared white. One milliliter of the supernatant
was dried under N2-gas and resuspended in 0.3 mL fresh
acetone. The concentrated extracted pigments were subjected
to a wavelength scan (200–750 nm, 2 nm intervals) in 96-
well UV microtitre plates using a SpectraMax M2 (Molecular
Devices).

DNA Microarrays
Strains of H. salinarum R1 and 1CYP174A1 strains were
cultured with agitation at 100 rpm in complete medium in
triplicate, at 40◦C. Samples for total RNA extraction were
taken at the logarithmic- and stationary phases of growth
which corresponds to OD600 of ca. 0.3–1.3, respectively (see
Supplementary Figure S3). Total RNA extraction, cDNA
synthesis, Cy3-dCTP (used for parental strain) and Cy5-
dCTP labeling (used for deletion strain) of the cDNA and
computational analyses of results was performed as previously
described (Coker et al., 2007; DasSarma et al., 2012). Agilent
microarray data were analyzed using GeneSpring software,
version 11.5.1 and Agilent Feature Extraction Software, version
10.5.1.1, was used for background subtraction and LOWESS
normalization. The extracted RNA from the three parallel
cultures for each strain was standardized to 6 µg and pooled
to minimize biological noise. Fluorescently labeled cDNA
targets from each strain (representing each phase of growth)
were combined in a 1:1 ratio and hybridized in duplicate at
65◦C for 15 h on a single Agilent slide containing replicated
genes from Halobacterium sp. NRC-1 (Müller and DasSarma,
2005).

Membrane Analysis
Halobacterium salinarum R1 parental and 1CYP174A1 strains
were cultured in 1 L complete medium at 40◦C at 200 rpm
until an OD600 = 1.2 was reached (late stationary phase).
Cells were harvested at 6 000 × g for 10 min at 4◦C and
the resulting pellets were used for purple and red membrane
isolation using sucrose cushion gradients essentially as described
by DasSarma et al. (2012). Pellets were resuspended in basal
salts solution and the resulting cell lysate was transferred
into dialysis tubing and dialyzed against 5 L of water at
4◦C with three changes. The cell paste was treated with
50 µL DNase (10 µg/µL) and incubated at 37◦C for 1 h
while shaking at 180 rpm. The DNaseI digested cell lysates
were gently layered onto the sucrose gradients and placed
in a balanced SW32 Ti rotor and spun at 132 000 × g
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for 17 h at 18◦C in a Beckman Coulter OptimaTM L-100
Ultracentrifuge.

Microarray Data Accession Number
Array data were deposited in the GEO database1 under series
accession number GSE104012.

RESULTS

Deletion of CYP174A1 Appears to
Influence Bacterioruberin Synthesis
When H. salinarum R1 parental and the P450 deletion
strains were cultured on solid medium and in liquid medium
a marked difference in pigmentation was observed. In the
liquid cultures the deletion strain first appeared darker
red-orange in comparison to the parent R1 strain after
about 40 h of growth (early stationary phase). Normalized
wet-weight samples of each strain was collected at 86 h
and 96 h (late stationary phase) and the red pigments
were extracted with acetone and subjected to an UV-visible
wavelength scan. Figure 1 illustrates the UV-visible spectra
of the extracted pigments from both parental- and deletion
strains.

The obtained spectra all displayed the characteristic
so-called “three-finger” shape that is typical of the
C50 bacterioruberin-like carotenoids (D’Souza et al.,
1997; Fang et al., 2010). Based on the spectral data, all
deletion strains always produced more red pigment when
compared to the parental strains. Deletion of CYP174A1

1http://www.ncbi.nlm.nih.gov/geo

FIGURE 1 | UV-visible spectra of acetone extracted red pigments of cell
pellets harvested at 86 h (solid lines) and 96 h (dashed lines) of growth from
parental (gray lines) and CYP174A1-deletion (black lines) strains of
Halobacterium salinarum R1. Wavelengths of absorption maxima are
indicated on the top scans.

in H. salinarum R1 appears to have influenced carotenoid-
metabolism and inter alia caused the accumulation of
bacterioruberins.

DNA Microarray and Purple Membrane
Analyses
Data from the two color microarrays for samples from the
logarithmic and stationary phases of growth were plotted
on a scatter plot (Supplementary Figure S2). Differentially
expressed genes that were statistically significant were defined
as genes that displayed a P-value < 0.05 and a fold change
cutoff threshold of ≥1.5 (log2 ratio of ≥0.5). Based on the
aforementioned criteria, 41 and 101 genes were differentially
expressed during the logarithmic and stationary phases of
growth, respectively. The brp gene (encoding the bacterio-
opsin-related protein) and two other genes with unknown
functions, vng1461 and vng1468, were significantly expressed
during the logarithmic growth stage. Brb, in conjunction with
crtB1 are involved in the first and last committed steps of the
retinal chromophore biosynthetic pathway, respectively (Baliga
et al., 2001; Peck et al., 2001; DasSarma et al., 2012). Most
strikingly of the gene expression profile, was the very low
expression levels (linear fold change of −19.10 or log2 ratio
of −4.10) of the bop gene (encoding for the bacterio-opsin
protein) during stationary phase in the 1CYP174A1 strain. The
bop gene forms part of a cluster of genes, called the bop-
gene regulon (Peck et al., 2001; Tarasov et al., 2008, 2011;
DasSarma et al., 2012) that is involved in the biosynthesis
and regulation of BR in PM. Figure 2A illustrates the gene
expression profiles of bop and other genes associated with
the bop-regulon during both phases of growth as mentioned
above. The very low levels of bop-expression imply the
possible abolishment of PM synthesis and this was confirmed
with a subsequent sucrose gradient: PM was present in the
parental R1 strain but absent in the 1CYP174A1 strain
(Figure 2B).

DISCUSSION

Bacterioruberin Accumulation
Deletion of the CYP174A1 gene in H. salinarum R1 appears
to have influenced bacterioruberin and PM biosynthesis. Red
colored bacterioruberins accumulated (Figure 1) and PM
became absent in the 1CYP174A1 strain when compared to
the parental strain (Figure 2B). An increase in bacterioruberin
levels in H. salinarum was also observed by Dummer et al.
(2011) but this was due a deliberate bop gene deletion. The
authors discovered that the lye (lycopene elongase) gene
catalyzed the committed step in bacterioruberin biosynthesis
and that the bop gene product, bacterio-opsin, inhibited
lycopene elongase and consequently the production of
bacterioruberins. In the current study, the very low expression
of bop in the 1CYP174A1 strain has likely rendered the
lycopene elongase enzyme completely uninhibited and caused
the increase in bacterioruberin biosynthesis. It has been
previously proposed that free retinal (when not bound to
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FIGURE 2 | (A) Log2 ratios (y-axis) are shown for expression profiles in logarithmic (gray bars) and stationary growth phases (black bars) for the H. salinarum R1
parental and 1CYP174A1 strains. Dashed lines indicate the threshold of significant differential expression (see Materials and Methods) and error bars indicate
standard errors. (B) inlet: H. salinarum R1 parental strain and 1CYP174A strain red membrane (RM) and purple membrane (PM) as fractionated by sucrose gradient.

bacterio-opsin) could potentially regulate bacterioruberin
biosynthesis; however, Dummer et al. (2011) found that
free retinal had no significant effect on bacterioruberin
biosynthesis.

Decreased Bop Gene Transcription
Levels
The bop gene forms part of a tightly regulated cluster of
genes referred to as the bop-regulon (Tarasov et al., 2008,
2011; DasSarma et al., 2012). Bop is regulated by a sensor
regulator gene called bat and potentially also by a small zinc-
finger containing protein called brz. The bat gene encodes for a
trans-acting factor that induces bop transcription at low oxygen
tension, which naturally occurs in the stationary phase. DasSarma
et al. (2012) illustrated that a bat deletion caused a marked
drop in transcription levels of several genes in the bop-regulon
including bop. The subsequent drop in bop transcription directly
caused the loss of PM. Figure 2A illustrates that neither bat
nor brz were significantly expressed in stationary phase and
that instead of bop being induced, the transcript levels of bop
dropped dramatically, which in turn caused the loss of PM
(Figure 2B). In addition, there was no significant gene expression
and considerable decrease in transcription levels of e.g., crtB1
or blp as observed when bat is deleted (DasSarma et al., 2012).
Although a similar phenotype for loss of PM was observed for
this study, the crucial difference is that no bat deletion was ever
introduced as was the case with DasSarma et al. (2012).

In rare cases, the abolishment of bop can be attributed to
spontaneous insertions either in bop itself or in the brp gene.
Since the early 1980s, several insertion sequences (IS) have
been identified in bop from various PM-deficient Halobacterium
strains (Simsek et al., 1982; DasSarma et al., 1983; Ovchinnikov
et al., 1984; Pfeiffer et al., 1984; Pfeiffer and Betlach, 1985; Ebert
et al., 1987). Typically, the IS called ISH 1 (1 118 bp in size)
integrates into a single site in the bop gene and ISH 2 (520 bp
in size) at several sites of bop. In the current study, the bop, brp
and bat genes from both the parental and 1CYP174A1 strain,
were PCR amplified with gene specific oligonucleotide primers
(Supplementary Table S1) to assess their ORF size. All the
aforementioned genes displayed the correct amplicon size (see
Supplementary Figure S4). For the current study, we concluded
that IS was most probably not responsible for the decreased bop
transcription levels and loss of PM in the 1CYP174A1 strain.

Possible Physiological Role of CYP174A1
in H. salinarum
Calo et al. (1995) reported that some species of Haloarcula
hispanica and H. salinarum contain trans-astaxanthin. In
H. salinarum about 11% of the pigment (per weight basis) was
trans-astaxanthin while 24% was 3-hydoxy-echinenone (Calo
et al., 1995). Astaxanthin biosynthesis can occur via a 3-hydroxy-
echinenone intermediate by the addition of two keto and two
hydroxyl moieties at the 4,4′ and 3,3′-positions of the β-ione rings
of β-carotene, respectively (Martín et al., 2008). Given the fact
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FIGURE 3 | Proposed function of CYP174A1 in astaxanthin biosynthesis and the effect of increased singlet oxygen levels on bop expression in H. salinarum. The
role of CYP174A1 in astaxanthin biosynthesis in H. salinarum has to be verified.

that 3-hydroxy-echinenone and astaxanthin have been identified
in H. salinarum (Calo et al., 1995), we speculate that, as in
the case of the CYP450 from X. dendrorhous, CYP174A1 from
H. salinarum acts as both a ketolase and a hydroxylase to produce
astaxanthin.

Astaxanthin is a potent anti-oxidant capable of quenching
the highly reactive oxygen species (ROS) called singlet oxygen
(Makino et al., 2008; Glaeser et al., 2011). Singlet oxygen is the
product of photo-oxidative stress due to cells being exposed to
high light intensities and can cause severe cell damage by rapidly
reacting with inter alia proteins, lipids and DNA (Glaeser et al.,
2011). Interestingly, microarray analyses by Facciotti et al. (2010)
revealed that when Halobacterium sp. strain NRC-1 was grown
in rich medium, the CYP174A1 transcript levels significantly
increased in the transition from the exponential to stationary
phase of growth. Stationary phase is also the period when bop
expression is increased to biosynthesize PM for the purpose
of phototrophic growth (Baliga et al., 2001; DasSarma et al.,
2012).

If we assume that CYP174A1 catalyzes the biosynthesis
of astaxanthin in H. salinarum, it could be argued that
increasing levels of singlet oxygen induces the formation of
astaxanthin. Interestingly, Schroeder and Johnson (1995)
observed that carotenoid biosynthesis was induced by singlet
oxygen and other peroxyl radicals in X. dendrorhous. The
deletion of CYP174A1 and presumably the consequent
decrease in astaxanthin will cause a potential detrimental
increase in singlet oxygen levels for H. salinarum
(Figure 3).

We speculate that when CYP174A1 is deleted, that increasing
singlet oxygen levels and possibly other ROS act as a chemical
signal that necessitates H. salinarum to utilize an auxiliary
mechanism: by inhibiting the bop gene product and thereby
lifting the inhibition on the lye gene. This in turn will result in
increased biosynthesis of bacterioruberin, which also has anti-
oxidant properties (Rodrigo-Baños et al., 2015). The higher levels
of bacterioruberin could further potentially aid in the protection
of H. salinarum against oxidative damage from singlet oxygen
and other ROS.

The role(s) of CYP450s in extremely halophilic archaea is still
unknown. This study paves the way for future work that could
shed more light on the complex physiological role of CYP450s
in not only H. salinarum but possibly other extremely halophilic
archaea. In particular, astaxanthin levels need to be measured in
both the 1CYP174A1 and parental strains and the possible role of
CYP1741 in the synthesis of astaxanthin needs to be verified. The
complex regulation of pigment synthesis is not only of interest
from a molecular genetic perspective but is also of increasing
interest for astrobiology (Schwieterman et al., 2018; Walker et al.,
2018).
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